JPH06275867A - Method for converting gallium nitride-based compound semiconductor into p-type - Google Patents

Method for converting gallium nitride-based compound semiconductor into p-type

Info

Publication number
JPH06275867A
JPH06275867A JP8549193A JP8549193A JPH06275867A JP H06275867 A JPH06275867 A JP H06275867A JP 8549193 A JP8549193 A JP 8549193A JP 8549193 A JP8549193 A JP 8549193A JP H06275867 A JPH06275867 A JP H06275867A
Authority
JP
Japan
Prior art keywords
compound semiconductor
gallium nitride
based compound
type
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8549193A
Other languages
Japanese (ja)
Other versions
JP2785253B2 (en
Inventor
Takao Yamada
孝夫 山田
Masayuki Senoo
雅之 妹尾
Shuji Nakamura
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP8549193A priority Critical patent/JP2785253B2/en
Publication of JPH06275867A publication Critical patent/JPH06275867A/en
Application granted granted Critical
Publication of JP2785253B2 publication Critical patent/JP2785253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To realize a p-n junction by a method wherein a gallium nitride-based compound semiconductor which has been doped with a p-type dopant is etched, uneven parts are formed on its furface and the compound semiconductor is annealed at a specific temperature. CONSTITUTION:A gallium nitride-based compound semiconductor 1 which has been doped with a p-type dopant is etched, uneven parts are formed on its surface, and the gallium nitride-based compound semiconductor is annealed at a temperature of 400 deg.C or higher. Its annealing operation is performed in a nitrogen atmosphere which has been pressurized ay a decomposition pressure or higher of the gallium nitride-based compound semiconductor at its annealing temperature in order to prevent N in the gallium nitride-based compound semiconductor such as GaN, GaAlN or the like from being decomposed and discharged. Thereby, a p-type whose resistance is low is formed, a resistance value is made uniform on the whole wafer irrespective of a film thickness, and a p-n junction can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はp型ドーパントがドープ
された窒化ガリウム系化合物半導体を低抵抗なp型にす
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for converting a gallium nitride-based compound semiconductor doped with a p-type dopant into a p-type having a low resistance.

【0002】[0002]

【従来の技術】GaN、GaAlN、InGaN、In
AlGaN等の窒化ガリウム系化合物半導体は直接遷移
を有し、バンドギャップが1.95eV〜6eVまで変
化するため、発光ダイオード、レーザダイオード等、発
光素子の材料として有望視されている。現在、この材料
を用いた発光素子には、n型窒化ガリウム系化合物半導
体の上に、p型ドーパント(p型不純物)をドープした
高抵抗なi(insulator)型の窒化ガリウム系化合物半
導体を積層したいわゆるMIS構造の青色発光ダイオー
ドが知られている。
2. Description of the Related Art GaN, GaAlN, InGaN, In
Since gallium nitride-based compound semiconductors such as AlGaN have a direct transition and the bandgap changes from 1.95 eV to 6 eV, they are regarded as promising materials for light emitting devices such as light emitting diodes and laser diodes. At present, in a light emitting device using this material, a high-resistance i (insulator) type gallium nitride compound semiconductor laminated with a p-type dopant (p-type impurity) is laminated on an n-type gallium nitride compound semiconductor. A so-called blue light emitting diode having a MIS structure is known.

【0003】MIS構造の発光素子は、一般に発光出力
が非常に低く、実用化するには未だ不十分であった。高
抵抗なi型を低抵抗なp型とし、発光出力を向上させた
p−n接合の発光素子を実現するための技術として、例
えば特開平2−257679号公報、特開平3−218
325号公報において、i型窒化ガリウム系化合物半導
体層に電子線を照射する技術が開示されている。しかし
ながら、この方法では電子線の侵入深さのみ、即ち極表
面しか低抵抗化できず、また電子線を走査しながらウエ
ハー全体を照射しなければならないため面内均一に低抵
抗化できないという問題があった。この問題を解決する
ため、我々は、特願平3−357046号でi型窒化ガ
リウム系化合物半導体層を400℃以上でアニーリング
することにより低抵抗なp型とする技術を提案した。
A light emitting device having a MIS structure generally has a very low light emission output, which is still insufficient for practical use. As a technique for realizing a pn junction light-emitting device having an improved light emission output by changing a high-resistance i-type to a low-resistance p-type, for example, JP-A-2-257679 and JP-A-3-218 are known.
Japanese Patent No. 325 discloses a technique of irradiating an i-type gallium nitride compound semiconductor layer with an electron beam. However, in this method, only the penetration depth of the electron beam, that is, only the extreme surface can be lowered, and since the entire wafer must be irradiated while scanning the electron beam, there is a problem that the resistance cannot be uniformly lowered in the plane. there were. In order to solve this problem, in Japanese Patent Application No. 3-357046, we proposed a technique of annealing a i-type gallium nitride compound semiconductor layer at 400 ° C. or higher to make it a low-resistance p-type.

