JPS62226047A - Multi-layered film reflecting mirror and its production - Google Patents

Multi-layered film reflecting mirror and its production

Info

Publication number
JPS62226047A
JPS62226047A JP61068470A JP6847086A JPS62226047A JP S62226047 A JPS62226047 A JP S62226047A JP 61068470 A JP61068470 A JP 61068470A JP 6847086 A JP6847086 A JP 6847086A JP S62226047 A JPS62226047 A JP S62226047A
Authority
JP
Japan
Prior art keywords
multilayer
multilayer film
reflecting mirror
films
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61068470A
Other languages
Japanese (ja)
Other versions
JPH07113679B2 (en
Inventor
Yuichi Uchiumi
裕一 内海
Oku Kuraki
億 久良木
Tsuneo Urisu
恒雄 宇理須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61068470A priority Critical patent/JPH07113679B2/en
Publication of JPS62226047A publication Critical patent/JPS62226047A/en
Publication of JPH07113679B2 publication Critical patent/JPH07113679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Optical Filters (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To increase the reflectivity of a multi-layered reflecting mirror formed by alternately laminating thin heavy element films and thin light element films on a substrate and to permit the control of the spectral band width thereof by using B or Be as the material for the thin light element films. CONSTITUTION:This multi-layered reflecting mirror is formed by laminating M-pieces of the periodic unit multi-layered films 6 superposed with the two- layered films of a pitch dn consisting of the thin heavy element films 4 of a thickness An which are reflective layers and the thin light element films 5 of a thickness Bn which are spacer layers in Nn layers on the substrate 1, successively from the substrate 1 side. The B or Be is used for the material to constitute the thin light element films. The coefft. of absorption of the B or Be in the soft X-ray region which is important for exposure of X-rays exhibits the lower value than the coefft. of absorption of C which is heretofore used and the refractive index of the B or Be in the soft X-ray region exhibits the value lower than the value of the C with respect to the refractive index as well. Since the absorption of the soft X-rays by the spacer layer material is decreased, the extremely high reflectivity is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 不発明は多層膜構造を有するX線反射境、及びその製造
方法に関するものである0 (従来技術および発明が解決しようとする問題点)従来
の多層膜反射鏡としては第8図(a)に示す工うに、基
板1上に軽元素薄膜2と重元素薄膜3を一定のピッチで
交互に形成した多層膜反射鏡が一般に知られている。こ
の場会、反射率と反射率スペクトルの波長帯域幅の間に
は一定の関係(層数を増大することVCより、反射率を
増大させると成長帯域幅は逆に狭くなる)があるので、
高い反射率を維持しながら任意の波長帯域幅を得ること
はできない0また積分反射率が低い。さらに所定の波長
のX線を入射光とし次場合、ブラック反射が起こる入射
角は非常に限られた範囲にあるので、曲面基板上に従来
の多層llaを形成した場会、反射鏡表面の各点に対す
るX線の入射角がそれぞれ異なり、所定の波長のブラッ
グ反射に寄与する反射面の面積は非常に狭くなってしま
う。従って店家の波長において高い反射率を得ることが
できない。また他の例として、第8図(1))に示すL
うなピッチが基板から上に向かって徐々に変化する多層
膜反射鏡があるが、一定のピッチの変化を維持しながら
正確に多j−嗅會形成することμ困難である他、筒いビ
ーク反射率が得らnないという欠点がある。また上記従
来の多層膜反射鏡の構成材料としては、反射層の材料と
してW+ Re + Pt t Auなどの重元素、ス
ペーサ一層の材料としてはAl 、St + Cなどの
軽元素が用いられていたが、この場合特に軟X線領域に
おいて軽元素薄膜の吸収係数が大きく、反射率金高くで
きないという欠点がめった。また、従来の多層1換反射
鏡の製造方法であるイオンビームスパッタ法においては
散乱イオンが堆積膜に損傷を与えるため、極薄膜全形成
できないという欠点がbつ几。
Detailed Description of the Invention (Industrial Application Field) The invention relates to an X-ray reflective boundary having a multilayer structure and a method for manufacturing the same.0 (Prior art and problems to be solved by the invention) Conventional As a multilayer film reflector, a multilayer film reflector is generally known, as shown in FIG. 8(a), in which light element thin films 2 and heavy element thin films 3 are alternately formed on a substrate 1 at a constant pitch. . In this case, since there is a certain relationship between the reflectance and the wavelength bandwidth of the reflectance spectrum (increasing the number of layers VC, increasing the reflectance narrows the growth bandwidth), so
It is not possible to obtain an arbitrary wavelength bandwidth while maintaining high reflectance, and the integrated reflectance is low. Furthermore, when X-rays of a predetermined wavelength are used as incident light, the angle of incidence at which black reflection occurs is within a very limited range. The incident angles of X-rays with respect to each point are different, and the area of the reflecting surface that contributes to Bragg reflection of a predetermined wavelength becomes extremely small. Therefore, it is not possible to obtain a high reflectance at the wavelength of the light source. As another example, L shown in FIG. 8 (1))
There is a multilayer reflector whose beak pitch gradually changes upward from the substrate, but it is difficult to accurately form a multilayer beak while maintaining a constant change in pitch, and the cylindrical beak reflection The disadvantage is that the ratio is not obtained. In addition, as for the constituent materials of the above-mentioned conventional multilayer film reflecting mirror, heavy elements such as W + Re + Pt t Au were used as the material for the reflective layer, and light elements such as Al and St + C were used as the material for the spacer layer. However, in this case, the absorption coefficient of the light element thin film is large, especially in the soft X-ray region, and the drawback is that the reflectance cannot be increased. In addition, in the ion beam sputtering method, which is the conventional method for manufacturing multilayer monomer reflective mirrors, one drawback is that the scattered ions damage the deposited film, making it impossible to form an extremely thin film entirely.

