JPH0627298A - Monochromatic same phase x-ray condenser - Google Patents

Monochromatic same phase x-ray condenser

Info

Publication number
JPH0627298A
JPH0627298A JP18248892A JP18248892A JPH0627298A JP H0627298 A JPH0627298 A JP H0627298A JP 18248892 A JP18248892 A JP 18248892A JP 18248892 A JP18248892 A JP 18248892A JP H0627298 A JPH0627298 A JP H0627298A
Authority
JP
Japan
Prior art keywords
rays
ray
incident
incident angle
monochromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18248892A
Other languages
Japanese (ja)
Inventor
Tadao Katsuragawa
忠雄 桂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP18248892A priority Critical patent/JPH0627298A/en
Publication of JPH0627298A publication Critical patent/JPH0627298A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To eliminate influence for scattering X-rays caused by total reflection as much as possible in the case where X-rays are made incident at a low incident angle not much exceeding a critical angle for a crystalline material for the purpose of obtaining good monochromatic same phase X-rays. CONSTITUTION:A plurality of multi-layer films 11, 12 made of a crystalline material are opposed to each other and arranged at a position where X-rays 13 of an incident angle alpha close to a critical angle are reflected and allowed to interfere at the same incident angle alpha successively and the only X-rays which satisfy an interference condition out of the X-rays 13 successively made incident on the multilayer films 11, 12 are taken out successively. Thereby their intensity becomes small, their scattering light components are taken away gradually, and finally same phase X-rays can be taken out with monochromatic light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、物質の臨界角に近い入
射角でX線を入射させることで、反射干渉させて単色で
同位相のX線を集光させるようにした分光用の単色同位
相X線集光器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a monochromatic light for spectroscopy in which X-rays are incident at an incident angle close to the critical angle of a substance to cause reflection interference to condense monochromatic X-rays of the same phase. It relates to an in-phase X-ray concentrator.

【0002】[0002]

【従来の技術】一般に、X線は波長が短く(数10Å〜
0.1Å位)、物質の屈折率はほぼ1に等しい。このよ
うなX線は固体表面にすれすれの角度で入射するときは
全反射が起る。その臨界角θc は通常10〜30′程度
で、X線の波長が長い程、大きくなる。この全反射を利
用して湾曲面形状の鏡が集光用に用いられる。また、X
線は光と同じように干渉現象を示し、位相が揃うと、波
は強め合う。ところで、図5に示すように、X線1が基
板2上の物質3表面にすれすれの入射角αで入射する
と、この物質3表面で反射された波と基板2表面で反射
された波とは、図6に示すような関係にある、ある角度
α1 で位相が揃い、干渉して強くなる。これは、2つの
X線の光路差が、入射X線波長の整数倍に等しい時に生
ずる。P点は干渉によるピークを示す。ここに、物質3
の膜厚は3000Å以下位でないとX線1が基板2へ到
達せず、この現象は生じない。物質3としては結晶でも
アモルファスでもよく、要は、均一であればよい。
2. Description of the Related Art Generally, X-rays have a short wavelength (several 10 Å ~
The index of refraction of the material is almost equal to 1. When such X-rays are incident on the solid surface at a grazing angle, total reflection occurs. The critical angle θc is usually about 10 to 30 ′, and the longer the wavelength of X-ray, the larger. A curved mirror is used for light collection by utilizing this total reflection. Also, X
The lines show interference phenomena like light, and when the phases are aligned, the waves strengthen each other. By the way, as shown in FIG. 5, when the X-ray 1 is incident on the surface of the substance 3 on the substrate 2 at a grazing incidence angle α, the wave reflected on the surface of the substance 3 and the wave reflected on the surface of the substrate 2 are different from each other. , The phases are aligned at a certain angle α 1 having a relationship as shown in FIG. This occurs when the optical path difference between the two X-rays equals an integer multiple of the incident X-ray wavelength. Point P indicates a peak due to interference. Here, substance 3
If the film thickness is less than 3000 Å or less, the X-ray 1 does not reach the substrate 2 and this phenomenon does not occur. The substance 3 may be crystalline or amorphous, and the point is that it is uniform.