【0004】[0004]

【発明が解決しようとする課題】p型ドーパントがドー
プされた窒化ガリウム系化合物半導体を、より低抵抗な
p型にすることができれば高発光出力のホモ構造、また
はダブルへテロ、シングルへテロ等のヘテロ構造の発光
素子が実現可能となり、発光素子が実用化できるため、
その低抵抗化技術が求められている
If a gallium nitride-based compound semiconductor doped with a p-type dopant can be made into a p-type having a lower resistance, a high emission output homostructure, double hetero, single hetero, etc. Since it becomes possible to realize a light-emitting element having a heterostructure of, and the light-emitting element can be put into practical use,
That low resistance technology is required

【0005】従って、本発明の目的は、p型ドーパント
をドープした窒化ガリウム系化合物半導体を、より低抵
抗なp型とすると共に、膜厚によらず抵抗値がウエハー
全体に均一にすることにより、p−n接合を実現できる
窒化ガリウム系化合物半導体のp型化方法を提供するこ
とにある。
Therefore, an object of the present invention is to make a gallium nitride-based compound semiconductor doped with a p-type dopant into a p-type having a lower resistance and to make the resistance value uniform over the entire wafer regardless of the film thickness. , P-n junction can be realized to provide a p-type method for a gallium nitride-based compound semiconductor.

【0006】[0006]

【課題を解決するための手段】本発明の窒化ガリウム系
化合物半導体のp型化方法は、p型ドーパントがドープ
された窒化ガリウム系化合物半導体をエッチングして、
その表面に凹凸を形成する工程と、凹凸を形成した後、
その窒化ガリウム系化合物半導体を400℃以上の温度
でアニーリングする工程とを具備することを特徴とす
る。
A method for converting a gallium nitride-based compound semiconductor into a p-type according to the present invention is to etch a gallium nitride-based compound semiconductor doped with a p-type dopant,
After the step of forming unevenness on the surface and forming the unevenness,
And a step of annealing the gallium nitride compound semiconductor at a temperature of 400 ° C. or higher.

【0007】本発明の方法において、p型ドーパントが
ドープされた窒化ガリウム系化合物半導体には、例えば
Zn、Mg、Cd、Be、Ca等のp型ドーパントが、
GaN、GaAlN、InGaN、InAlGaN等、
一般式InXAlYGa1-X-YN(0≦X<1、0≦Y<
1)で表される公知の窒化ガリウム系化合物半導体にド
ープされたものを用いることができる。また、前記窒化
ガリウム系化合物半導体は有機金属気相成長法、分子線
気相成長法等の気相成長法で成長させることができる。
In the method of the present invention, the gallium nitride-based compound semiconductor doped with a p-type dopant contains a p-type dopant such as Zn, Mg, Cd, Be or Ca.
GaN, GaAlN, InGaN, InAlGaN, etc.,
General formula InXAlYGa1-X-YN (0≤X <1, 0≤Y <
A known gallium nitride-based compound semiconductor represented by 1) may be used. Further, the gallium nitride-based compound semiconductor can be grown by a vapor phase growth method such as a metal organic vapor phase epitaxy method and a molecular beam vapor phase epitaxy method.

【0008】前記窒化ガリウム系化合物半導体をエッチ
ングするには、ドライエッチング、ウエットエッチング
いずれを用いてもよく、ドライエッチングには例えばリ
アクティブイオンエッチング(RIE)装置が使用で
き、ウエットエッチングでは例えばリン酸と硫酸の混酸
を用いることができる。これらのエッチングを行うこと
により窒化ガリウム系化合物半導体に凹凸を形成して表
面積を広げることができる。エッチング深さは特に問う
ものではないが、好ましく0.1μm以上エッチングす
ることにより、好ましい凹凸を設けることができる。
Either dry etching or wet etching may be used to etch the gallium nitride compound semiconductor. For example, a reactive ion etching (RIE) apparatus can be used for dry etching, and phosphoric acid is used for wet etching. A mixed acid of sulfuric acid and sulfuric acid can be used. By performing these etchings, unevenness can be formed on the gallium nitride-based compound semiconductor to increase the surface area. The etching depth is not particularly limited, but preferable unevenness can be provided by preferably etching by 0.1 μm or more.

