JPH0627297A - Nonchromatic same phase x-ray condenser - Google Patents

Nonchromatic same phase x-ray condenser

Info

Publication number
JPH0627297A
JPH0627297A JP18248792A JP18248792A JPH0627297A JP H0627297 A JPH0627297 A JP H0627297A JP 18248792 A JP18248792 A JP 18248792A JP 18248792 A JP18248792 A JP 18248792A JP H0627297 A JPH0627297 A JP H0627297A
Authority
JP
Japan
Prior art keywords
rays
ray
angle
incident angle
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18248792A
Other languages
Japanese (ja)
Inventor
Tadao Katsuragawa
忠雄 桂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP18248792A priority Critical patent/JPH0627297A/en
Publication of JPH0627297A publication Critical patent/JPH0627297A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To eliminate influence for scattering X-rays and the like caused by total reflection as much as possible in the case where X-rays are made incident at a low incident angle not much exceeding a critical angle for a crystalline material for the purpose of obtaining good monochromatic same phase X-rays. CONSTITUTION:An angle between a cut face 12 and a diffraction face 12 of a crystalline material 10 is moved and formed in order that the cut face side of an incident angle alpha of X-rays 13 close to a critical angle for a crystalline material 10 may be larger than the diffraction side thereof. Thereby scattering X-rays are lessened, a background at the incident angle alpha a little exceeding the critical angle of the crystalline material 10 is reduced sharply and the X-rays whose monochrome is good and phase is complete can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、物質の臨界角に近い入
射角でX線を入射させることで、反射・干渉させて単色
で同位相のX線を集光させるようにした分光用の単色同
位相X線集光器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectroscopic device for injecting X-rays at an incident angle close to the critical angle of a substance so that the X-rays are reflected and interfered to collect monochromatic X-rays of the same phase. It relates to a monochromatic in-phase X-ray concentrator.

【0002】[0002]

【従来の技術】一般に、X線は波長が短く(数10Å〜
0.1Å位)、物質の屈折率はほぼ1に等しい。このよ
うなX線は固体表面にすれすれの角度で入射するときは
全反射が起る。その臨界角θc は通常10〜30′程度
で、X線の波長が長い程、大きくなる。この全反射を利
用して湾曲面形状の鏡が集光用に用いられる。また、X
線は光と同じように干渉現象を示し、位相が揃うと、波
は強め合う。ところで、図4に示すように、X線1が基
板2上の物質3表面にすれすれの入射角αで入射する
と、この物質3表面で反射された波と基板2表面で反射
された波とは、図5に示すような関係にある、ある角度
α1 で位相が揃い、干渉して強くなる。これは、2つの
X線の光路差が、入射X線波長の整数倍に等しい時に生
ずる。ここに、物質3の膜厚は1000Å以下位でない
とX線1が基板2へ到達せず、この現象は生じない。物
質3としては結晶でもアモルファスでもよく、要は、均
一であればよい。
2. Description of the Related Art Generally, X-rays have a short wavelength (several 10 Å ~
The index of refraction of the material is almost equal to 1. When such X-rays are incident on the solid surface at a grazing angle, total reflection occurs. The critical angle θc is usually about 10 to 30 ′, and the longer the wavelength of X-ray, the larger. A curved mirror is used for light collection by utilizing this total reflection. Also, X
The lines show interference phenomena like light, and when the phases are aligned, the waves strengthen each other. By the way, as shown in FIG. 4, when the X-ray 1 is incident on the surface of the substance 3 on the substrate 2 at a grazing incidence angle α, the wave reflected on the substance 3 surface and the wave reflected on the substrate 2 surface are different from each other. , The phases are aligned at a certain angle α 1 having a relationship as shown in FIG. This occurs when the optical path difference between the two X-rays equals an integer multiple of the incident X-ray wavelength. If the film thickness of the substance 3 is not more than 1000Å, the X-ray 1 does not reach the substrate 2 and this phenomenon does not occur. The substance 3 may be crystalline or amorphous, and the point is that it is uniform.