(問題点を解決するための手段) 不発明は、従来技術の上記した諸問題を解決し、鳩い反
射率を有し、反射率スペクトルの帯域幅が任意に設定で
き、かつ曲面構造とした場合にも高い反射率の得られる
多層膜反射鏡及びその製造法を提供することを目的とす
る。
(Means for solving the problems) The invention solves the above-mentioned problems of the prior art, and has a high reflectance, the bandwidth of the reflectance spectrum can be arbitrarily set, and a curved structure. It is an object of the present invention to provide a multilayer film reflector that can obtain a high reflectance even in various cases, and a method for manufacturing the same.

本発明は上記目的を達成する之めに多層膜反射鏡の軽元
素薄膜の構成材料として、BあるいはBek用いること
にエフ、反射鏡の反射率を高くしている。まt本発明に
よる多層膜反射鏡の構造として、ピッチの異なる単位多
層膜全複数種積層したものとすることにより%X線露光
に適切な波長帯域幅を自由に選択できるとともに、曲面
構造とし次場合高い反射率が得られるものである0ま九
多層膜構成元素によるX線の長波長側の吸収をなるべく
小さくし、広い波長領域にわたって高い反射率を得る九
めに、各々の該単位長/lltl1Mのピッチを基板側
から上に向かって順に増大し九構遺としていることを不
発明の主な特徴とする。
In order to achieve the above object, the present invention uses B or Bek as a constituent material of the light element thin film of the multilayer reflective mirror, thereby increasing the reflectance of the reflective mirror. Furthermore, the structure of the multilayer film reflecting mirror according to the present invention is such that a plurality of unit multilayer films with different pitches are laminated, so that an appropriate wavelength bandwidth for X-ray exposure can be freely selected. In order to obtain a high reflectance over a wide wavelength range, the absorption of X-rays on the long wavelength side by the elements constituting the multilayer film should be minimized to obtain a high reflectance over a wide wavelength range. The main feature of the invention is that the pitch of /lltl1M increases sequentially from the substrate side upwards, resulting in nine structures.

さらに薄膜の形成に原子線スパッタ法を用いることTI
/C工9イオンビームスパッタ法における工うな薄膜の
損傷がない次めに、平滑な多層膜界面を有する多層膜反
射鏡を製造することができ、界面でのX線の散乱を少な
くすることができる。ま之艮作精度の良い極微細なピッ
チを有する多層膜反射鏡を製造することができる。
Furthermore, using atomic beam sputtering method to form a thin filmTI
/C Process 9 There is no damage to the thin film as in the ion beam sputtering method.Next, it is possible to manufacture a multilayer film reflector with a smooth multilayer film interface, and the scattering of X-rays at the interface can be reduced. can. It is possible to manufacture a multilayer reflector having an extremely fine pitch with high manufacturing precision.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

なお実施例は一つの例示であって、本発明の精神を逸脱
しない範囲で棟々の変更あるいは改良全行いうろことは
言うまでもない。
It should be noted that the embodiments are merely illustrative, and it goes without saying that all modifications and improvements may be made without departing from the spirit of the present invention.

第1(8)に本発明による多JWIm反射境の一実施例
を示す。基板1上に反射ノーである厚さAnの重元素薄
膜4と、スペーサ一層である厚さBnの軽元素薄膜5か
ら成るピッチdnの2M膜を凡層重ねた周期的な準位多
層@6を基板l側から順にM個積層しmものである0該
多1−模反射鏡の光学特性の原理をM=2の場合を例に
あけて説明する。所定のピッチの多層膜は、一定のピー
ク波長と帯域幅からなるX線を高い反射率で反射fふこ
)−か知られて層ふ、従って笛IMK千すような構造に
おいて、M;2の場合、即ちピッチの異なる単位多層膜
の2個を@層しt多層膜反射鏡は各々の単位多層膜に対
応する異なる中心波長λ1.λ2にビークを有するスペ
クトル7゜8を合成しt広い波長領域にVtCり高い反
射率を実現し得る(第2図笑線)。この工つな構造の多
層膜反射鏡の特徴は広い波長領域にわ友り高い反射率を
有する特性、即ち高い積分反射率を有するスペクトル特
性が実現できることと、ピッチdn1重元素薄膜の膜厚
Anl軽元素薄膜の換厚Nn、積み重ね数Mの値をそれ
ぞれ変化させることによジ、所望の波長帯域幅全設定で
きること、および波長帯域幅が広いために後に説明する
ように入射角の許容範囲が広く、曲面構造とじt場合で
も鍋い反射率が得られることである。
First (8) shows an embodiment of the multi-JWIm reflection boundary according to the present invention. A periodic level multilayer @ 6 in which 2M films with a pitch dn consisting of a heavy element thin film 4 with a thickness An which is non-reflective and a light element thin film 5 with a thickness Bn which is a single spacer layer are stacked on a substrate 1. The principle of the optical characteristics of a 0 to 1-simulating mirror, which is formed by laminating M pieces of 1 to 1 in order from the substrate 1 side, will be explained using the case of M=2 as an example. A multilayer film of a given pitch reflects X-rays of a certain peak wavelength and bandwidth with a high reflectance. In other words, when two unit multilayer films with different pitches are layered, the multilayer film reflecting mirror has a different center wavelength λ1.corresponding to each unit multilayer film. By synthesizing a spectrum of 7°8 having a peak at λ2, it is possible to achieve a higher reflectance than VtC over a wide wavelength range (see line in Figure 2). The features of this intricately structured multilayer reflector are that it can achieve a high reflectance over a wide wavelength range, that is, it can achieve spectral characteristics with a high integrated reflectance, and the thickness of the heavy element thin film with a pitch of dn1 and an l By changing the thickness Nn of the light element thin film and the stacking number M, it is possible to set the entire desired wavelength bandwidth, and because the wavelength bandwidth is wide, the allowable range of the incident angle is widened, as will be explained later. A wide range of reflectance can be obtained even in the case of a curved surface structure.