【0009】アニーリング(Annealing:焼きなまし)
はエッチング終了後、アニーリング装置を用いて行うこ
とができる。アニーリング雰囲気は真空中、N2、H
e、Ne、Ar等の不活性ガス、またはこれらの混合ガ
ス雰囲気中で行うことが好ましく、最も好ましくは、ア
ニーリング温度における窒化ガリウム系化合物半導体の
分解圧以上で加圧した窒素雰囲気中で行うことが好まし
い。なぜなら、窒素雰囲気として加圧することにより、
アニーリング中に、GaN、GaAlN等の窒化ガリウ
ム系化合物半導体中のNが分解して出て行くのを防止す
る作用があるからである。例えば、GaNの場合、Ga
Nの分解圧は800℃で約0.01気圧、1000℃で
約1気圧、1100℃で約10気圧程である。このた
め、窒化ガリウム系化合物半導体を400℃以上でアニ
ーリングする際、多かれ少なかれ窒化ガリウム系化合物
半導体の分解が発生し、その結晶性が悪くなる傾向にあ
る。従って前記のように窒素で加圧することによりその
分解を防止できる。
Annealing: Annealing
Can be performed using an annealing device after the etching is completed. Annealing atmosphere is vacuum, N2, H
It is preferable to carry out in an atmosphere of an inert gas such as e, Ne, Ar, or a mixed gas thereof, and most preferably, in a nitrogen atmosphere pressurized at a decomposition pressure of the gallium nitride-based compound semiconductor or more at the annealing temperature. Is preferred. Because by pressurizing as a nitrogen atmosphere,
This is because N has a function of preventing N in the gallium nitride-based compound semiconductor such as GaN or GaAlN from decomposing and flowing out during annealing. For example, in the case of GaN, Ga
The decomposition pressure of N is about 0.01 at 800 ° C., about 1 at 1000 ° C., and about 10 at 1100 ° C. Therefore, when the gallium nitride-based compound semiconductor is annealed at 400 ° C. or higher, the gallium nitride-based compound semiconductor is more or less decomposed, and its crystallinity tends to deteriorate. Therefore, the decomposition can be prevented by pressurizing with nitrogen as described above.

【0010】アニーリング温度は400℃以上、好まし
くは600℃以上で、1分以上保持、好ましくは10分
以上保持して行うことができる。1000℃以上で行っ
ても、前記したように窒素で加圧することにより分解を
防止することができる。
The annealing temperature can be 400 ° C. or higher, preferably 600 ° C. or higher, and the annealing can be performed for 1 minute or more, preferably 10 minutes or more. Even at 1000 ° C. or higher, decomposition can be prevented by pressurizing with nitrogen as described above.

【0011】[0011]

【作用】アニーリングにより、高抵抗な窒化ガリウム系
化合物半導体が低抵抗化する理由は以下のとおりである
と推察される。即ち、窒化ガリウム系化合物半導体層の
成長においてN源として、一般にNH3が用いられてい
る。NH3は成長中に分解して原子状水素ができ、この
原子状水素がアクセプター不純物としてドープされたM
g、Zn等と結合することにより、Mg、Zn等のp型
ドーパントがアクセプターとして働くのを妨げていると
考えられる。このため、従来のようにp型ドーパントを
ドープした窒化ガリウム系化合物半導体は高抵抗なi型
を示す。ところが、成長後アニーリングを行うことによ
り、Mg−H、Zn−H等の形で結合している水素が熱
的に解離されて、i型窒化ガリウム系化合物半導体層か
ら出て行き、正常にp型ドーパントがアクセプターとし
て働くようになるため、窒化ガリウム系化合物半導体は
低抵抗化しp型となる。
It is presumed that the reason why the high resistance gallium nitride compound semiconductor has a low resistance due to the annealing is as follows. That is, NH 3 is generally used as the N source in the growth of the gallium nitride-based compound semiconductor layer. NH 3 is decomposed during growth to form atomic hydrogen, and this atomic hydrogen is doped with M as an acceptor impurity.
It is considered that the bonding with g, Zn and the like prevents the p-type dopant such as Mg and Zn from functioning as an acceptor. Therefore, a gallium nitride-based compound semiconductor doped with a p-type dopant as in the past has a high resistance i-type. However, by performing annealing after the growth, hydrogen bonded in the form of Mg-H, Zn-H, etc. is thermally dissociated, and the hydrogen is released from the i-type gallium nitride-based compound semiconductor layer and normally p Since the type dopant acts as an acceptor, the gallium nitride compound semiconductor has a low resistance and becomes p-type.

【0012】従って、本発明のように従来の高抵抗なi
型の窒化ガリウム系化合物半導体をエッチングし、その
表面に凹凸を設けて表面積を広げることにより、水素が
出て行く面積を広げることができ、より容易に低抵抗な
p型が得られるのである。
Therefore, as in the present invention, the conventional high resistance i
By etching a gallium nitride-based compound semiconductor of the type and providing unevenness on the surface to increase the surface area, it is possible to increase the area through which hydrogen comes out, and it is possible to easily obtain a low resistance p-type.

