JPH06275255A - Manufacture of sealed lead-acid battery - Google Patents

Manufacture of sealed lead-acid battery

Info

Publication number
JPH06275255A
JPH06275255A JP5065098A JP6509893A JPH06275255A JP H06275255 A JPH06275255 A JP H06275255A JP 5065098 A JP5065098 A JP 5065098A JP 6509893 A JP6509893 A JP 6509893A JP H06275255 A JPH06275255 A JP H06275255A
Authority
JP
Japan
Prior art keywords
lead
unformed
electrode plate
battery
anode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5065098A
Other languages
Japanese (ja)
Inventor
Masatoshi Miyatsuka
政敏 宮塚
Masayuki Terada
正幸 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP5065098A priority Critical patent/JPH06275255A/en
Publication of JPH06275255A publication Critical patent/JPH06275255A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To manufacture a lead-acid battery having a high-rate discharge characteristic and a long life by increasing the formation property for battery jar formation. CONSTITUTION:An active material paste kneaded with the lead oxide powder containing minium, sulfuric acid, and water is filled in a current collector to form an undried positive electrode plate, and the undried positive electrode plate is aged and dried to manufacture an unformed positive electrode plate. The unformed positive electrode plate and an unformed negative electrode plate are combined to form an electrode plate group, and the electrode plate group is arranged in a battery jar and formed via battery jar formation. The quantity of minium and the processing condition of the aging/drying processes are determined so that tetrabasic lead sulfate and lead dioxide are mixedly contained in the unformed positive electrode plate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、密閉形鉛蓄電池の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a sealed lead acid battery.

【0002】[0002]

【従来の技術】一般に密閉形鉛蓄電池を製造するには、
一酸化鉛等からなる酸化鉛粉末と硫酸と水とを混練した
活物質ペーストを鋳造またはエキスパンド等の格子体か
らなる集電体に充填して未乾燥極板を作る。そして、こ
の未乾燥極板を熟成して活物質中に三塩基性硫酸鉛を生
成させた後に乾燥して未化成極板を作り、これらを化成
して完成している。未化成極板を化成させるには、密閉
形鉛蓄電池の製造場所をできるだけ小さくしたり、化成
した後に極板を乾燥させる時間を短縮するために、未化
成陽極板及び未化成陰極板を組み合わせて構成した極板
群を電槽内に組み込んだ状態で化成する電槽化成が多く
行われている。しかしながら、密閉形鉛蓄電池は化成時
の電解液の液量に限界があり、しかも電解液は電解液保
持体に含浸されている。そのため、電槽化成により未化
成陽極板を化成しても、電解液が陽極板の活物質中に拡
散しにくく、化成性が悪いという問題があった。そこで
活物質ペーストの原料となる酸化鉛粉末に硫酸と反応し
て導電性のある二酸化鉛(PbO2 )に変化する鉛丹を
混合したものを用いて陽極板を作ることが検討された。
2. Description of the Related Art Generally, in order to manufacture a sealed lead acid battery,
An active material paste prepared by kneading lead oxide powder such as lead monoxide and sulfuric acid and water is filled in a collector such as a cast or expanded grid body to form an undried electrode plate. Then, the undried electrode plate is aged to generate tribasic lead sulfate in the active material and then dried to form an unformed electrode plate, which is completed by chemical conversion. To form an unformed electrode plate, combine the unformed anode plate and unformed cathode plate in order to make the manufacturing location of the sealed lead-acid battery as small as possible and to shorten the time to dry the electrode plate after forming. A large number of battery case formations are performed in which the formed electrode plates are formed in a battery case. However, the sealed lead-acid battery has a limit in the amount of electrolytic solution at the time of chemical formation, and the electrolytic solution is impregnated in the electrolytic solution holder. Therefore, even if the unformed anode plate is formed by the battery case formation, the electrolytic solution is difficult to diffuse into the active material of the anode plate, and there is a problem that the forming property is poor. Therefore, it was considered to make an anode plate by using a mixture of lead oxide powder, which is a raw material of the active material paste, with lead dioxide which is converted into conductive lead dioxide (PbO2) by reacting with sulfuric acid.