【0003】ところで、物質3の膜厚を1000Åより
薄くして多重層構造で設ければ、上記の干渉効果が増大
する。ただし、層間は鏡面であることが必要である。も
っとも、現在の製造技術によれば、数Åの薄膜層を何層
も均一に設けることが可能となっている。例えば、LB
膜とかMBE(分子線エピタキシー)で設けるGaAs
等の半導体で可能である。入射角αをα1 とした時、反
射されるX線は上述した原理により単色化されており
(分光されており)、かつ、位相の揃ったものとなる。
By the way, if the film thickness of the substance 3 is less than 1000 Å and it is provided with a multi-layer structure, the above interference effect is increased. However, the layers must be mirror-finished. However, according to the current manufacturing technology, it is possible to provide several thin film layers uniformly. For example, LB
GaAs provided by film or MBE (Molecular Beam Epitaxy)
It is possible with semiconductors such as. When the incident angle α is α 1 , the reflected X-rays are monochromatic (spectralized) according to the above-mentioned principle and have the same phase.

【0004】[0004]

【発明が解決しようとする課題】ところが、実際には図
6に示すように、入射角α1 において、単色・同位相の
X線成分以外に、物質3表面等で散乱されて波長や位相
の異なるX線成分(図中、斜線を施して示す)も同時に
生じており、完全な単色・同位相のX線には分光されて
いない。
However, in reality, as shown in FIG. 6, at the incident angle α 1 , in addition to the monochromatic and in-phase X-ray components, the wavelength and the phase of the substance 3 scattered by the surface of the substance 3 and the like are scattered. Different X-ray components (shown by hatching in the figure) also occur at the same time, and they are not separated into X-rays of perfect monochromatic / in-phase.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明にお
いては、結晶性物質に対する臨界角に近いX線の入射角
を回折面側よりカット面側が大きくなるように、前記結
晶性物質のカット面と回折面との角度をずらして形成し
た。この際、請求項2記載の発明では、湾曲させた結晶
性物質とし、請求項3記載の発明では、結晶性物質の表
面粗さを3〜10Åとし、請求項4記載の発明では、結
晶性物質を、密度差の大きい多層構造とした。
According to a first aspect of the present invention, the crystalline substance is cut so that the incident angle of X-rays close to the critical angle with respect to the crystalline substance is larger on the cut surface side than on the diffraction surface side. It was formed by shifting the angle between the plane and the diffraction plane. In this case, in the invention of claim 2, the curved crystalline material is used, in the invention of claim 3, the surface roughness of the crystalline material is 3 to 10Å, and in the invention of claim 4, the crystalline material is crystalline. The material has a multi-layer structure with a large difference in density.

【0006】[0006]

【作用】結晶性物質の回折面=原子面とカット面=表面
とが僅かにずれており、カット面のほうが回折面よりX
線の入射角が僅かに大きいことにより、散乱X線が少な
いものとなり、結晶性物質の臨界角を少し超えた入射角
でのバックグランドが大幅に減少するものとなり、単色
性が良好となり、位相の揃ったX線が得られるものとな
る。
[Function] The diffractive surface of the crystalline material = atomic surface and the cut surface = surface are slightly deviated from each other, and the cut surface is X
Since the incident angle of the rays is slightly large, the scattered X-rays are small, and the background at the incident angle slightly exceeding the critical angle of the crystalline substance is greatly reduced, resulting in good monochromaticity and phase. X-rays with a uniform distribution can be obtained.

【0007】[0007]