【0003】ところで、物質3の膜厚を3000Åより
薄くして多重層構造で設ければ、上記の干渉効果が増大
する。ただし、層間は鏡面であることが必要である。も
っとも、現在の製造技術によれば、数Åの薄膜層を何層
も均一に設けることが可能となっている。例えば、LB
膜とかMBE(分子線エピタキシー)で設けるGaAs
等の半導体で可能である。入射角αをα1 とした時、反
射されるX線は上述した原理により単色化されており
(分光されており)、かつ、位相の揃ったものとなる。
By the way, if the film thickness of the substance 3 is less than 3000 Å and it is provided in a multi-layer structure, the above-mentioned interference effect is increased. However, the layers must be mirror-finished. However, according to the current manufacturing technology, it is possible to provide several thin film layers uniformly. For example, LB
GaAs provided by film or MBE (Molecular Beam Epitaxy)
It is possible with semiconductors such as. When the incident angle α is α 1 , the reflected X-rays are monochromatic (spectralized) according to the above-mentioned principle and have the same phase.

【0004】[0004]

【発明が解決しようとする課題】ところが、実際には図
7に示すように、入射角α1 において、単色・同位相の
X線成分以外に、物質3表面等で散乱されて波長や位相
の異なるX線成分(図中、斜線を施して示す)も同時に
生じており、完全な単色・同位相のX線には分光されて
いない。
However, in practice, as shown in FIG. 7, at the incident angle α 1 , in addition to the monochromatic and in-phase X-ray components, the wavelength and phase of the substance 3 scattered by the surface of the substance 3 and the like are scattered. Different X-ray components (shown by hatching in the figure) also occur at the same time, and they are not separated into X-rays of perfect monochromatic / in-phase.

【0005】[0005]

【課題を解決するための手段】臨界角に近い入射角のX
線を同一入射角で順次反射干渉させる位置に結晶性材料
による複数の多層膜を対向配置させた。
Means for Solving the Problems X at an incident angle close to the critical angle
A plurality of multi-layered films made of a crystalline material were arranged facing each other at positions where the lines were sequentially reflected and interfered at the same incident angle.

【0006】[0006]

【作用】複数の多層膜表面に順次入射するX線は干渉条
件を満たすものだけが順次取出されるので、何回も干渉
させると強度は小さくなるものの、徐々に散乱光成分が
除去されることになり、最終的には、単色光で同位相の
X線となって取出される。
Since only X-rays that satisfy the interference condition are sequentially extracted from the X-rays that are successively incident on the surfaces of a plurality of multilayer films, the intensity of the X-rays becomes small if they are interfered many times, but the scattered light component is gradually removed. Finally, monochromatic light is extracted as X-rays of the same phase.

【0007】[0007]

【実施例】本発明の一実施例を図1ないし図4に基づい
て説明する。本実施例では、複数、例えば2つの多層膜
11,12を表面が互いに対向する状態で配置させ、こ
れらの表面間でX線13を順次反射干渉させるようにし
たものである。ここに、多層膜11は基板14上に原子
面15を有する状態で順次積層形成したものである。多
層膜12も同様に基板16上に原子面17を有する状態
で順次積層形成したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. In this embodiment, a plurality of, for example, two multilayer films 11 and 12 are arranged with their surfaces facing each other, and the X-ray 13 is sequentially reflected and interfered between these surfaces. Here, the multilayer film 11 is sequentially laminated on the substrate 14 in a state having the atomic plane 15. Similarly, the multilayer film 12 is also formed by sequentially stacking on the substrate 16 in a state having the atomic planes 17.