【0003】[0003]

【発明が解決しようとする課題】酸化鉛粉末として鉛丹
を混合したものを用いると、陽極板の化成効率が向上
し、コスト的な効果は向上するものの、活物質同志の結
合力が弱まって、電池の寿命が短くなるという問題があ
った。また、このような方法で製造した電池は、無停電
電源装置(UPS)用電池等の高率放電性能を要求され
る電池に用いても高率放電性能の効果を上げることがで
きなかった。
If lead oxide powder mixed with lead oxide is used, the conversion efficiency of the anode plate is improved and the cost effectiveness is improved, but the binding force between the active materials is weakened. However, there is a problem that the battery life is shortened. Further, the battery manufactured by such a method could not improve the effect of high rate discharge performance even when used for a battery such as a battery for an uninterruptible power supply (UPS) which requires high rate discharge performance.

【0004】本発明の目的は、高率放電性能が高く、長
寿命の鉛蓄電池を電槽化成における化成性を高めて製造
する方法を提供することにある。
An object of the present invention is to provide a method for producing a lead storage battery having a high high rate discharge performance and a long life by enhancing the chemical conversion property in battery case formation.

【0005】[0005]

【課題を解決するための手段】請求項1の発明では、鉛
丹を含有する酸化鉛粉末と硫酸と水とを混練してなる活
物質ペーストを集電体に充填して未乾燥陽極板を作る活
物質ペースト充填工程と、未乾燥陽極板を熟成した後に
乾燥する熟成乾燥工程とにより製造した未化成陽極板を
未化成陰極板と組み合わせて構成した極板群を電槽内に
配置し、未化成陽極板及び未化成陰極板を電槽化成によ
り化成して密閉形鉛蓄電池を製造する方法を対象にし
て、鉛丹の量及び熟成乾燥工程の処理条件を未化成陽極
板中に四塩基性硫酸鉛と二酸化鉛とが混在するように定
める。
According to the first aspect of the present invention, a current collector is filled with an active material paste obtained by kneading lead oxide powder containing lead tin oxide, sulfuric acid and water to form a undried anode plate. An active material paste filling step to make and an electrode plate group constituted by combining an unformed anode plate manufactured by an aging drying step of drying after drying the undried anode plate and an unformed cathode plate are arranged in a battery case, Targeting the method for manufacturing a sealed lead-acid battery by forming an unformed anode plate and an unformed cathode plate by battery case formation, the amount of lead and the treatment conditions of the aging and drying process are set to 4 bases in the unformed anode plate. It is specified that mixed lead sulfate and lead dioxide are mixed.

【0006】請求項2の発明では、活物質ペーストに対
する鉛丹の含有率を10〜60重量%とし、未化成陽極
板中に四塩基性硫酸鉛を15〜60重量%生成させる。
According to the second aspect of the invention, the content of lead tin in the active material paste is 10 to 60% by weight, and 15 to 60% by weight of tetrabasic lead sulfate is produced in the unformed anode plate.

【0007】[0007]

【作用】四塩基性硫酸鉛は、三塩基性硫酸鉛に比べて大
きな結晶構造を有している。そのため、請求項1の発明
のように、鉛丹の量及び熟成乾燥工程の処理条件を未化
成陽極板中に四塩基性硫酸鉛と二酸化鉛とが混在するよ
うに定めると、四塩基性硫酸鉛は大きな角柱状結晶を有
しているので四塩基性硫酸鉛が未化成極板の陽極活物質
の骨格となり、未化成陽極板の活物質は大きな細孔を持
つ構造となる。その結果、未化成陽極板の活物質内部へ
の電解液の拡散性を高めて電槽化成を行うことができ
る。しかも、未化成陽極板中には化成初期から導電性の
高い鉛丹により生成した二酸化鉛(PbO2 )が存在し
ているので、電池の化成効率は大幅に向上する。また、
陽極活物質は化成後においても大きな細孔を持つため、
陽極活物質中への電解液の拡散が支配因子となる電池の
高率放電特性を高めることができる。また陽極活物質が
骨格構造を有していることにより、充放電サイクルによ
る陽極活物質の早期の泥状化を防いで、電池の寿命を延
ばすことができる。
[Function] Tetrabasic lead sulfate has a larger crystal structure than tribasic lead sulfate. Therefore, as in the invention of claim 1, when the amount of red lead and the treatment conditions of the aging and drying step are determined so that tetrabasic lead sulfate and lead dioxide are mixed in the unformed anode plate, tetrabasic sulfuric acid is obtained. Since lead has large prismatic crystals, tetrabasic lead sulfate serves as the skeleton of the anode active material of the unformed electrode plate, and the active material of the unformed anode plate has a structure having large pores. As a result, it is possible to enhance the diffusivity of the electrolytic solution into the inside of the active material of the unformed anode plate and perform the battery case formation. In addition, since lead dioxide (PbO2) produced by lead oxide having high conductivity is present in the unformed anode plate from the early stage of formation, the conversion efficiency of the battery is greatly improved. Also,
Since the anode active material has large pores even after chemical formation,
It is possible to enhance the high-rate discharge characteristics of the battery, in which the diffusion of the electrolytic solution into the anode active material is the controlling factor. Further, since the anode active material has a skeleton structure, it is possible to prevent the anode active material from becoming muddy at an early stage due to charge / discharge cycles, and to extend the life of the battery.