【0013】図1は、エッチングによりp型ドーパント
がドープされた窒化ガリウム系化合物半導体1に形成し
た凹凸の断面形状を示す模式断面図である。また、図2
は図1に示す凹凸をさらに進めて、その窒化ガリウム系
化合物半導体1の表面積を広げるため、その側面までエ
ッチングした断面形状を示す模式断面図である。即ち、
図1ではミクロで見た窒化ガリウム系化合物半導体1の
凹凸、図2ではマクロで見た窒化ガリウム系化合物半導
体1の凹凸を示しており、両方とも本発明の範囲内であ
る。図2〜図5において、2は例えばn型窒化ガリウム
系化合物半導体、基板等のp型ドーパントがドープされ
た窒化ガリウム系化合物半導体を成長させるための材料
である。
FIG. 1 is a schematic cross-sectional view showing a cross-sectional shape of irregularities formed on a gallium nitride compound semiconductor 1 doped with a p-type dopant by etching. Also, FIG.
FIG. 2 is a schematic cross-sectional view showing a cross-sectional shape in which the side surface of the gallium nitride-based compound semiconductor 1 is etched in order to further advance the unevenness shown in FIG. That is,
FIG. 1 shows irregularities of the gallium nitride-based compound semiconductor 1 viewed microscopically, and FIG. 2 shows irregularities of the gallium nitride-based compound semiconductor 1 macroscopically observed, both of which are within the scope of the present invention. 2 to 5, reference numeral 2 denotes a material for growing an n-type gallium nitride compound semiconductor, a gallium nitride compound semiconductor doped with a p-type dopant such as a substrate.

【0014】また、図3に示すように、図2の凹部をさ
らにエッチングし、窒化ガリウム系化合物半導体1を貫
通するようにしてもよく、このように貫通するようにエ
ッチングして凹部を形成することにより、窒化ガリウム
系化合物半導体1の側面積を最大限露出させることがで
きる。また、図4は図3の斜視図であるが、このよう
に、凹部を貫通させてエッチングする場合、図4に示す
ように窒化ガリウム系化合物半導体1の凸部の形状をH
形とすれば、凸部の上に電極を形成しやすく、また電極
が一体となって形成できるため、発光素子を作成する場
合に特に好ましい。さらにまた、低抵抗なp型窒化ガリ
ウム系化合物半導体を用いて発光素子とする場合、p型
ドーパントがドープされた窒化ガリウム系化合物半導体
の膜厚は通常2μm以下の非常に薄い膜厚で形成され、
その膜厚を制御しながらエッチングを行い、図2のよう
な凹部を形成するのは非常に細かい注意を必要とするた
め、図3のように最初から貫通させる目的でエッチング
を行う方が生産性にも優れている。なお、図2および図
3に示すような凹凸形状を形成する場合、凸部となる部
分には、予めシリカ、窒化ケイ素等の保護膜を設け、凹
部と共にエッチングされないようにすることはいうまで
もない。また、貫通してエッチングを行う場合、凸部の
大きさは幅20μm以下の大きさで形成することが好ま
しい。20μm以下の幅にすることにより、凸部の最上
端、つまり保護膜によりエッチングされていない部分の
面積が少なくとも、アニーリングにより十分低抵抗化で
きる。
Further, as shown in FIG. 3, the recess of FIG. 2 may be further etched so as to penetrate the gallium nitride-based compound semiconductor 1, and the recess is formed by etching so as to penetrate. As a result, the side area of the gallium nitride-based compound semiconductor 1 can be exposed to the maximum. Further, FIG. 4 is a perspective view of FIG. 3, but in the case of etching by penetrating the concave portion as described above, the shape of the convex portion of the gallium nitride-based compound semiconductor 1 is H as shown in FIG.
The shape is particularly preferable when a light emitting element is formed because the electrode can be easily formed on the convex portion and the electrode can be integrally formed. Furthermore, when a light-emitting element is formed using a p-type gallium nitride-based compound semiconductor having a low resistance, the film thickness of the gallium nitride-based compound semiconductor doped with a p-type dopant is usually 2 μm or less and is very thin. ,
Since it is very careful to form the recesses as shown in FIG. 2 by controlling the film thickness while etching, it is more productive to perform the etching for the purpose of penetrating from the beginning as shown in FIG. Is also excellent. It is needless to say that in the case of forming the concavo-convex shape as shown in FIGS. 2 and 3, a protective film made of silica, silicon nitride, or the like is provided in advance on the portion to be the convex portion so as not to be etched together with the concave portion. Absent. Further, when the etching is performed through the through holes, it is preferable that the protrusions are formed with a width of 20 μm or less. By setting the width to 20 μm or less, at least the area of the uppermost end of the convex portion, that is, the area not etched by the protective film can be sufficiently reduced by annealing.