【0008】多層膜11(多層膜12も同様)の作製法
としては、図2に例示するように、基板14上に異種原
子又は異種分子による物質層A,Bを、A,B,A,
B,〜のように積層すればよい。ここに、物質層A,B
は膜厚が同一でも異なっていてもよい。膜厚が異なる場
合、図6中に示した干渉によるピークPの周期の異なる
2つの振動が出るので、A=2Bのような膜厚関係とし
てもよい。同様の理由により、3種以上の層を順次積層
する構造、或いは、A層のみとした構造でもよい。ま
た、物質層A,Bは両者間の密度差が大きいほうが振動
(ピーク)は大きくなるので、好ましい。多層膜11全
体の厚みとしては、用いる原子種にもよるが、透過しな
い程度の5000Å以下であればよい。各層自体の膜厚
は、あまり薄くなると振動周期が小さくなるので、10
0〜500Å程度が適当である。多層膜11表面は3〜
10Å程度に粗いほうが散乱光が少なくなるので好まし
い。X線13の入射角αはなるべく臨界角に近く、か
つ、ピークの出る角度とするのがよい。この際、X線1
3の波長が長いほうが入射角αを大きくし得るので、そ
の設定が容易となる。また、回折させるための原子面1
5は、単結晶の面であっても、LB膜のように分子を層
状に積層形成した面でもよいため、本発明では、「結晶
性材料」という表現を用いるものである。なお、積層す
る物質が同一でなく、密度の異なる2種類以上の物質を
積層すると、干渉効果は大きくなり、強度の大きいX線
が得られることになる。なお、多層膜11に対する基板
14の材料としては、ガラス、Si、SiO2 、金属薄
板等、特に限定されないものである。
As a method of manufacturing the multilayer film 11 (similar to the multilayer film 12), as shown in FIG. 2, the material layers A and B of different atoms or different molecules are formed on the substrate 14 by A, B, A,
It may be laminated as in B ,. Here, the material layers A and B
May have the same or different film thickness. When the film thickness is different, two vibrations having different periods of the peak P due to the interference shown in FIG. 6 are generated, so that the film thickness relationship such as A = 2B may be adopted. For the same reason, a structure in which three or more layers are sequentially stacked or a structure including only the A layer may be used. Further, in the material layers A and B, it is preferable that the difference in density between the two is large because the vibration (peak) increases. Although the total thickness of the multilayer film 11 depends on the atomic species used, it may be 5000 Å or less so that it does not penetrate. If the thickness of each layer itself becomes too thin, the vibration cycle becomes smaller, so
About 0 to 500Å is suitable. The surface of the multilayer film 11 is 3 to
It is preferable that the roughness is about 10Å because scattered light is reduced. It is preferable that the incident angle α of the X-ray 13 is as close to the critical angle as possible and that the peak appears. At this time, X-ray 1
Since the incident angle α can be increased as the wavelength of 3 is longer, the setting becomes easier. Also, the atomic plane 1 for diffracting
Since 5 may be a single crystal surface or a surface in which molecules are laminated in layers such as an LB film, the expression “crystalline material” is used in the present invention. When two or more kinds of substances having different densities are laminated, the substances to be laminated are not the same, and the interference effect becomes large, and the X-ray having high intensity can be obtained. The material of the substrate 14 for the multilayer film 11 is not particularly limited, such as glass, Si, SiO 2 and a metal thin plate.

【0009】しかして、図1に示すように、干渉して強
くなったX線入射角α1 に角度を固定し、多層膜11,
12をX線13の入射角αが同一となるように向い合わ
せると、干渉条件を満たすX線13だけが順次取出され
ることになる。よって、何回も干渉させるとX線強度は
小さくなるものの、段々と散乱光が除去されて干渉が繰
返されることになり、単色光であって同位相のものだけ
が取出されることになる。この際、図示例のように広が
るX線を用いても、干渉したX線だけが取出されるの
で、X線13の幅は狭くなり、集光されることになる。
干渉させる回数は、目的とする強度と単色化の程度によ
って異なるが、2〜6回程度が適当である。
Therefore, as shown in FIG. 1 , the angle is fixed to the X-ray incident angle α 1 which is increased by the interference, and the multilayer film 11,
When 12 are faced so that the incident angles α of the X-rays 13 are the same, only the X-rays 13 satisfying the interference condition are sequentially extracted. Therefore, although the X-ray intensity is reduced by causing interference a number of times, the scattered light is gradually removed and the interference is repeated, so that only monochromatic light having the same phase is extracted. At this time, even if X-rays that spread as in the illustrated example are used, only the interfering X-rays are extracted, so that the width of the X-rays 13 becomes narrow and the X-rays 13 are condensed.
The number of times of interference varies depending on the intended intensity and the degree of monochromaticity, but is preferably about 2 to 6 times.