【実施例】本発明の一実施例を図1ないし図3に基づい
て説明する。本実施例は、X線を単色同位相X線として
集光させるための結晶性物質を工夫したもので、図1に
示すように、結晶性物質10に関して、回折面(=原子
面)11とカット面(=入射表面)12とを僅か(3
0′程度)ずらして形成し(非対称カット)、結晶性物
質10の臨界角程度の小さな角度(2°以下)で入射さ
せるX線13の入射角がカット面12側のほうが回折面
11側よりも大きくなるように設定したものである。こ
の際、散乱光を減らすためには、カット面12が多少粗
いほうがよい(3〜10Å程度の凹凸による粗さ)。回
折面11とカット面12とをずらす角度を小さくする
と、入射角αがより全反射するほうへ移動するので、入
射角αを大きくする。入射角αを大きくするため、結晶
性物質10を湾曲させるようにしてもよい。回折させる
ための回折面11は、単結晶の面であっても、LB膜の
ように分子を層状に積層形成した面でもよいため、本発
明では、「結晶性物質」という表現を用いるものであ
る。なお、積層する物質が同一でなく、密度の異なる2
種類以上の物質を積層すると、干渉効果は大きくなり、
強度の大きいX線が得られることになる。なお、結晶性
物質10に対する基板14の材料としては、ガラス、S
i、SiO2 、金属薄板等、特に限定されないものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to FIGS. In this embodiment, a crystalline substance for condensing X-rays as monochromatic in-phase X-rays is devised. As shown in FIG. 1, a crystalline substance 10 has a diffractive surface (= atomic plane) 11 Cut surface (= incident surface) 12 and slightly (3
The angle of incidence of the X-ray 13 which is formed by shifting (asymmetrical cut) about 0 ′) and is incident at a small angle (2 ° or less) that is about the critical angle of the crystalline material 10 is closer to the cut surface 12 side than to the diffraction surface 11 side. Is also set to be large. At this time, in order to reduce scattered light, it is preferable that the cut surface 12 be somewhat rough (roughness due to unevenness of about 3 to 10 Å). If the angle by which the diffractive surface 11 and the cut surface 12 are displaced is made smaller, the incident angle α moves toward the direction of total reflection, so the incident angle α is made larger. The crystalline material 10 may be curved to increase the incident angle α. Since the diffractive surface 11 for diffracting may be a single crystal surface or a surface in which molecules are laminated in layers such as an LB film, the expression "crystalline substance" is used in the present invention. is there. It should be noted that the materials to be laminated are not the same but have different densities.
If more than one type of material is stacked, the interference effect will increase,
X-rays with high intensity can be obtained. The material of the substrate 14 for the crystalline substance 10 is glass, S
It is not particularly limited to i, SiO 2 , metal thin plate and the like.

【0008】作製法としては、図2に例示するように、
基板14上に異種原子又は異種分子による物質層A,B
を、A,B,A,B,〜のように積層すればよい。ここ
に、物質層A,Bは膜厚が同一でも異なっていてもよ
い。膜厚が異なる場合、ピークの周期の異なる2つの振
動が出るので、A=2Bのような膜厚関係としてもよ
い。同様の理由により、3種以上の層を順次積層する構
造、或いは、A層のみとした構造でもよい。また、物質
層A,Bは両者間の密度差が大きいほうが振動(ピー
ク)は大きくなるので、好ましい。結晶性物質10全体
の厚みとしては、用いる原子種にもよるが、透過しない
程度の5000Å以下であればよい。各層自体の膜厚
は、あまり薄くなると振動周期が小さくなるので、10
0〜500Å程度が適当である。カット面12は前述し
たように3〜10Å程度に粗いほうが散乱光が少なくな
るので好ましい。X線13の入射角αはなるべく臨界角
に近く、かつ、ピークの出る角度とするのがよい。この
際、X線13の波長が長いほうが入射角αを大きくし得
るので、その設定が容易となる。
As a manufacturing method, as illustrated in FIG.
Material layers A, B made of different atoms or different molecules on the substrate 14
May be laminated as A, B, A, B ,. Here, the material layers A and B may have the same film thickness or different film thicknesses. When the film thickness is different, two vibrations having different peak periods are generated, so that the film thickness relationship may be A = 2B. For the same reason, a structure in which three or more layers are sequentially stacked or a structure including only the A layer may be used. Further, in the material layers A and B, it is preferable that the difference in density between the two is large because the vibration (peak) increases. The thickness of the crystalline substance 10 as a whole may be 5000 Å or less, which does not permeate, though it depends on the atomic species used. If the thickness of each layer itself becomes too thin, the vibration cycle becomes smaller, so
About 0 to 500Å is suitable. As described above, it is preferable that the cut surface 12 is rough to about 3 to 10 liters because scattered light is reduced. It is preferable that the incident angle α of the X-ray 13 is as close to the critical angle as possible and that the peak appears. At this time, the longer the wavelength of the X-ray 13 is, the larger the incident angle α can be made, which facilitates the setting.