【0015】図6は、p型ドーパントがドープされた窒
化ガリウム系化合物半導体をアニーリングした場合、横
軸にアニーリング温度(℃)、縦軸にその温度における
窒化ガリウム系化合物半導体の抵抗率(Ω・cm)をと
り、エッチングしたもの(a)と、エッチングしていな
いもの(b)との抵抗率の変化を比較して示す図であ
る。なお、p型ドーパントがドープされた窒化ガリウム
系化合物半導体には、サファイア基板の上にGaNバッ
ファ層を成長し、そのバッファ層の上にMgドープGa
Nを4μm成長したものを用い、エッチングは図2の断
面形状に示すようなストライプ形状でストライプ幅10
μm、ピッチ10μmとし、深さ0.5μmでエッチン
グし凹凸を形成した。
In FIG. 6, when a gallium nitride-based compound semiconductor doped with a p-type dopant is annealed, the horizontal axis indicates the annealing temperature (° C.) and the vertical axis indicates the resistivity (Ω · Ω) of the gallium nitride-based compound semiconductor at that temperature. (cm) is taken and it is a figure which compares and shows the change of the resistivity of what was etched (a) and what is not etched (b). For the gallium nitride-based compound semiconductor doped with the p-type dopant, a GaN buffer layer was grown on a sapphire substrate, and Mg-doped Ga was deposited on the buffer layer.
N was grown to a thickness of 4 μm, and etching was performed with a stripe shape as shown in the sectional shape of FIG.
Etching was performed at a depth of 0.5 μm with a pitch of 10 μm, and irregularities were formed.

【0016】この図に示すように、両方とも400℃以
上の温度でアニーリングすることにより、MgドープG
aNの抵抗率が急激に減少する。しかし、エッチングし
たもの(a)と、していないもの(b)とを比較する
と、最終的な抵抗率の値がエッチングしたもの(a)の
方が一桁も低くなり、また(a)は600℃のアニーリ
ング温度で、すでに(b)の抵抗率の値にまで達してい
る。このように、p型ドーパントをドープした窒化ガリ
ウム系化合物半導体をエッチングして、表面積を大きく
することにより、アニーリングの効果が一段と高められ
る。
As shown in this figure, both are annealed at a temperature of 400.degree.
The resistivity of aN sharply decreases. However, comparing the etched product (a) with the unetched product (b), the final resistivity value of the etched product (a) is lower by one digit, and (a) shows At the annealing temperature of 600 ° C., the resistivity value of (b) has already been reached. As described above, by etching the gallium nitride-based compound semiconductor doped with the p-type dopant to increase the surface area, the effect of annealing is further enhanced.

【0017】[0017]

【実施例】以下実施例で本発明を詳述する。 [実施例1]サファイア基板を反応容器内に配置し、サ
ファイア基板のクリーニングを行った後、成長温度を5
10℃にセットし、キャリアガスとして水素、原料ガス
としてアンモニアとTMG(トリメチルガリウム)とを
用い、サファイア基板上にGaNバッファ層を約200
オングストロームの膜厚で成長させる。
The present invention will be described in detail with reference to the following examples. Example 1 A sapphire substrate was placed in a reaction vessel, and after cleaning the sapphire substrate, the growth temperature was set to 5
The temperature is set to 10 ° C., hydrogen is used as a carrier gas, ammonia and TMG (trimethylgallium) are used as source gases, and a GaN buffer layer of about 200 is formed on a sapphire substrate.
It is grown to a film thickness of angstrom.

【0018】バッファ層成長後、TMGのみ止めて、温
度を1030℃まで上昇させる。1030℃になった
ら、同じく原料ガスにTMGとアンモニアガス、ドーパ
ントガスにシクロペンタジエニルマグネシウム(Cp2
Mg)を用い、MgをドープしたGaN層を4μm成長
させる。
After the growth of the buffer layer, only TMG is stopped and the temperature is raised to 1030.degree. When the temperature reached 1030 ° C, TMG and ammonia gas were used as the source gas, and cyclopentadienyl magnesium (Cp2
Mg) is used to grow a Mg-doped GaN layer to 4 μm.

【0019】成長後、ウエハーを反応容器から取り出
し、RIEでおよそ0.5μmMgドープGaN層をエ
ッチングする。
After the growth, the wafer is taken out of the reaction vessel, and about 0.5 μm Mg-doped GaN layer is etched by RIE.

【0020】エッチング終了後、アニーリング装置に入
れ、常圧、窒素雰囲気中で700℃で20分間保持して
アニーリングを行う。
After the etching is completed, the substrate is placed in an annealing apparatus and annealed by holding it at 700 ° C. for 20 minutes in a nitrogen atmosphere at atmospheric pressure.

【0021】以上のようにして得られたp型GaN層の
ホール測定を行った結果、抵抗率1Ω・cm、ホールキャ
リア濃度2×1018/cm3と優れたp型特性を示した。
As a result of hole measurement of the p-type GaN layer obtained as described above, excellent p-type characteristics such as a resistivity of 1 Ω · cm and a hole carrier concentration of 2 × 10 18 / cm 3 were exhibited.

【0022】[実施例2]実施例1において、Mgドー
プGaN層を成長させる工程において、新たに原料ガス
にTMA(トリメチルアルミニウム)を加えて、Mgド
ープGa0.9Al0.1N層を4μmの膜厚で成長させる他
は、実施例1と同様にしてp型化したところ、実施例1
と同様に、抵抗率1Ω・cm、ホールキャリア濃度2×1
18/cm3と優れたp型特性を示した。
[Embodiment 2] In Embodiment 1, in the step of growing the Mg-doped GaN layer, TMA (trimethylaluminum) is newly added to the source gas to form a Mg-doped Ga0.9Al0.1N layer having a thickness of 4 μm. Example 1 was carried out in the same manner as in Example 1 except that the p-type was formed.
Similarly, the resistivity is 1Ω · cm, hole carrier concentration is 2 × 1
It exhibited an excellent p-type characteristic of 0 18 / cm 3 .

【0023】[実施例3]実施例1において、Mgドー
プGaN層を成長させた後、フォトレジストで4μmピ
ッチのストライプを全面に形成する。フォトレジスト形
成後、フォトレジストの上からシリカ膜を0.2μmの
膜厚で形成する。シリカ膜を形成後、ウエハーを溶剤に
浸漬して、フォトレジストを剥離することにより、Mg
ドープGaN層の上に10μm幅、10μmピッチのシ
リカ膜のストライプが形成されたウエハーを得る。
[Embodiment 3] In Embodiment 1, after the Mg-doped GaN layer is grown, stripes of 4 μm pitch are formed on the entire surface with photoresist. After forming the photoresist, a silica film having a thickness of 0.2 μm is formed on the photoresist. After forming the silica film, the wafer is dipped in a solvent and the photoresist is peeled off.
A wafer in which stripes of a silica film having a width of 10 μm and a pitch of 10 μm are formed on the doped GaN layer is obtained.

【0024】このウエハーのMgドープGaN層を、リ
ン酸と硫酸の混酸でおよそ1μmの深さでエッチングし
た後、フッ酸に浸漬してシリカ膜を除去する。
After etching the Mg-doped GaN layer of this wafer with a mixed acid of phosphoric acid and sulfuric acid to a depth of about 1 μm, the wafer is immersed in hydrofluoric acid to remove the silica film.

【0025】以上の工程により図2に示すような形状の
凹凸が得られたウエハーを、実施例1と同様にしてアニ
ーリングしたところ、抵抗率0.5Ω・cm、ホールキャ
リア濃度8×1018/cm3と優れたp型特性を示した。
The wafer having the unevenness as shown in FIG. 2 obtained by the above steps was annealed in the same manner as in Example 1. The resistivity was 0.5 Ω · cm and the hole carrier concentration was 8 × 10 18 / cm 3 and excellent p-type characteristics.

【0026】[実施例4]図5の断面図をもとにして説
明する。サファイア基板11の上に実施例1と同様にし
て、GaNよりなるバッファ層12を成長させ、その上
に原料ガスしてTMA、アンモニア、ドーパントガスと
してシランガスを用い、Siをドープしたn型GaN層
13を4μmの膜厚で成長させる。その上にMgドープ
GaN15を実施例1と同様にして1μmの膜厚で成長
させることにより、ホモ接合の発光素子ウエハーを得
る。
[Embodiment 4] Description will be given with reference to the sectional view of FIG. An n-type GaN layer doped with Si by growing a buffer layer 12 made of GaN on the sapphire substrate 11 in the same manner as in Example 1 and using TMA, ammonia as a raw material gas and silane gas as a dopant gas on the buffer layer 12. 13 is grown to a film thickness of 4 μm. Mg-doped GaN 15 is grown thereon to a film thickness of 1 μm in the same manner as in Example 1 to obtain a homojunction light emitting device wafer.

【0027】ウエハーのMgドープGaN層の上に、実
施例3と同様にしてシリカ膜を10μm幅、10μmピ
ッチのストライプ形状で形成する。なおこの形状は、図
4に示すように各ストライプ間をMgドープGaN層1
5で接続した形状とする。
On the Mg-doped GaN layer of the wafer, a silica film is formed in a stripe shape having a width of 10 μm and a pitch of 10 μm in the same manner as in the third embodiment. In addition, this shape has the Mg-doped GaN layer 1 between the stripes as shown in FIG.
The shape connected in 5.

【0028】シリカ保護膜を形成後、実施例1と同様に
してRIEでおよそ1μmの深さでエッチングする。こ
のエッチングにより図5に示すようにMgドープGaN
層はほぼ貫通され、一部n型GaN層13までエッチン
グされているが、発光特性に何等悪影響を及ぼすもので
はない。後は実施例3と同様にしてシリカ膜をフッ酸で
除去する。
After forming the silica protective film, it is etched by RIE in the same manner as in Example 1 to a depth of about 1 μm. As a result of this etching, as shown in FIG.
The layer is almost penetrated and partly etched to the n-type GaN layer 13, but this does not have any adverse effect on the light emission characteristics. After that, the silica film is removed with hydrofluoric acid in the same manner as in Example 3.

【0029】シリカ膜除去後、MgドープGaN層14
の凸部のほぼ全面と、Siドープn型GaN層13の所
定の位置に電極15を蒸着した後、アニーリング装置に
入れ、実施例1と同様にしてアニーリングを行う。
After removing the silica film, the Mg-doped GaN layer 14
After depositing the electrode 15 on substantially the entire surface of the convex portion of the above and a predetermined position of the Si-doped n-type GaN layer 13, the electrode 15 is placed in an annealing apparatus and annealed in the same manner as in Example 1.

【0030】以上のようにして得られたウエハーをチッ
プ状に加工して、ホモ構造の発光ダイオードとして発光
させたところ、順方向電流20mAで、順方向電圧5
V、発光出力70μWであった。
The wafer obtained as described above was processed into chips, and light was emitted as a homo-structured light emitting diode. The forward current was 20 mA and the forward voltage was 5 mA.
V, the light emission output was 70 μW.

【0031】[0031]

【発明の効果】以上述べたように本発明の方法による
と、従来p型ドーパントをドープしても高抵抗であった
窒化ガリウム系化合物半導体を、400℃以上のアニー
リングにより低抵抗なp型とすることができるため、数
々の構造の素子を製造することができる。さらに、エッ
チングによりp型ドーパントがドープされた窒化ガリウ
ム系化合物半導体表面に凹凸を設け表面積を大きくして
さらに低抵抗なp型とすることができる。また、従来の
電子線照射による方法では最上層の極表面しか低抵抗化
できなかったが、本発明ではアニーリングによってp型
不純物がドープされた窒化ガリウム系化合物半導体層を
全体をp型化できるため、面内均一にしかも深さ方向均
一にp型化でき、しかもどこの層にでもp型層を形成で
きる。
As described above, according to the method of the present invention, a gallium nitride-based compound semiconductor, which has a high resistance even when doped with a p-type dopant, is changed into a low-resistance p-type by annealing at 400 ° C. or higher. Therefore, it is possible to manufacture devices having various structures. Furthermore, the surface of the gallium nitride-based compound semiconductor doped with the p-type dopant is etched to form irregularities so that the surface area can be increased and the resistance can be further reduced to the p-type. Further, the conventional method using electron beam irradiation can reduce the resistance of only the uppermost pole surface, but in the present invention, the gallium nitride-based compound semiconductor layer doped with p-type impurities by annealing can be made to be p-type as a whole. The p-type layer can be formed uniformly in the plane and even in the depth direction, and the p-type layer can be formed on any layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例による窒化ガリウム系化合
物半導体の凹凸形状を示す模式断面図。
FIG. 1 is a schematic cross-sectional view showing an uneven shape of a gallium nitride-based compound semiconductor according to an example of the present invention.

【図2】 本発明の一実施例による窒化ガリウム系化合
物半導体の凹凸形状を示す断面図。
FIG. 2 is a sectional view showing an uneven shape of a gallium nitride-based compound semiconductor according to an embodiment of the present invention.

【図3】 本発明の一実施例による窒化ガリウム系化合
物半導体の凹凸形状を示す断面図。
FIG. 3 is a sectional view showing an uneven shape of a gallium nitride-based compound semiconductor according to an example of the present invention.

【図4】 図3の斜視図。FIG. 4 is a perspective view of FIG.

【図5】 本発明の一実施例により低抵抗化されたp型
窒化ガリウム系化合物半導体を有する発光素子の構造を
示す断面図。
FIG. 5 is a cross-sectional view showing a structure of a light emitting device having a p-type gallium nitride based compound semiconductor whose resistance is reduced according to an embodiment of the present invention.

【図6】 p型ドーパントがドープされた窒化ガリウム
系化合物半導体のアニーリング温度と、抵抗率との関係
を示す図。
FIG. 6 is a diagram showing the relationship between the annealing temperature and the resistivity of a gallium nitride-based compound semiconductor doped with a p-type dopant.

【符号の説明】[Explanation of symbols]