本実施例における多層膜反射鏡の構造、構成材料及びそ
の光学特性についてさらに詳細な説明全行う。
A more detailed explanation of the structure, constituent materials, and optical characteristics of the multilayer mirror in this example will be provided.

光源の長波長成分は短波長成分よりも多層1の構成材料
に吸収されやすいので、単波長側に反射率スペクトルの
ビーク波長を有する単位多層a7+為ら、即ちピッチd
nの小さい単位多層膜から順に上に向かってピッチdn
が増大するように基板上に積層することに工9、長波長
成分が上層の単位多層膜で、短波長成分が下層の単位多
層膜で主に反射される几めに吸収の影響會小さくでき、
エフ高い反射率が実現できる。
Since the long wavelength component of the light source is more easily absorbed by the constituent material of the multilayer 1 than the short wavelength component, since the unit multilayer a7+ has the peak wavelength of the reflectance spectrum on the single wavelength side, that is, the pitch d
The pitch dn is increased in ascending order from the unit multilayer film with small n.
The effect of absorption can be minimized by stacking layers on the substrate so that the long wavelength components are reflected by the upper unit multilayer film and the short wavelength components are mainly reflected by the lower unit multilayer film. ,
High reflectance can be achieved.

さらに本発明における多層膜反射鏡では軽元素薄膜の材
料として、BあるいはBet用いることな特徴とする。
Furthermore, the multilayer reflective mirror of the present invention is characterized in that B or Bet is used as the material for the light element thin film.

以下にその効果について説明する。多層膜構成材料の複
素屈折率を1−δ−1βとした場合、多層膜界面におけ
る複素振幅反射率は入射角αが一定の条件下では(△δ
十i△β)に比例する。ただしΔδとΔβは重元素薄膜
と軽元素薄膜の屈折率及び吸収係数の差である。
The effect will be explained below. When the complex refractive index of the multilayer film constituent material is 1-δ-1β, the complex amplitude reflectance at the multilayer film interface is (△δ
10iΔβ). However, Δδ and Δβ are the differences in refractive index and absorption coefficient between the heavy element thin film and the light element thin film.

また、より高いピーク反射率を得る友めにはスペーサ一
層材料にLる軟X線の吸収は小さいほうが望ましい。第
3図に1〜100OAの波長領域における各重元素の吸
収係数μを示す。X線の露光に重要な軟X線領域におい
ては、BあるいはBeの吸収係数は従来スペーサ一層材
料として広く用いられているCの吸収係数に比べ低い値
を示している。Beの吸収係数は時にCの吸収係数との
差が著しい。また屈折率に関しても軟X線領域にのいて
BあるいはBeの屈折率はCに比べて低い値を示してい
る(文献、ビー、エル。
Furthermore, in order to obtain a higher peak reflectance, it is desirable that the absorption of soft X-rays in the material of the spacer layer be smaller. FIG. 3 shows the absorption coefficient μ of each heavy element in the wavelength range of 1 to 100 OA. In the soft X-ray region important for X-ray exposure, the absorption coefficient of B or Be is lower than that of C, which has been widely used as a single-layer spacer material. The absorption coefficient of Be is sometimes significantly different from the absorption coefficient of C. Regarding the refractive index, the refractive index of B or Be in the soft X-ray region is lower than that of C (Reference, B. L.).

ヘンヶ他”Atomic Data and Nucl
ear Data Tables(1982)”第27
巻)。従って、従来スペーサ一層材料に一般的に用いら
れているCの代わりにB委るいはBe′It用いること
により軟xm領域において△δ及び△βが最大し、かつ
スペーサ一層材料による軟X線の吸収が低減するので非
常に高い反射率が得られる。例えば本発明者の計算によ
ればs W/Be多層膜多層膜反射−ク波長λp”11
^においてW/C多層膜反射鏡と比較し、2倍近くのピ
ーク反射率が得られる。
Atomic Data and Nucl
ear Data Tables (1982)” No. 27
roll). Therefore, by using B or Be′It in place of C, which is generally used for conventional spacer single-layer materials, Δδ and Δβ are maximized in the soft xm region, and the soft X-rays due to the spacer single-layer material are Very high reflectance can be obtained since absorption is reduced. For example, according to calculations by the inventor, s W/Be multilayer film multilayer film reflection wavelength λp”11
At ^, a peak reflectance nearly twice as high as that of a W/C multilayer mirror can be obtained.

さらに本発明による多層膜反射鏡の特徴として、該多層
膜反射#!全構成しているM種の単位多層膜がそれぞれ
最大のピーク反射率が得られれるような最適のAVdn
比を有していることがあげられる。従って、所定の波長
帯域幅の軟X線に対し最大のピーク反射率を得ることが
できる。本発明の1実施例として提案しt第1図の構造
を有するW/Be多層膜反射iiTfl(M=2)につ
いて反射率スペクトルを計算すると、第4図の実線9で
示されるLうなスペクトルが得られた。比較として、従
来製のW/C多層膜反射鏡の反射率スペクトルを破線1
0で示す(第1表、両多J−膜反射鏡の設計パラメータ
とピーク反射率R1,波長帯域幅Δλ/λ、積分反射率
IR)O本発明で提案しm多層膜反射鏡(M=2)にお
いては従来の周期的構造の多層膜反射m(M=1)と比
べ、約3倍高い積分反射率が得られる。
Furthermore, as a feature of the multilayer film reflecting mirror according to the present invention, the multilayer film reflection #! Optimum AVdn so that the maximum peak reflectance can be obtained for each of the M types of unit multilayer films that make up the entire structure.
One example is that it has a ratio. Therefore, the maximum peak reflectance can be obtained for soft X-rays in a predetermined wavelength bandwidth. When calculating the reflectance spectrum of the W/Be multilayer reflective film Tfl (M=2) proposed as an embodiment of the present invention and having the structure shown in FIG. 1, the L-shaped spectrum shown by the solid line 9 in FIG. Obtained. For comparison, the reflectance spectrum of a conventional W/C multilayer film reflector is shown by broken line 1.
(Table 1, design parameters of both multilayer J-film reflectors and peak reflectance R1, wavelength bandwidth Δλ/λ, integral reflectance IR) In 2), an integrated reflectance that is approximately three times higher than that of the conventional multilayer film reflection m (M=1) with a periodic structure can be obtained.