【0009】本実施例方式による結果、図6中に斜線を
施して示したような散乱X線等による影響が緩和され、
図3に示すような特性が得られ、単色同位相性の良好な
X線となる。
As a result of the method of this embodiment, the influence of scattered X-rays and the like as shown by hatching in FIG.
The characteristics as shown in FIG. 3 are obtained, and the X-ray becomes excellent in monochromatic in-phase property.

【0010】いま、具体例を挙げて説明する。まず、S
iウエハ基板上にイオンビームスパッタ装置を用いて、
下記の条件 ターゲット :Si、Fe 基板加熱 :なし イオン化ガス :Ar(99.999%) イオン銃電流×電圧 :3mA×9kV イオン入射角 :30° ベースプレッシャ :3×10~7Torr ターゲット・基板間距離:15mm(ただし、ターゲッ
トと基板とは平行) 基板サイズ :30×30mm2 各層の膜厚 :Si、Feとも200Å(1
0層ずつ) 最表面はSi で、約4000Åの積層膜厚を持つ結晶性物質を2枚作
製した。
Now, a specific example will be described. First, S
Using an ion beam sputtering device on the i-wafer substrate,
The following conditions Target: Si, Fe Substrate heating: None Ionized gas: Ar (99.999%) Ion gun current x voltage: 3 mA x 9 kV Ion incident angle: 30 ° Base pressure: 3 x 10 to 7 Torr Target-substrate Distance: 15 mm (however, target and substrate are parallel) Substrate size: 30 × 30 mm 2 Film thickness of each layer: 200 Å (1 for both Si and Fe)
0 layers each) The outermost surface was made of Si, and two crystalline materials having a laminated film thickness of about 4000 Å were prepared.

【0011】ついで、その内の一枚について、同じイオ
ンビームスパッタ装置で基板の片側を少し斜めに切り取
るために、上記条件でArのイオンビームを表面に斜め
に入射させて最表面のSi層を斜めに削り、その表面粗
さは約4Åとした。
Then, in order to cut one side of the substrate a little diagonally with the same ion beam sputtering device, one of them is made to obliquely enter an Ar ion beam on the surface under the above-mentioned conditions to form the outermost Si layer. It was cut diagonally and its surface roughness was set to about 4Å.

【0012】このような多層膜構造の結晶性物質に対し
て、理学株式会社製のX線装置RU−300を用いて
(ターゲットはCu)、Si(111)で分光したCu
Kα線の入射角と強度との関係を求めたところ、入射角
が約7mradの時に大きなピークが得られたものである。
この場合、バックグランド(図6中に示した斜線部分)
はほぼゼロであった。また、X線13の幅をX線フィル
ムで測定したところ、1mm幅から0.2mm幅に減少して
いたものである。
With respect to the crystalline material having such a multilayer film structure, an X-ray apparatus RU-300 manufactured by Rigaku Co., Ltd. was used (target is Cu), and Cu was dispersed by Si (111).
When the relationship between the incident angle of Kα rays and the intensity was obtained, a large peak was obtained when the incident angle was about 7 mrad.
In this case, the background (the shaded area shown in Fig. 6)
Was almost zero. Also, when the width of the X-ray 13 was measured with an X-ray film, it was found to have decreased from 1 mm width to 0.2 mm width.