【0010】いま、具体例を挙げて説明する。まず、S
iウエハ基板上にイオンビームスパッタ装置を用いて、
下記の条件 ターゲット :Si、Cu 基板加熱 :なし イオン化ガス :Ar(99.999%) イオン銃電流×電圧 :3mA×9kV イオン入射角 :30° ベースプレッシャ :3×10~7Torr ターゲット・基板間距離:15mm 基板サイズ :直径4インチ円形 各層の膜厚 :Si、Cuとも200Å(1
0層ずつ) 最表面はSi で、約4000Åの積層膜厚構造の多層膜を3枚作製し
た。
Now, a specific example will be described. First, S
Using an ion beam sputtering device on the i-wafer substrate,
The following conditions Target: Si, Cu Substrate heating: None Ionized gas: Ar (99.999%) Ion gun current x voltage: 3 mA x 9 kV Ion incident angle: 30 ° Base pressure: 3 x 10 to 7 Torr Target-substrate Distance: 15 mm Substrate size: 4 inch diameter circle Thickness of each layer: 200 Å (1 for both Si and Cu
Three layers each having a laminated film thickness structure of about 4000 Å with Si 2 as the outermost surface were prepared.

【0011】ついで、このような多層膜の一つに対し
て、理学株式会社製のX線装置RU−300を用いて
(ターゲットはCu)、Si(111)で分光したCu
Kα線の入射角と強度との関係を求めたところ、入射角
が約7mradの時に大きなピークが得られたものである。
この場合、バックグランド(図7中に示した斜線部分)
とピークトップとの強度比は1/1であった。このよう
なX線をさらにSi(111)結晶を用いてロッキング
カーブをとり、半値幅を求めたところ、21秒となり、
良好なる単色X線が得られたものである。
Then, with respect to one of such multi-layer films, an X-ray apparatus RU-300 manufactured by Rigaku Co., Ltd. was used (target is Cu), and Cu was dispersed by Si (111).
When the relationship between the incident angle of Kα rays and the intensity was obtained, a large peak was obtained when the incident angle was about 7 mrad.
In this case, the background (hatched area shown in Fig. 7)
The intensity ratio between the peak and the peak was 1/1. The X-ray was further rocked using a Si (111) crystal, and the half-width was calculated to be 21 seconds.
A good monochromatic X-ray was obtained.

【0012】さらに、Siウエハ基板上に形成された多
層膜をX線の入射角が同一となるようにしてこの多層膜
に向い合わせ、2回反射させるように配置させてピーク
値を得たところ、バックグランドとピークトップとの強
度比は約1/2となったものである。また、ロッキング
カーブから求めた半値幅は16秒となったものである。
Further, the multilayer film formed on the Si wafer substrate is faced to the multilayer film so that the incident angles of X-rays are the same, and the multilayer film is arranged so as to be reflected twice and the peak value is obtained. The intensity ratio between the background and the peak top is about 1/2. Further, the half width obtained from the rocking curve is 16 seconds.

【0013】ついで、3つ目の多層膜についても、1,
2つ目の多層膜と千鳥状配置となるように2つ目の多層
膜に対向配置させ(X線の入射角は同じ)、3回反射さ
せるようにしてピーク値を得たところ、バックグランド
とピークトップとの強度比は約1/4となったものであ
る。また、ロッキングカーブから求めた半値幅は12秒
となったものである。
Next, regarding the third multilayer film,
When the peak value was obtained by arranging the second multilayer film so as to be in a staggered arrangement with the second multilayer film (the incident angle of X-rays is the same) and reflecting three times, the background value was obtained. The intensity ratio between the peak and the peak top is about 1/4. Further, the half width obtained from the rocking curve is 12 seconds.

【0014】このように多層膜の使用回数を増加させる
につれてX線の幅が減少し(即ち、集光し)、バックグ
ランドが減少して位相の揃ったX線成分が多くなり、同
時に、ピークの半値幅が減少することにより単色化も向
上するものとなった。
As described above, as the number of times the multilayer film is used increases, the width of X-rays decreases (that is, the light is condensed), the background decreases, and the X-ray components in phase increase. Since the full width at half maximum of is reduced, the monochromaticity is improved.