第1表 N!は基板に対して上層の薄膜の数 取上のような多層膜反射鏡のスペーサ一層材料にBある
いはBeのような、Cと比較して吸収係数の小さい軽元
素を用いた検討は、波長λ=124Aにおいてかってな
され几事があった(文献、ティー、ダブリュー、バービ
ー、ジュニア。
Table 1 N! A study using a light element such as B or Be, which has a smaller absorption coefficient than C in the spacer layer material of a multilayer reflector, takes the number of thin films on the upper layer relative to the substrate, and the wavelength λ = 124A There was an elaborate thing that was once done (Literature, Tee, Double, Barbie, Junior.

エックス、レイ、マイクロ、スコビイ、′ X−Ray
 MicroscoP)’+ editated by
 G、 Schmahl andD、 Rudolph
、  (Springer−Verlag+  198
4)”p144〜162)oシかしながらX線露光を行
う上で特に重要な、ニジ短波長側の軟X領域において。
X, Ray, Micro, Scobee,' X-Ray
MicroscoP)'+ edited by
G, Schmahl and D, Rudolph
, (Springer-Verlag+ 198
4) "p144-162) In the soft X region on the rainbow short wavelength side, which is particularly important when performing X-ray exposure while

多層膜反射鏡の構造やAnZdn比も含めた検討に関し
ては全くなされておらず、また本発明におけるようなピ
ッチの異なる多層膜の積層構造に関する提案は全くなさ
れてぃない。
There has been no study including the structure of the multilayer film reflecting mirror and the AnZdn ratio, and no proposal has been made regarding a laminated structure of multilayer films with different pitches as in the present invention.

なお以上の説明において多層膜反射鏡は平面鏡であると
したが、これを曲面とすることにニジX線を集光するこ
とができ、反射X線の強度全増大することができる。不
発明による積層構造の多層膜反射鏡は広い反射率スペク
トル帯域幅を与えるため、広い範囲のブラッグ角αにゎ
九って高い反射率金与えることを意味する。従って、入
射角及び出射角に一定の広が9のある曲面多層膜反射鏡
の構造に適している。この点については以下に詳細に説
明する。
In the above description, the multilayer mirror is a plane mirror, but by making it a curved surface, rainbow X-rays can be focused, and the total intensity of the reflected X-rays can be increased. The multilayer reflector with the laminated structure according to the invention provides a wide reflectance spectral bandwidth, which means that it provides a very high reflectance over a wide range of Bragg angles α. Therefore, it is suitable for the structure of a curved multilayer film reflecting mirror with a constant spread 9 of the incident angle and the output angle. This point will be explained in detail below.

第5図は本発明による多層膜反射鏡の第2の実施例を示
すもので、曲率半径Rの7リンドリ力ル面基板11上に
多層膜12を形成した曲面多層膜反射鏡のmf面図であ
る。ここにおいて多層膜12の構造は第1図の実施例に
示すような単位多層′#、を複数積層したものとする0
この反射鏡に平行X線13が鏡面上の点14に視射角θ
で入射し。
FIG. 5 shows a second embodiment of the multilayer film reflector according to the present invention, and is a mf plane view of a curved multilayer film reflector in which a multilayer film 12 is formed on a 7-lindrical surface substrate 11 with a radius of curvature R. It is. Here, the structure of the multilayer film 12 is one in which a plurality of unit multilayers are laminated as shown in the embodiment of FIG.
X-rays 13 parallel to this reflecting mirror strike a point 14 on the mirror surface at a glancing angle θ
Incident at .

反射されるとする0このとき反射光は第6図17に示す
工うにビーク波長かす、であり、波長帯域幅がムλ/λ
の反射率スペクトルを有する0ところが反射点の位置が
14からずれると、反射率スペクトルのビーク波長も変
化し、波長λp、における反射率も減少する0さらに反
射点の位置がずれると反射率スペクトル第6図18で示
される工うにλp1の反射率は0となる。この位置の反
射点ヲ15とし、14と15の間の距離’kLとする。
In this case, the reflected light has a peak wavelength as shown in FIG. 6, and the wavelength bandwidth is λ/λ.
However, if the position of the reflection point shifts from 14, the peak wavelength of the reflectance spectrum also changes, and the reflectance at wavelength λp also decreases. 6 In the structure shown in FIG. 18, the reflectance of λp1 is 0. Let the reflection point at this position be 15, and let the distance between 14 and 15 be 'kL.

即ち第5図の視射角がθからθ−△θに変化するに伴な
い、反射光の反射率スペクトルは第6図17から18へ
と変化する。ただし、第5図14からLだけ離れfc1
5と反対側の位置にも波長λp。
That is, as the viewing angle in FIG. 5 changes from θ to θ-Δθ, the reflectance spectrum of the reflected light changes from 17 to 18 in FIG. 6. However, the distance from Fig. 5 14 by L is fc1.
There is also a wavelength λp at the position opposite to 5.