【0008】請求項2の発明によれば、化成性を有効に
高めて、高率放電特性が高く、長寿命の鉛蓄電池を製造
することができる。
According to the second aspect of the present invention, it is possible to effectively improve the chemical conversion property and manufacture a lead acid battery having a high high rate discharge characteristic and a long life.

【0009】[0009]

【実施例】以下、本発明の実施例による密閉形鉛蓄電池
の製造方法を詳細に説明する。
The method for manufacturing a sealed lead-acid battery according to an embodiment of the present invention will be described in detail below.

【0010】まず、重量比で2:3の鉛丹と一酸化鉛と
からなる酸化鉛粉末と硫酸と水とを混練して活物質ペー
ストを作り、これを鋳造格子体からなる集電体に充填し
て未乾燥陽極板を作った。尚、硫酸及び水は活物質ペー
スト中の硫酸鉛が16重量%となる量を加えた。次にこ
の未乾燥陽極極板を30℃、98RH%の雰囲気中で4
時間放置してから80℃、98RH%の雰囲気中で2時
間放置して熟成を行った後に60℃で13時間乾燥して
未化成陽極板を作った。この未化成陽極板の活物質の組
成をX線回折で調べると三塩基性硫酸鉛と四塩基性硫酸
鉛との回折強度比で1:1であった。次にこの未化成陽
極板3枚と公知の未化成陰極板4枚とをリテーナを介し
て積層して極板群を作り、この極板群を電槽に組み込ん
で規定の電解液を注液し、13時間で理論電気量の20
0%まで化成を行った。そして、これを3.1Aで1時
間放電した後に、1.1Aで6時間充電して、6.5A
H−2V型の密閉型鉛蓄電池を完成した。
First, an active material paste is prepared by kneading lead oxide powder consisting of lead oxide and lead monoxide in a weight ratio of 2: 3, sulfuric acid and water to prepare a current collector comprising a cast grid. Filled to make undried anode plates. In addition, sulfuric acid and water were added in amounts such that lead sulfate in the active material paste was 16% by weight. Next, this undried anode plate was placed in an atmosphere of 30 ° C. and 98 RH% for 4 hours.
After being left standing for 80 hours, it was left standing in an atmosphere of 80 ° C. and 98 RH% for 2 hours for aging, and then dried at 60 ° C. for 13 hours to prepare an unformed anode plate. When the composition of the active material of this unformed anode plate was examined by X-ray diffraction, the diffraction intensity ratio of tribasic lead sulfate and tetrabasic lead sulfate was 1: 1. Next, three unformed anode plates and four well-known unformed cathode plates are laminated via a retainer to form an electrode plate group, and this electrode plate group is incorporated in a battery case to inject a prescribed electrolytic solution. Then, the theoretical amount of electricity is 20 in 13 hours.
Chemical conversion was performed to 0%. Then, this was discharged at 3.1 A for 1 hour and then charged at 1.1 A for 6 hours to give 6.5 A.
The H-2V sealed lead acid battery was completed.

【0011】次に本実施例の方法で製造した密閉型鉛蓄
電池の特性を調べるために2種類の密閉型鉛蓄電池a,
bを作り試験を行った。密閉型鉛蓄電池aは本実施例の
方法で製造した電池である。密閉型鉛蓄電池bは従来の
方法で製造した電池であり、未乾燥陽極板を40℃、9
8RH%の雰囲気中で24時間放置してから40℃、9
8RH%の雰囲気中で24時間放置して熟成を行った後
に50℃で16時間乾燥して未化成陽極板を作り、その
他は本実施例と同様の方法で製造した。尚、この未化成
陽極板の活物質の組成をX線回折に調べると四塩基性硫
酸鉛の存在は認められなかった。
Next, in order to investigate the characteristics of the sealed lead acid battery manufactured by the method of this embodiment, two kinds of sealed lead acid batteries a,
b was prepared and tested. The sealed lead-acid battery a is a battery manufactured by the method of this embodiment. The sealed lead-acid battery b is a battery manufactured by a conventional method, and the undried positive electrode plate
After leaving it in an atmosphere of 8 RH% for 24 hours, 40 ° C., and then 9
It was left to stand in an atmosphere of 8 RH% for 24 hours for aging, and then dried at 50 ° C. for 16 hours to prepare an unformed anode plate. Otherwise, it was manufactured by the same method as in this example. When the composition of the active material of this unformed anode plate was examined by X-ray diffraction, the presence of tetrabasic lead sulfate was not recognized.