【0015】本実施例方式による結果、図7中に斜線を
施して示したような散乱X線等による影響が緩和され、
図3に示すような特性が得られ、単色同位相性の良好な
X線となる。
As a result of the method of this embodiment, the influence of scattered X-rays and the like as shown by hatching in FIG. 7 is alleviated,
The characteristics as shown in FIG. 3 are obtained, and the X-ray becomes excellent in monochromatic in-phase property.

【0016】なお、基板や原子面について、均一にして
任意に長尺状に作製し得る場合であれば、図1に示すよ
うに上下2つの多層膜11,12のみによる構成とし、
これらの間で何回も反射させるようにしてもよい。さら
には、図1において、例えば基板16上に薄膜層を均一
かつ厚くなる積層状態に積層し得る場合であれば、多層
膜11側を用いることなく、図4に示すように、多層膜
12の一部を横から見てコ字状にくり抜いてX線通路1
8を形成するようにしてもよく(上下面が複数の多層膜
12a,12bを構成する)、この構造のほうが角度を
同じにとりやすい。
If the substrate and atomic plane can be made uniform and arbitrarily long, as shown in FIG. 1, the upper and lower multi-layer films 11 and 12 alone are used.
You may make it reflect many times between these. Further, in FIG. 1, if the thin film layers can be laminated on the substrate 16 in a uniform and thick laminated state, as shown in FIG. 4, the multilayer film 12 can be formed without using the multilayer film 11 side. X-ray passage 1 which is cut out in a U shape when viewed from the side
8 may be formed (the upper and lower surfaces form a plurality of multilayer films 12a and 12b), and this structure is more likely to have the same angle.

【0017】ちなみに、X線を結晶性材料の臨界角の極
く近傍の入射角で入射させるのでなければ、原子面(回
折面)と結晶のカット面(表面)とをずらして形成する
ことは、「ブラッグ・ケースの非対称反射」として従来
から周知である。即ち、図8に示すように単結晶構造の
結晶性材料20においてその原子面21とカット面22
とをずらして形成し、同図(a)に示すようにX線23
をカット面22に入射させることにより反射されるX線
幅を大きくし、同図(b)に示すようにX線23をカッ
ト面に入射させることにより反射されるX線幅を小さく
するのに用いられる。つまり、X線23が原子面(回折
面)21で反射され、ブラッグの条件を満たすことによ
り干渉するのは、本発明方式の場合と同様である。しか
し、あくまで、臨界角よりも大きな入射角で用いられる
ものであり、本発明の前提とする全反射は無関係であ
り、全反射光を減少させるという課題はないものであ
る。
By the way, unless X-rays are incident at an incident angle very close to the critical angle of the crystalline material, the atomic plane (diffraction plane) and the cut surface (surface) of the crystal may be formed so as to be offset from each other. , "Bragg case asymmetrical reflection" is conventionally known. That is, as shown in FIG. 8, in the crystalline material 20 having a single crystal structure, its atomic plane 21 and cut plane 22 are
And the X-ray 23 are formed as shown in FIG.
To make the X-ray width reflected by making the cut surface 22 incident on the cut surface 22 smaller, and make the X-ray width reflected by making the X-ray 23 incident on the cut surface smaller as shown in FIG. Used. That is, the X-ray 23 is reflected by the atomic plane (diffraction plane) 21 and interferes by satisfying the Bragg condition, as in the case of the method of the present invention. However, since it is used at an incident angle larger than the critical angle, the total reflection that is the premise of the present invention is irrelevant, and there is no problem of reducing the total reflected light.

【0018】また、X線分光器として機能する本発明装
置をX線集光器と称するのは、下記の理由による。現
在、X線は発散光でしか得られず、一般のX線管球やロ
ータターゲットを使用するもの、プラズマを使用するも
の、放射光を使用するもの、全て発散している。そし
て、分光する場合、図8(a)のケースではビーム幅が
さらに広くなるのに対して、同図(b)のケースでは回
折条件を満たした光だけが反射することによりビーム幅
が入射ビーム幅よりも細くなるので、分光自体によって
もビーム幅を狭くし得るが、本実施例構成によれば、ビ
ーム幅をより狭い状態に絞った形で反射させるので、特
に集光器と称するようにしたものである。
The device of the present invention, which functions as an X-ray spectroscope, is called an X-ray concentrator for the following reason. At present, X-rays can be obtained only by divergent light, and those using general X-ray tubes and rotor targets, those using plasma, and those using radiant light are all divergent. Then, in the case of spectral separation, the beam width becomes wider in the case of FIG. 8A, whereas in the case of FIG. 8B, only the light satisfying the diffraction condition is reflected, so that the beam width becomes the incident beam. Since the beam width is narrower than the width, the beam width can be narrowed by the spectrum itself. However, according to the configuration of this embodiment, the beam width is narrowed to a narrower state and reflected. It was done.

【0019】また、軟X線(3〜100Åの波長)用の
反射鏡は、密度差の大きい2種類の材料を積層して、よ
り大きな角度(45°程度)での反射鏡として利用され
ているが、本実施例を適用すれば、より大きな角度用に
適用し得るものとなる。
Further, the reflecting mirror for soft X-rays (wavelength of 3 to 100Å) is used as a reflecting mirror at a larger angle (about 45 °) by laminating two kinds of materials having a large difference in density. However, if this embodiment is applied, it can be applied to a larger angle.

【0020】[0020]

【発明の効果】本発明は、上述したように、臨界角に近
い入射角のX線を同一入射角で順次反射干渉させる位置
に結晶性材料による複数の多層膜を対向配置させて、複
数の多層膜表面に順次入射されるX線中で干渉条件を満
たすものだけを順次取出すようにしたので、何回も干渉
させると強度は小さくなるものの、徐々に散乱光成分を
除去でき、よって、最終的には、単色光で同位相のX線
として取出すことができる。
As described above, according to the present invention, a plurality of multilayer films made of a crystalline material are arranged to face each other at a position where X-rays having an incident angle close to the critical angle are sequentially reflected and interfered at the same incident angle. Since only the X-rays that satisfy the interference condition are sequentially extracted from the X-rays that are sequentially incident on the surface of the multilayer film, the scattered light component can be gradually removed though the intensity decreases when the interference is repeated many times. Specifically, monochromatic light can be extracted as X-rays having the same phase.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略図である。FIG. 1 is a schematic view showing an embodiment of the present invention.

【図2】積層構造を示す概略図である。FIG. 2 is a schematic view showing a laminated structure.

【図3】入射角‐X線強度特性図である。FIG. 3 is an incident angle-X-ray intensity characteristic diagram.

【図4】変形例を示す概略図である。FIG. 4 is a schematic diagram showing a modified example.

【図5】低入射角X線強度測定原理を示す概略図であ
る。
FIG. 5 is a schematic view showing the principle of low incidence angle X-ray intensity measurement.

【図6】入射角‐X線強度特性図である。FIG. 6 is an incident angle-X-ray intensity characteristic diagram.

【図7】単色同位相部分を抽出して示す入射角‐X線強
度特性図である。
FIG. 7 is an incident angle-X-ray intensity characteristic diagram showing an extracted single-color in-phase portion.

【図8】従来の高入射角方式の場合の非対称反射原理を
示す概略図である。
FIG. 8 is a schematic diagram showing the principle of asymmetric reflection in the case of the conventional high incidence angle method.

【符号の説明】[Explanation of symbols]

11,12 多層膜 13 X線 11,12 Multilayer film 13 X-ray

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 臨界角に近い入射角のX線を同一入射角
で順次反射干渉させる位置に結晶性材料による複数の多
層膜を対向配置させたことを特徴とする単色同位相X線
集光器。
1. A monochromatic in-phase X-ray condensing device, wherein a plurality of multilayer films made of a crystalline material are arranged facing each other at positions where X-rays having an incident angle close to a critical angle are sequentially reflected and interfered at the same incident angle. vessel.
JP18248892A 1992-07-09 1992-07-09 Monochromatic same phase x-ray condenser Pending JPH0627298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18248892A JPH0627298A (en) 1992-07-09 1992-07-09 Monochromatic same phase x-ray condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18248892A JPH0627298A (en) 1992-07-09 1992-07-09 Monochromatic same phase x-ray condenser