における反射率がOとなる点が存在する。従って、14
を中心とし、2Lの範囲にある反射点からの反射光の総
和が焦点16におけるλp、の反射強度となる。この場
合、反射率スペクトルの△λ/λが広い程りが長くなり
、16における波長λp、の強度が増大する。本発明に
よる多層膜反射鏡はΔλ/λが従来の周期的構造(M=
1)の反射鏡に比べて大きく、反射率も高いので焦点1
6における波長λp、の反射光の強度が大きい。
There is a point where the reflectance at is O. Therefore, 14
The sum of reflected light from reflection points within a range of 2L with λp as the center is the reflection intensity of λp at the focal point 16. In this case, the wider Δλ/λ of the reflectance spectrum, the longer it becomes, and the intensity of wavelength λp at 16 increases. In the multilayer reflector according to the present invention, Δλ/λ is different from that of the conventional periodic structure (M=
It is larger than the reflector in 1) and has a high reflectance, so the focal point 1
The intensity of the reflected light of wavelength λp at 6 is large.

このことは、λp、以外の波長でも言えることなので、
結局強度の大きな反射光が焦点16で得られる。本発明
による多層膜反射鏡の一例である(りW/Be多1m 
ff1反射鏡(M= 2 )と(ll)従来構造のW/
C多層膜反射鏡(M=1)について、Lの長さくλp、
=11^)tJllIIS救する。(*)、(ioそれ
ぞれλp、=11Aにおいて反射率スペクトルが頌チ程
度のピーク反射率?有する場合、Δλ/λは(1)で2
4%、(11)で6%程度である。ただし、(1)はd
、=37^、 dt=43大、(1θはd = 39.
5^である。
This is also true for wavelengths other than λp, so
As a result, reflected light with high intensity is obtained at the focal point 16. This is an example of a multilayer film reflecting mirror according to the present invention (W/Be multi-layered 1 m
ff1 reflector (M = 2) and (ll) conventional structure W/
For C multilayer mirror (M=1), the length of L is λp,
=11^) Save tJllIIS. (*), (io respectively at λp, = 11A, if the reflectance spectrum has a peak reflectance on the order of a chime, Δλ/λ is 2 in (1)
4%, and (11) about 6%. However, (1) is d
, = 37^, dt = 43 large, (1θ is d = 39.
It is 5^.

この場合、点14と15における視射角の差を八〇とす
ると、LはR−ムθ寺π/18oで表され、(I)は(
11)の約4倍のLk有する。従って、焦点16におけ
るλp、=1oAの強度は(1)が(11)の約4倍大
きい。
In this case, if the difference between the glancing angles at points 14 and 15 is 80, then L is expressed as R-muθjiπ/18o, and (I) is (
11). Therefore, the intensity of λp,=1oA at the focal point 16 is about 4 times greater in (1) than in (11).

この傾向は軟X&!領域における他の波長偽についても
言えることである。
This tendency is soft X&! The same is true for other wavelengths in the region.

これまでは、本発明による多層膜反射鏡の実施例につい
て説明してきたが、次に該多層膜反射鏡の製造方法につ
いて実施例を示す。第7図は本発明による多層膜反射鏡
製造方法についての一実施例である。まず原子線発生の
原理を第7図を用いて説明する。原子線源内にガス導入
口19からArガスf 10−” 〜10−’ tor
r程度導入し、アノード電極20に3〜9kv程屁の高
電圧を印加すると、アノード電極加、カソード電極21
.22間でグロー放電が開始される。カソード1[i2
1゜四の表面から放出した電子は中央のアノード電極2
0全中心に高周波振動する。原子線源内では振動してい
る電子とAr原子が衝突することに二って大量のイオン
が生成される。該イオンはカソード21.22に向けて
加速される。カソード付近は衝突断面積の大きな電子が
存在しているので、数kvで加速され友イオンと容易に
結合しイオンと同程度のエネルギーを有する原子#!2
3となりビーム放出口24Lり取りだされる。
Up to now, examples of the multilayer film reflecting mirror according to the present invention have been described, and next, an example of a method for manufacturing the multilayer film reflecting mirror will be described. FIG. 7 shows an embodiment of the method for manufacturing a multilayer mirror according to the present invention. First, the principle of atomic beam generation will be explained using FIG. Ar gas f 10-” to 10-’ tor is introduced into the atomic beam source from the gas inlet 19.
When a high voltage of about 3 to 9 kV is applied to the anode electrode 20, the anode electrode is applied and the cathode electrode 21
.. Glow discharge starts between 22 and 22 seconds. cathode 1 [i2
The electrons emitted from the surface of 1°4 are transferred to the central anode electrode 2.
High frequency vibrations occur at the 0 center. Inside the atomic beam source, a large amount of ions are generated due to collisions between vibrating electrons and Ar atoms. The ions are accelerated towards the cathode 21.22. Since there are electrons with a large collision cross section near the cathode, they are accelerated at several kilovolts and easily combine with friend ions, making them atoms that have the same energy as the ions! 2
3, and the beam emitting port 24L is taken out.