【0012】そして電池a,bを終止電圧は1.3Vま
で19.5Aで放電し、各電池の放電特性を調べた。図
1はその測定結果を示している。本図より本実施例の方
法で製造すると電池の放電容量を高められるのが判る。
The batteries a and b were discharged at a final voltage of 1.3 V at 19.5 A, and the discharge characteristics of each battery were examined. FIG. 1 shows the measurement result. From this figure, it can be seen that the discharge capacity of the battery can be increased by manufacturing by the method of this embodiment.

【0013】次に電池a,bを25±2℃中において
0.25CAで2時間放電した後に、0.1Cで6時間
充電する充放電サイクルを行い各電池のサイクル寿命特
性を調べた。尚、各電池の特性は50サイクル毎に0.
25Cで放電して(終止電圧は1.7V)その放電時間
を測定することにより求めた。図2はその測定結果を示
している。
Next, the batteries a and b were discharged at 25 ± 2 ° C. for 2 hours at 0.25 CA and then charged / discharged for 6 hours at 0.1 C to examine the cycle life characteristics of each battery. The characteristics of each battery were 0.50 every 50 cycles.
It was determined by discharging at 25C (final voltage is 1.7V) and measuring the discharge time. FIG. 2 shows the measurement result.

【0014】本図より本実施例の方法で製造すると電池
の寿命を延ばせるのが判る。
It can be seen from this figure that the life of the battery can be extended by manufacturing it by the method of this embodiment.

【0015】次に電池a,bの活物質ペースト中に含ま
れる鉛丹の量を変えて、鉛丹の量と電池の放電特性との
関係を調べた。図3はその測定結果を示している。本図
より活物質ペースト中に含まれる鉛丹の量を10〜60
重量%にすると電池の放電特性を高められるのが判る。
Next, the relationship between the amount of lead tin and the discharge characteristics of the battery was investigated by changing the amount of lead tin contained in the active material paste of batteries a and b. FIG. 3 shows the measurement result. From this figure, the amount of red lead contained in the active material paste is 10 to 60.
It can be seen that the discharge characteristics of the battery can be improved by adjusting the weight percentage.

【0016】[0016]

【発明の効果】請求項1の発明によれば、鉛丹の量及び
熟成乾燥工程の処理条件を未化成陽極板中に四塩基性硫
酸鉛と二酸化鉛とが混在するように定めるので、四塩基
性硫酸鉛が未化成極板の陽極活物質の骨格となる。しか
も、未化成陽極板中には導電性の高い二酸化鉛が残留し
ているので、電池の化成効率が大幅に向上する。また、
陽極活物質は化成後においても大きな細孔を持つため、
電池の高率放電特性を高めることができる。また活物質
が骨格構造を有していることにより、電池の寿命を延ば
すことができる。
According to the first aspect of the present invention, the amount of lead tin and the treatment conditions of the aging and drying step are determined so that tetrabasic lead sulfate and lead dioxide are mixed in the unformed anode plate. Basic lead sulfate serves as the skeleton of the anode active material of the unformed electrode plate. Moreover, since highly conductive lead dioxide remains in the unformed anode plate, the conversion efficiency of the battery is significantly improved. Also,
Since the anode active material has large pores even after chemical formation,
The high rate discharge characteristics of the battery can be improved. Further, since the active material has a skeleton structure, the life of the battery can be extended.

【0017】請求項2の発明によれば、化成性を有効に
高めて、高率放電特性が高く、寿命の延びる鉛蓄電池を
製造することができる。
According to the second aspect of the present invention, it is possible to effectively improve the chemical conversion property to manufacture a lead acid battery having a high high rate discharge characteristic and a long life.

【図面の簡単な説明】[Brief description of drawings]

【図1】 試験に用いた電池の放電特性を示す図であ
る。
FIG. 1 is a diagram showing discharge characteristics of a battery used in a test.