Publications (1)

Publication Number Publication Date
JPH0627298A true JPH0627298A (en) 1994-02-04

Family

ID=16119162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18248892A Pending JPH0627298A (en) 1992-07-09 1992-07-09 Monochromatic same phase x-ray condenser

Country Status (1)

Country Link
JP (1) JPH0627298A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416272B1 (en) 1998-10-09 2002-07-09 Toyota Shatai Kabushiki Kaisha Wheelchair with retractable wheels for conversion to vehicle passenger seat
US6543848B1 (en) 1997-09-01 2003-04-08 Toyota Shatai Kabushiki Kaisha Vehicular turning seat
US6557919B2 (en) 1997-04-03 2003-05-06 Toyota Shatai Kabushiki Kaisha Rotating vehicle seat
US6572172B1 (en) 1998-09-10 2003-06-03 Toyota Shatai Kabushiki Kaisha Rotating vehicle seat
WO2005116771A3 (en) * 2004-05-27 2006-06-08 Infineon Technologies Ag Wavelength selector for the soft x-ray range and the extreme ultraviolet range
JP2013137307A (en) * 2011-12-02 2013-07-11 Canon Inc X-ray waveguide and x-ray waveguide system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6557919B2 (en) 1997-04-03 2003-05-06 Toyota Shatai Kabushiki Kaisha Rotating vehicle seat
US6543848B1 (en) 1997-09-01 2003-04-08 Toyota Shatai Kabushiki Kaisha Vehicular turning seat
US6572172B1 (en) 1998-09-10 2003-06-03 Toyota Shatai Kabushiki Kaisha Rotating vehicle seat
US6416272B1 (en) 1998-10-09 2002-07-09 Toyota Shatai Kabushiki Kaisha Wheelchair with retractable wheels for conversion to vehicle passenger seat
US6582181B2 (en) 1998-10-09 2003-06-24 Toyota Shatai Kabushiki Kaisha Vehicle seat
WO2005116771A3 (en) * 2004-05-27 2006-06-08 Infineon Technologies Ag Wavelength selector for the soft x-ray range and the extreme ultraviolet range
JP2013137307A (en) * 2011-12-02 2013-07-11 Canon Inc X-ray waveguide and x-ray waveguide system

Similar Documents

Publication Publication Date Title
EP0774156B1 (en) Optical element of multilayered thin film for x-rays and neutrons
JPS6098399A (en) Point source x-ray focusing device
JPH0627298A (en) Monochromatic same phase x-ray condenser
JPS61270647A (en) Sub-assembly-system and method for changing x-ray into monochrome
US5384817A (en) X-ray optical element and method for its manufacture
JPH0534500A (en) X-ray multilayered film reflecting mirror
JPH0627297A (en) Nonchromatic same phase x-ray condenser
Hecquet et al. Design and performance of two-channel EUV multilayer mirrors with enhanced spectral selectivity
JPH04169898A (en) Multi-layer mirror structure for x-ray
JPS62226047A (en) Multi-layered film reflecting mirror and its production
JPS63106703A (en) Optical element
Yang et al. Investigation of effects of assisted ion bombardment on mechanical loss of sputtered tantala thin films for gravitational wave interferometers
JPH06174897A (en) Multilayer x-ray mirror and multilayer x-ray optical system
Röhlsberger et al. Observation of nuclear diffraction from multilayers with a Fe/57Fe superstructure
Bruson et al. Interference effect in non-specular scattering from multilayers interpretation of the rocking curves
JPH05232299A (en) Manufacture of x-ray multilayer film reflector
JPH05346496A (en) Multilayer film reflecting mirror
Koike et al. Nanofabrication of multilayer zone plates by helicon plasma sputtering
Sella et al. Structure and properties of W/C and Ni/C multilayer films
JPH0627300A (en) Multi-wave length x-ray spectroscope
JPH01502057A (en) multilayer structure
JP2993261B2 (en) X-ray multilayer reflector
JP2814595B2 (en) Multilayer reflector
Evans et al. The soft X-ray to EUV performance of plane and concave Pt-Si multilayer mirrors
Hotta et al. Design and fabrication of multilayer mirrors for He-II radiation