本発明による多層膜反射鏡の製造方法は、該原子線源を
用いて得られたM原子#23をターゲットである多層膜
構成材料25に尚て、飛び出しtスパッタ粒子26ヲ基
板n上に堆積させ、膜形成することによって行なうもの
である。なお、重元素薄膜と軽元素薄膜の形成はターゲ
ットを交互に交換しながら行なう〇 本発明による多層膜反射鏡製造方法の特徴は、界面の凹
凸の少ない平滑な多層膜が形成できることである。本発
明者らのX線回折(Cu−にα線)を用いた多層膜界面
の評価結果では凹凸が1^程度であつ九。従って、極め
て平滑な多層膜が形成されていることが判明し友。さら
にこの方法の特徴として、極薄の連続膜が形成できるこ
とである。透過型電子顕微鏡による多層膜及び単j−膜
の観察結果から、該製造方法にニジW。
The method for manufacturing a multilayer film reflecting mirror according to the present invention includes using the M atom #23 obtained using the atomic beam source as a target multilayer film constituent material 25, and depositing sputtered particles 26 on a substrate n. This is done by forming a film. Note that the formation of the heavy element thin film and the light element thin film is carried out while alternately exchanging targets. The feature of the method for manufacturing a multilayer film reflector according to the present invention is that a smooth multilayer film with few irregularities at the interface can be formed. According to the evaluation results of the multilayer film interface using X-ray diffraction (α rays for Cu-) by the present inventors, the unevenness is about 1^9. Therefore, it was found that an extremely smooth multilayer film was formed. A further feature of this method is that an extremely thin continuous film can be formed. Based on the observation results of the multilayer film and the single J-film using a transmission electron microscope, the manufacturing method is approved.

BeそれぞれIOA程度の薄膜が形成されていることが
判明した。Wを例にとれば従来形成されt連続薄膜の最
小厚さは3o^であるから、この製造方法にエリ極めて
薄い薄膜が形成しうることがわかる。またスパッタ速度
が非常に安定していることから(本発明者らの測定では
変動は毎時l又以下)、膜厚制御性の非常に良い方法と
いえる。さらにBrt多層膜のスペーサ一層構成材料と
して用いた場合、スパッタ速度が大きい(本発明者らの
測定では、Beのスパッタ速度は、1.74^/分であ
り、Cのスパッタ速度: 0.38^/分の約2倍)几
めに、短時間のうちに多層膜反射鏡を作成することがで
きる。以上の実施例から、本発明による多層膜反射鏡製
造方法にエリ、多層膜の界面が極めて平滑な多層膜反射
鏡、即ちX線の多層膜界面での散乱が極めて少なく、理
論値に近い反射率を有する多層膜反射鏡を製造すること
ができる。ま几製作精度の良い微細なピッチを有する多
層膜反射鏡を製造することができる。
It was found that a thin film of about IOA was formed for each Be. Taking W as an example, since the minimum thickness of a conventionally formed t-continuous thin film is 3 degrees, it can be seen that an extremely thin film can be formed using this manufacturing method. Furthermore, since the sputtering rate is very stable (measured by the present inventors, the fluctuation is less than 1 hour per hour), it can be said that this method has very good film thickness controllability. Furthermore, when used as a material constituting a spacer layer of a Brt multilayer film, the sputtering rate is high (according to measurements by the present inventors, the sputtering rate of Be is 1.74^/min, and the sputtering rate of C: 0.38 ^/min), a multilayer film reflecting mirror can be created in a short time. From the above examples, it is clear that the method for manufacturing a multilayer reflector according to the present invention is a multilayer reflector in which the interface of the multilayer film is extremely smooth, that is, the scattering of X-rays at the multilayer film interface is extremely small, and the reflection is close to the theoretical value. It is possible to manufacture a multilayer reflector having a high ratio. It is possible to manufacture a multilayer reflector having a fine pitch with good manufacturing precision.

(発明の効果) 本発明による多層膜反射鏡は反射率が高く、スペクトル
帯域幅の制御が可能であるので各種の分光素子、帯域フ
ィルターとして有用である。
(Effects of the Invention) The multilayer film reflecting mirror according to the present invention has a high reflectance and can control the spectral bandwidth, so it is useful as various spectroscopic elements and bandpass filters.

ま友特にX線リソグラフィーにとって重要な軟X@領域
において本発明によるW/Be多層膜反射鏡は広い視射
角にわたって大きな反射率が得られるので、軟xmを集
光した場合、従来型の多層膜反射鏡に比べ、数倍高い反
射光強度を得ることができる。従って、X線リソグラフ
ィーに適用し几場合大幅に露光時間を短縮できるので、
集光反射鏡として有用である。
The W/Be multilayer reflector according to the present invention has a large reflectance over a wide viewing angle, especially in the soft X@ region that is important for X-ray lithography. It is possible to obtain reflected light intensity several times higher than that of a film reflector. Therefore, when applied to X-ray lithography, the exposure time can be significantly shortened.
Useful as a condensing reflector.