【0013】Arイオンビームにより表面を削らなかっ
た他方の一枚についても、同様に入射角と強度との関係
を求めたところ、約7mradのピーク位置は同様であった
が、強度は表面を削った(表面を層面に対して傾けた)
多層膜による一方の結晶性物質の場合より、大きく散乱
X線が重なっていること(図6中の斜線を施した部分の
ような特性を示すこと)が確認されたものである。ま
た、X線の幅は1mm幅から0.6mm幅に減少していたも
のである。なお、ピークの測定は、分解能144eVの
SSD(半導体検出器)を用いて行った。ピーク幅は、
Si層とFe層との界面と表面(カット面)とが異なっ
ている前者の場合のほうが、約半分に小さくなって単色
性が向上していたものである。また、図2に示すような
バックグランドの減少が、同位相X線比率の向上を示す
ものとなる。
The relationship between the incident angle and the intensity was similarly obtained for the other one whose surface was not abraded by the Ar ion beam. The peak position at about 7 mrad was similar, but the intensity was obtained by abrading the surface. (The surface was inclined with respect to the layer surface)
It was confirmed that the scattered X-rays were overlapped to a greater extent than the case of one crystalline substance formed by the multilayer film (showing characteristics like the shaded portion in FIG. 6). The width of the X-ray was reduced from 1 mm width to 0.6 mm width. The peak was measured using an SSD (semiconductor detector) having a resolution of 144 eV. The peak width is
The former case, in which the interface between the Si layer and the Fe layer and the surface (cut surface) are different, was reduced to about half and the monochromaticity was improved. Further, the reduction of the background as shown in FIG. 2 shows the improvement of the in-phase X-ray ratio.

【0014】ちなみに、X線を結晶性物質の臨界角の極
く近傍の入射角で入射させるのでなければ、結晶面(回
折面)と結晶のカット面とをずらして形成することは、
「ブラッグ・ケースの非対称反射」として従来から周知
である。即ち、図7に示すように単結晶構造の結晶性物
質20においてその原子面21とカット面22とをずら
して形成し、同図(a)に示すようにX線23をカット
面22に入射させることにより反射されるX線幅を大き
くし、同図(b)に示すようにX線23をカット面に入
射させることにより反射されるX線幅を小さくするのに
用いられる。つまり、X線23が原子面(回折面)21
で反射され、ブラッグの条件を満たすことにより干渉す
るのは、本発明方式の場合と同様である。しかし、あく
まで、臨界角よりも大きな入射角で用いられるものであ
り、本発明の前提とする全反射は無関係であり、全反射
光を減少させるという課題はないものである。
By the way, unless X-rays are incident at an incident angle very close to the critical angle of the crystalline substance, it is necessary to form the crystal plane (diffraction plane) and the cut surface of the crystal so as to be offset from each other.
This is conventionally known as "Bragg case asymmetric reflection". That is, as shown in FIG. 7, a crystalline substance 20 having a single crystal structure is formed by displacing its atomic plane 21 and cut surface 22, and X-ray 23 is incident on the cut surface 22 as shown in FIG. This is used to increase the width of the reflected X-ray, and to reduce the width of the reflected X-ray by making the X-ray 23 incident on the cut surface as shown in FIG. That is, the X-ray 23 is the atomic plane (diffraction plane) 21.
Similar to the case of the method of the present invention, the light is reflected by and the interference is caused when the Bragg condition is satisfied. However, since it is used at an incident angle larger than the critical angle, the total reflection that is the premise of the present invention is irrelevant, and there is no problem of reducing the total reflected light.

【0015】また、X線分光器として機能する本発明装
置をX線集光器と称するのは、下記の理由による。現
在、X線は発散光でしか得られず、一般のX線管球やロ
ータターゲットを使用するもの、プラズマを使用するも
の、放射光を使用するもの、全て発散している。そし
て、分光する場合、図7(a)のケースではビーム幅が
さらに広くなるのに対して、同図(b)のケースでは回
折条件を満たした光だけが反射することによりビーム幅
が入射ビーム幅よりも細くなるので、分光自体によって
もビーム幅を狭くし得るが、本実施例構成によれば、ビ
ーム幅をより狭い状態に絞った形で反射させるので、特
に集光器と称するようにしたものである。
The device of the present invention which functions as an X-ray spectroscope is called an X-ray concentrator for the following reason. At present, X-rays can be obtained only by divergent light, and those using general X-ray tubes and rotor targets, those using plasma, and those using radiant light are all divergent. In the case of spectral separation, in the case of FIG. 7A, the beam width becomes wider, whereas in the case of FIG. 7B, only the light satisfying the diffraction condition is reflected, so that the beam width of the incident beam is increased. Since the beam width is narrower than the width, the beam width can be narrowed by the spectrum itself. However, according to the configuration of this embodiment, the beam width is narrowed to a narrower state and reflected. It was done.