1・・・・p型ドーパントがドープされた窒化ガリウム
系化合物半導体 11・・・・サファイア基板 12・・・・GaNバッファ層 13・・・・Siドープn型GaN層 14・・・・MgドープGaN層 15・・・・電極
1 --- Gallium nitride-based compound semiconductor doped with p-type dopant 11 --- Sapphire substrate 12 --- GaN buffer layer 13 --- Si-doped n-type GaN layer 14 --- Mg-doped GaN layer 15 ... Electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 p型ドーパントがドープされた窒化ガリ
ウム系化合物半導体をエッチングして、その表面に凹凸
を形成する工程と、凹凸を形成した後、その窒化ガリウ
ム系化合物半導体を400℃以上の温度でアニーリング
する工程とを具備することを特徴とする窒化ガリウム系
化合物半導体のp型化方法。
1. A step of etching a gallium nitride-based compound semiconductor doped with a p-type dopant to form irregularities on the surface thereof, and after the irregularities are formed, the gallium nitride-based compound semiconductor is heated at a temperature of 400 ° C. or higher. And a step of annealing the compound gallium nitride-based compound semiconductor to p-type.
【請求項2】 前記凹凸はその凹部が前記p型ドーパン
トがドープされた窒化ガリウム系化合物半導体を貫通す
るように形成することを特徴とする請求項1に記載の窒
化ガリウム系化合物半導体のp型化方法。
2. The p-type of the gallium nitride-based compound semiconductor according to claim 1, wherein the recesses and depressions are formed so that the recesses penetrate the gallium nitride-based compound semiconductor doped with the p-type dopant. Method.
JP8549193A 1993-03-19 1993-03-19 Method for forming p-type gallium nitride-based compound semiconductor Expired - Lifetime JP2785253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8549193A JP2785253B2 (en) 1993-03-19 1993-03-19 Method for forming p-type gallium nitride-based compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8549193A JP2785253B2 (en) 1993-03-19 1993-03-19 Method for forming p-type gallium nitride-based compound semiconductor

Publications (2)

Publication Number Publication Date
JPH06275867A true JPH06275867A (en) 1994-09-30
JP2785253B2 JP2785253B2 (en) 1998-08-13

Family

ID=13860407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8549193A Expired - Lifetime JP2785253B2 (en) 1993-03-19 1993-03-19 Method for forming p-type gallium nitride-based compound semiconductor

Country Status (1)

Country Link
JP (1) JP2785253B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100700530B1 (en) * 2005-10-28 2007-03-28 엘지전자 주식회사 Corrugated light emitting diode and manufacturing method thereof
JP2011204875A (en) * 2010-03-25 2011-10-13 Toshiba Corp Light-emitting element
JP2013046039A (en) * 2011-08-26 2013-03-04 Sumitomo Electric Ind Ltd Group iii nitride semiconductor laser element
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205988A (en) 2009-03-04 2010-09-16 Panasonic Corp Nitride semiconductor element and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
KR100700530B1 (en) * 2005-10-28 2007-03-28 엘지전자 주식회사 Corrugated light emitting diode and manufacturing method thereof
JP2011204875A (en) * 2010-03-25 2011-10-13 Toshiba Corp Light-emitting element
JP2013046039A (en) * 2011-08-26 2013-03-04 Sumitomo Electric Ind Ltd Group iii nitride semiconductor laser element
WO2013031283A1 (en) * 2011-08-26 2013-03-07 住友電気工業株式会社 Group-iii nitride semiconductor laser device
US9231370B2 (en) 2011-08-26 2016-01-05 Sumitomo Electric Industries, Ltd. Group III nitride semiconductor light emitting device

Also Published As

Publication number Publication date
JP2785253B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
JP3909811B2 (en) Nitride semiconductor device and manufacturing method thereof
US7760785B2 (en) Group-III nitride semiconductor device
JP2540791B2 (en) A method for manufacturing a p-type gallium nitride-based compound semiconductor.
JP3517091B2 (en) Gallium nitride based semiconductor light emitting device and method of manufacturing the same
JP3760663B2 (en) Method for producing group III nitride compound semiconductor device
JPH1027924A (en) Nitride-group-iii element compound light emitting element
JPH1032347A (en) Semiconductor light emitting element of compound of nitrogen and group iii element
JPH06151965A (en) Nitrogen-iii compound semiconductor luminous element and manufacture thereof
JPH08255926A (en) Semiconductor light emitting element and fabrication thereof
US20070290203A1 (en) Semiconductor element and method of manufacturing the same
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2785253B2 (en) Method for forming p-type gallium nitride-based compound semiconductor
JP3209233B2 (en) Blue light emitting diode and method of manufacturing the same
JP2790235B2 (en) Method for forming p-type gallium nitride-based compound semiconductor
JPH09298311A (en) Gallium nitride compd. semiconductor light emitting element
JP3180710B2 (en) Method of manufacturing gallium nitride based compound semiconductor light emitting device
JPH05198841A (en) Forming method for p-type of gallium nitride compound semiconductor
JP3301345B2 (en) Method for forming p-type gallium nitride-based compound semiconductor layer
JPH08213656A (en) Gallium nitride based compound semiconductor light emitting element
JP4285337B2 (en) Method for producing gallium nitride compound semiconductor wafer
JP3038806U (en) Gallium nitride based compound semiconductor light emitting device
JPH10178213A (en) Gallium nitride compound semiconductor light emitting device
JP3780984B2 (en) Manufacturing method of nitride semiconductor
JPH06151964A (en) Nitrogen-iii compound semiconductor luminous element and manufacture thereof
JPH10178205A (en) Method for changing gallium nitride compound semiconductor to p type

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080529

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110529

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110529

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 15

EXPY Cancellation because of completion of term