また本発明による多層膜反射鏡製造方法にニジ、多層膜
の界面が極めて平滑な多層膜反射鏡、即ちX線の多層膜
界面での散乱が極めて少なく、理論値に近い反射率含有
する多層膜反射faを製造することができる。ま九製作
精度の良い微細なピッチを有する多層膜反射鏡を製造す
ることができる。
In addition, the method for manufacturing a multilayer film reflecting mirror according to the present invention has a multilayer film reflecting mirror with an extremely smooth multilayer film interface, that is, a multilayer film with very little scattering of X-rays at the multilayer film interface and a reflectance close to the theoretical value. A reflective fa can be manufactured. It is possible to manufacture a multilayer reflector having a fine pitch with high manufacturing accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による多層膜反射鏡の一実施例の構造を
示す立体図、第2図は本発明による多層膜反射鏡の光学
特性の原理を説明する図、第3図は各元素の吸収係数の
波長依存性を示す図、第4図は本発明による多層膜反射
鏡の反射率スペクトルを示す図、第5図は本発明による
多層膜反射鏡の他の実施例な示すもので、シリンドリカ
ル多層膜反射鏡とこれによるX線の集光状態を示す図、
第6図はシリンドリカル多層膜反射鏡の反射率スペクト
ル特性を説明する図、第7図は本発明による多層膜反射
鏡製造方法についての′一実施例、第8図は従来の多層
膜反射鏡の構造を示す。 1・・・・・・基板 2・・・・・・スペーサ一層 3・・・・・・反射層 4・・・・・・反射層 5・・・・・・スペーサ一層 6・・・・・・単位多層膜 7・・・・・・反射率スペクトル 8・・・・・・反射率スペクトル 9・・・・・・W/Be多層換多層鏡反射鏡=2)の反
射率スペクトル 10・・・・・・W/C多層膜反射ti8(M=1)の
反射率スペクトル 11・・・・・・シリンドリカル面基板ν・・・・・・
本発明による多層膜反射鏡13・・・・・・入射X線 14・・・・・・反射点 15・・・・・・反射点 16・・・・・・焦点 17・・・・・・反射率スペクトル 18・・・・・・反射率スペクトル 19・・・・・・ガス導入口 加・・・・・・アノード電極 21・・・・・・カンード電極 22・・・・・・カソード電極 23・・・・・・原子線 24・・・・・・ビーム放出口 25・・・・・・多層膜構成材料 26・・・・・・スパッタ粒子 I・・・・・・基板 特許出願人  日本電信電話株式会社 fa2図 第3図 10’        10        102 
     103シ皮長入(A) 第4図 第5図 第6図 番 第7図 第8図
FIG. 1 is a three-dimensional diagram showing the structure of an embodiment of the multilayer reflector according to the present invention, FIG. 2 is a diagram explaining the principle of the optical characteristics of the multilayer reflector according to the present invention, and FIG. FIG. 4 is a diagram showing the wavelength dependence of the absorption coefficient, FIG. 4 is a diagram showing the reflectance spectrum of the multilayer reflective mirror according to the present invention, and FIG. 5 is a diagram showing another embodiment of the multilayer reflective mirror according to the present invention. Diagram showing a cylindrical multilayer film reflector and the state of condensation of X-rays by it,
FIG. 6 is a diagram explaining the reflectance spectrum characteristics of a cylindrical multilayer reflector, FIG. 7 is an example of a method for manufacturing a multilayer reflector according to the present invention, and FIG. Show the structure. 1...Substrate 2...One layer of spacer 3...Reflection layer 4...Reflection layer 5...One layer of spacer 6...・Unit multilayer film 7...Reflectance spectrum 8...Reflectance spectrum 9...Reflectance spectrum 10 of W/Be multilayer conversion multilayer mirror reflecting mirror = 2)... ...Reflectance spectrum 11 of W/C multilayer film reflection ti8 (M=1)...Cylindrical surface substrate ν...
Multilayer film reflecting mirror 13 according to the present invention...Incoming X-rays 14...Reflection point 15...Reflection point 16...Focus 17... Reflectance spectrum 18... Reflectance spectrum 19... Gas inlet addition... Anode electrode 21... Cando electrode 22... Cathode electrode 23...Atomic beam 24...Beam emission port 25...Multilayer film constituent material 26...Sputtered particle I...Substrate patent applicant Nippon Telegraph and Telephone Corporation FA2 Figure 3 Figure 10' 10 102
103 Shikinagairi (A) Fig. 4 Fig. 5 Fig. 6 Fig. No. 7 Fig. 8

Claims (4)

【特許請求の範囲】[Claims] (1)基板上に重元素薄膜と軽元素薄膜を交互に重ねる
ことによつて得られる多層膜反射鏡において、該軽元素
薄膜の材質としてBわるいはBeを用いた多層膜から形
成されていることを特徴とする多層膜反射鏡。
(1) In a multilayer film reflecting mirror obtained by alternately stacking heavy element thin films and light element thin films on a substrate, the light element thin film is formed from a multilayer film using B or Be as the material. A multilayer reflective mirror characterized by:
(2)多層膜の構造として、所定のピッチと層数からな
る多層膜を単位多層膜として、ピッチと層数の異なる複
数種の該単位多層膜を複数個積層することを特徴とする
特許請求の範囲第1項記載の多層膜反射鏡。
(2) A patent claim characterized in that, as a multilayer film structure, a multilayer film having a predetermined pitch and number of layers is used as a unit multilayer film, and a plurality of unit multilayer films of different types with different pitches and numbers of layers are laminated. The multilayer film reflecting mirror according to item 1.
(3)基板が曲面であることを特徴とする特許請求の範
囲第1項記載の多層膜反射鏡。
(3) The multilayer film reflecting mirror according to claim 1, wherein the substrate has a curved surface.
(4)基板上に所定の厚さの重元素薄膜と所定の厚さの
BあるいはBe薄膜を交互に重ねることによつて得られ
る多層膜反射鏡の製造において、原子線スパッタ法を用
いて基板上に該薄膜を形成することを特徴とする多層膜
反射鏡製造方法。
(4) In the production of a multilayer reflector obtained by alternately stacking a heavy element thin film of a predetermined thickness and a B or Be thin film of a predetermined thickness on a substrate, atomic beam sputtering is used to A method for manufacturing a multilayer reflective mirror, comprising forming the thin film on top.
JP61068470A 1986-03-28 1986-03-28 Multilayer film mirror Expired - Fee Related JPH07113679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61068470A JPH07113679B2 (en) 1986-03-28 1986-03-28 Multilayer film mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61068470A JPH07113679B2 (en) 1986-03-28 1986-03-28 Multilayer film mirror

Publications (2)

Publication Number Publication Date
JPS62226047A true JPS62226047A (en) 1987-10-05
JPH07113679B2 JPH07113679B2 (en) 1995-12-06

Family

ID=13374607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61068470A Expired - Fee Related JPH07113679B2 (en) 1986-03-28 1986-03-28 Multilayer film mirror

Country Status (1)