【0016】また、軟X線(3〜100Åの波長)用の
反射鏡は、密度差の大きい2種類の材料を積層して、よ
り大きな角度(45°程度)での反射鏡として利用され
ているが、本実施例を適用すれば、より大きな角度用に
適用し得るものとなる。
Further, the reflecting mirror for soft X-rays (wavelength of 3 to 100Å) is used as a reflecting mirror at a larger angle (about 45 °) by laminating two kinds of materials having a large difference in density. However, if this embodiment is applied, it can be applied to a larger angle.

【0017】[0017]

【発明の効果】本発明は、上述したように、結晶性物質
に対する臨界角に近いX線の入射角を回折面側よりカッ
ト面側が大きくなるように、前記結晶性物質のカット面
と回折面との角度をずらして形成したので、散乱X線を
少ないものとすることができ、結晶性物質の臨界角を少
し超えた入射角でのバックグランドを大幅に減少させ得
るものとなり、よって、単色性を良好とし、位相の揃っ
たX線を得ることができる。
As described above, according to the present invention, the cut surface and the diffractive surface of the crystalline material are arranged so that the incident angle of the X-ray near the critical angle with respect to the crystalline material is larger on the cut surface side than on the diffractive surface side. Since it is formed by shifting the angle with respect to, the amount of scattered X-rays can be reduced, and the background at an incident angle slightly exceeding the critical angle of the crystalline substance can be significantly reduced. It is possible to obtain X-rays having good properties and uniform phases.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略図である。FIG. 1 is a schematic view showing an embodiment of the present invention.

【図2】積層構造を示す概略図である。FIG. 2 is a schematic view showing a laminated structure.

【図3】入射角‐X線強度特性図である。FIG. 3 is an incident angle-X-ray intensity characteristic diagram.

【図4】低入射角X線強度測定原理を示す概略図であ
る。
FIG. 4 is a schematic diagram showing the principle of low incidence angle X-ray intensity measurement.

【図5】入射角‐X線強度特性図である。FIG. 5 is an incident angle-X-ray intensity characteristic diagram.

【図6】単色同位相部分を抽出して示す入射角‐X線強
度特性図である。
FIG. 6 is an incident angle-X-ray intensity characteristic diagram showing an extracted single-color in-phase portion.

【図7】従来の高入射角方式の場合の非対称反射原理を
示す概略図である。
FIG. 7 is a schematic diagram showing the principle of asymmetric reflection in the case of a conventional high incidence angle method.

【符号の説明】[Explanation of symbols]

10 結晶性物質 11 回折面 12 カット面 13 X線 10 Crystalline substance 11 Diffraction surface 12 Cut surface 13 X-ray

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 結晶性物質に対する臨界角に近いX線の
入射角を回折面側よりカット面側が大きくなるように、
前記結晶性物質のカット面と回折面との角度をずらして
形成したことを特徴とする単色同位相X線集光器。
1. An X-ray incident angle close to a critical angle with respect to a crystalline substance is set so that the cut surface side is larger than the diffraction surface side.
A monochromatic in-phase X-ray concentrator, which is formed by shifting the angle between the cut surface and the diffraction surface of the crystalline material.
【請求項2】 湾曲させた結晶性物質としたことを特徴
とする請求項1記載の単色同位相X線集光器。
2. The monochromatic in-phase X-ray concentrator according to claim 1, which is made of a curved crystalline material.
【請求項3】 結晶性物質の表面粗さを3〜10Åとし
たことを特徴とする請求項1又は2記載の単色同位相X
線集光器。
3. The monochromatic in-phase X according to claim 1 or 2, wherein the surface roughness of the crystalline substance is 3 to 10 liters.
Line concentrator.
【請求項4】 結晶性物質を、密度差の大きい多層構造
としたことを特徴とする請求項1,2又は3記載の単色
同位相X線集光器。
4. The monochromatic in-phase X-ray concentrator according to claim 1, wherein the crystalline substance has a multi-layer structure having a large density difference.
JP18248792A 1992-07-09 1992-07-09 Nonchromatic same phase x-ray condenser Pending JPH0627297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18248792A JPH0627297A (en) 1992-07-09 1992-07-09 Nonchromatic same phase x-ray condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18248792A JPH0627297A (en) 1992-07-09 1992-07-09 Nonchromatic same phase x-ray condenser

Publications (1)

Publication Number Publication Date
JPH0627297A true JPH0627297A (en) 1994-02-04

Family

ID=16119143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18248792A Pending JPH0627297A (en) 1992-07-09 1992-07-09 Nonchromatic same phase x-ray condenser

Country Status (1)

Country Link
JP (1) JPH0627297A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7050237B2 (en) * 2004-06-02 2006-05-23 The Regents Of The University Of California High-efficiency spectral purity filter for EUV lithography
US7686398B2 (en) 2007-10-30 2010-03-30 Aisin Seiki Kabushiki Kaisha Seat apparatus for vehicle
DE102009047180A1 (en) 2009-11-26 2010-12-16 Carl Zeiss Smt Ag Facet mirror for use in extreme ultraviolet lithography, has facet which consists of multilayer structure, where multilayer structure is designed for reflection of electromagnetic radiation in extreme ultraviolet wavelength range

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7050237B2 (en) * 2004-06-02 2006-05-23 The Regents Of The University Of California High-efficiency spectral purity filter for EUV lithography
US7686398B2 (en) 2007-10-30 2010-03-30 Aisin Seiki Kabushiki Kaisha Seat apparatus for vehicle
DE102009047180A1 (en) 2009-11-26 2010-12-16 Carl Zeiss Smt Ag Facet mirror for use in extreme ultraviolet lithography, has facet which consists of multilayer structure, where multilayer structure is designed for reflection of electromagnetic radiation in extreme ultraviolet wavelength range

Similar Documents

Publication Publication Date Title
US5799056A (en) Optical element of multilayered thin film for x-rays and neutrons
JPS6098399A (en) Point source x-ray focusing device
Lee X-ray diffraction in multilayers
JPH1138192A (en) Multiple layer film reflection mirror
US4698833A (en) Subassembly, method and system for monochromatizing X-rays
US5384817A (en) X-ray optical element and method for its manufacture
JPH0627298A (en) Monochromatic same phase x-ray condenser
JPH0627297A (en) Nonchromatic same phase x-ray condenser
Durbin et al. Darwin theory of heterostructure diffraction
Majkrzak et al. Supermirror transmission polarizers for neutrons
JP2566003B2 (en) Method for manufacturing infrared grid polarizer
JP3033323B2 (en) Method for manufacturing X-ray multilayer mirror
Yang et al. Investigation of effects of assisted ion bombardment on mechanical loss of sputtered tantala thin films for gravitational wave interferometers
JPS63106703A (en) Optical element
JPH04169898A (en) Multi-layer mirror structure for x-ray
JPH07113679B2 (en) Multilayer film mirror
Röhlsberger et al. Observation of nuclear diffraction from multilayers with a Fe/57Fe superstructure
JPH06174897A (en) Multilayer x-ray mirror and multilayer x-ray optical system
Sella et al. Structure and properties of W/C and Ni/C multilayer films
Koike et al. Nanofabrication of multilayer zone plates by helicon plasma sputtering
JPH05346496A (en) Multilayer film reflecting mirror
JPH0627300A (en) Multi-wave length x-ray spectroscope
JP2993261B2 (en) X-ray multilayer reflector
Weng et al. A structural study of the A1-Ge (001) interface using total-reflected x-ray diffraction
Gaponov et al. Spherical and plane multilayer normal incidence mirrors for soft x-rays