【図2】 試験に用いた電池のサイクル寿命特性を示す
図である。
FIG. 2 is a diagram showing cycle life characteristics of a battery used in a test.

【図3】 活物質ペースト中に含まれる鉛丹の量と電池
の放電特性との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the amount of lead tin contained in the active material paste and the discharge characteristics of the battery.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鉛丹を含有する酸化鉛粉末と硫酸と水と
を混練してなる活物質ペーストを集電体に充填して未乾
燥陽極板を作る活物質ペースト充填工程と、前記未乾燥
陽極板を熟成した後に乾燥する熟成乾燥工程とにより未
化成陽極板を製造し、前記未化成陽極板を未化成陰極板
と組み合わせて構成した極板群を電槽内に配置し、前記
未化成陽極板及び未化成陰極板を電槽化成により化成す
ることにより密閉形鉛蓄電池を製造する方法において、 前記鉛丹の量及び前記熟成乾燥工程の処理条件を前記未
化成陽極板中に四塩基性硫酸鉛と二酸化鉛とが混在する
ように定めることを特徴とする密閉形鉛蓄電池の製造方
法。
1. An active material paste filling step of filling a current collector with an active material paste obtained by kneading lead oxide powder containing lead tin oxide, sulfuric acid and water to prepare a undried anode plate, and the undried drying step. An unformed anode plate is manufactured by an aging drying step of drying after aging the anode plate, and a plate group constituted by combining the unformed anode plate with an unformed cathode plate is placed in a battery case, and the unformed In the method of manufacturing a sealed lead-acid battery by forming an anode plate and an unformed cathode plate by battery formation, the amount of lead tin and the treatment conditions of the aging drying step are tetrabasic in the unformed anode plate. A method for manufacturing a sealed lead-acid battery, characterized in that lead sulfate and lead dioxide are mixed.
【請求項2】 前記活物質ペーストに対する鉛丹の含有
率を10〜60重量%とし、前記未化成陽極板中に四塩
基性硫酸鉛を15〜60重量%生成させることを特徴と
する請求項1に記載の密閉形鉛蓄電池の製造方法。
2. The content of lead tin in the active material paste is set to 10 to 60% by weight, and 15 to 60% by weight of tetrabasic lead sulfate is formed in the unformed anode plate. 1. The method for manufacturing the sealed lead storage battery according to 1.
JP5065098A 1993-03-24 1993-03-24 Manufacture of sealed lead-acid battery Pending JPH06275255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5065098A JPH06275255A (en) 1993-03-24 1993-03-24 Manufacture of sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5065098A JPH06275255A (en) 1993-03-24 1993-03-24 Manufacture of sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH06275255A true JPH06275255A (en) 1994-09-30

Family

ID=13277107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5065098A Pending JPH06275255A (en) 1993-03-24 1993-03-24 Manufacture of sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH06275255A (en)

Similar Documents

Publication Publication Date Title
TWI539644B (en) Flooded lead-acid battery and method of making the same
JP2004199950A (en) Manufacturing method of positive electrode plate for lead-acid storage battery
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
Yeh et al. Physical and electrochemical characterization of PbO2 electrode prepared at different H2SO4/H2O/PbO ratios
JP3339080B2 (en) Anode plate for lead storage battery and method of manufacturing the same
EP3035433A1 (en) Lead-acid battery
JPH06275255A (en) Manufacture of sealed lead-acid battery
JPH09289020A (en) Positive plate for lead-acid battery and its manufacture
JP2004055417A (en) Manufacturing method of pasty active material for positive electrode and lead storage battery using it
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JP2001185151A (en) Sealed lead acid battery
JP2004199949A (en) Manufacturing method of electrode plate for lead-acid storage battery
JPH11162456A (en) Lead-acid battery
JP2002231234A (en) Method of preparing paste active material for use in positive electrode
JPH05174824A (en) Lead-acid battery positive electrode plate
JP3040718B2 (en) Lead storage battery
JP2000182615A (en) Lead-acid battery
JPH0689738A (en) Sealed type lead-acid battery
JP4501246B2 (en) Control valve type stationary lead acid battery manufacturing method
JP2929894B2 (en) Manufacturing method of sealed lead-acid battery
JP2003031217A (en) Lead-acid battery
JP2004355942A (en) Lead-acid storage battery and its manufacturing method
JPH05166504A (en) Manufacture of lead-acid battery positive electrode plate
JP2008177000A (en) Manufacturing method of paste type positive electrode plate
JPH08115718A (en) Manufacture of lead-acid battery