Country Link
JP (1) JPH07113679B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194300A (en) * 1987-10-06 1989-04-12 Canon Inc Multi-layer reflecting mirror for x ray and vacuum ultraviolet ray
JPH01213599A (en) * 1988-02-23 1989-08-28 Nippon Telegr & Teleph Corp <Ntt> Reflection type diffraction grating
WO1991006021A1 (en) * 1989-10-13 1991-05-02 N.V. Philips' Gloeilampenfabrieken Mirror-typed device for use in the range of uv rays and x-rays
WO2002101368A1 (en) * 2001-06-11 2002-12-19 Rigaku Industrial Corporation Multi-layer film spectroscopic element for boron fluorescence x-ray analysis
JP2008242332A (en) * 2007-03-29 2008-10-09 Canon Inc Reflecting optical element and exposure device
WO2011152437A1 (en) * 2010-06-01 2011-12-08 Canon Kabushiki Kaisha X-ray mirror, method of producing the mirror, and x-ray apparatus
JP2014508317A (en) * 2011-12-22 2014-04-03 アスペルマイアー マルクス Substrate transition single crystal Bragg mirror
JP2016533531A (en) * 2013-09-23 2016-10-27 カール・ツァイス・エスエムティー・ゲーエムベーハー Multilayer mirror
JP2020516921A (en) * 2016-11-29 2020-06-11 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De La Recherche Scientifique Spectral selection element for XUV radiation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607400A (en) * 1983-06-06 1985-01-16 オボニック・シンセティック・マティリアルズ・カンパニ−・インコ−ポレ−テッド X-ray dispersive structure, reflectivity and resolution thereof are improved, and manufacture of said structure
JPS6142815A (en) * 1984-08-06 1986-03-01 住友電気工業株式会社 Method of producing dielectric film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607400A (en) * 1983-06-06 1985-01-16 オボニック・シンセティック・マティリアルズ・カンパニ−・インコ−ポレ−テッド X-ray dispersive structure, reflectivity and resolution thereof are improved, and manufacture of said structure
JPS6142815A (en) * 1984-08-06 1986-03-01 住友電気工業株式会社 Method of producing dielectric film

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194300A (en) * 1987-10-06 1989-04-12 Canon Inc Multi-layer reflecting mirror for x ray and vacuum ultraviolet ray
JPH01213599A (en) * 1988-02-23 1989-08-28 Nippon Telegr & Teleph Corp <Ntt> Reflection type diffraction grating
WO1991006021A1 (en) * 1989-10-13 1991-05-02 N.V. Philips' Gloeilampenfabrieken Mirror-typed device for use in the range of uv rays and x-rays
WO2002101368A1 (en) * 2001-06-11 2002-12-19 Rigaku Industrial Corporation Multi-layer film spectroscopic element for boron fluorescence x-ray analysis
US6836533B2 (en) 2001-06-11 2004-12-28 Rigaku Industrial Corporation Multi-layer film spectroscopic element for boron fluorescene X-ray analysis
JP2008242332A (en) * 2007-03-29 2008-10-09 Canon Inc Reflecting optical element and exposure device
WO2011152437A1 (en) * 2010-06-01 2011-12-08 Canon Kabushiki Kaisha X-ray mirror, method of producing the mirror, and x-ray apparatus
JP2012013685A (en) * 2010-06-01 2012-01-19 Canon Inc X-ray mirror, production method thereof, and x-ray apparatus
JP2014508317A (en) * 2011-12-22 2014-04-03 アスペルマイアー マルクス Substrate transition single crystal Bragg mirror
JP2016533531A (en) * 2013-09-23 2016-10-27 カール・ツァイス・エスエムティー・ゲーエムベーハー Multilayer mirror
US10209411B2 (en) 2013-09-23 2019-02-19 Carl Zeiss Smt Gmbh Multilayer mirror
JP2020516921A (en) * 2016-11-29 2020-06-11 サントル ナシオナル ドゥ ラ ルシェルシェ シアンティフィクCentre National De La Recherche Scientifique Spectral selection element for XUV radiation
US11270808B2 (en) 2016-11-29 2022-03-08 Centre National De La Recherche Scientifique Spectral selection component for XUV radiation

Also Published As

Publication number Publication date
JPH07113679B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
US7319560B2 (en) Partitioned-cavity tunable fabry-perot filter
JP4466566B2 (en) MULTILAYER REFLECTOR, MULTILAYER REFLECTOR MANUFACTURING METHOD, AND EXPOSURE APPARATUS
JP3290629B2 (en) Optical multilayer filter
TWI654450B (en) Multilayer mirror
JP2003506732A (en) Multilayer optical element with tunable working wavelength
US4826267A (en) Spectral filter with integral antireflection coating
US20200116911A1 (en) Method of fabricating anisotropic optical interference filter
JPS62226047A (en) Multi-layered film reflecting mirror and its production
JPWO2004031815A1 (en) Anti-reflection diffraction grating
JP2007515689A (en) Two-dimensional grating network with alternating multi-layer stacks, its production and spectroscope equipped with these networks
JP2001027699A (en) Multi-layer film reflecting mirror and reflecting optical system
JP5669295B2 (en) Multilayer optical element
US11385536B2 (en) EUV mask blanks and methods of manufacture
JPH06265722A (en) Wavelength variable type interference optical filter and its production and wavelength variable type interference optical filter device
JPS58223101A (en) Production of polygonal mirror
JP4139420B2 (en) Wavelength filter
JP2011075850A (en) Multilayer film laminar diffraction grating and spectrometer
JP2006308483A (en) Multilayer film and method for manufacturing multilayer film
JP2005173029A (en) Optical device having antireflection film and method for designing antireflection film
JP2993261B2 (en) X-ray multilayer reflector
JPS63144306A (en) Dielectric multilayered film and its manufacture
JPH05346496A (en) Multilayer film reflecting mirror
JPH0784105A (en) Reflecting film
JP2006029915A (en) Reflecting element, and exposure device
JPH05164899A (en) Multi-layer film reflecting mirror

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees