JP2566003B2 - Method for manufacturing infrared grid polarizer - Google Patents

Method for manufacturing infrared grid polarizer

Info

Publication number
JP2566003B2
JP2566003B2 JP1049162A JP4916289A JP2566003B2 JP 2566003 B2 JP2566003 B2 JP 2566003B2 JP 1049162 A JP1049162 A JP 1049162A JP 4916289 A JP4916289 A JP 4916289A JP 2566003 B2 JP2566003 B2 JP 2566003B2
Authority
JP
Japan
Prior art keywords
substrate
conductor
grid
grid polarizer
photoresist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1049162A
Other languages
Japanese (ja)
Other versions
JPH02228608A (en
Inventor
勝 小枝
清美 阪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1049162A priority Critical patent/JP2566003B2/en
Publication of JPH02228608A publication Critical patent/JPH02228608A/en
Application granted granted Critical
Publication of JP2566003B2 publication Critical patent/JP2566003B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、赤外用グリッド偏光子に関する。グリッド
偏光子は適当な偏光材料がない赤外線波長域等でよく用
いられている。
TECHNICAL FIELD The present invention relates to an infrared grid polarizer. Grid polarizers are often used in the infrared wavelength range where there is no suitable polarizing material.

(従来の技術) グリッド偏光子は、第2図に示すように、導体細線を
対象光の波長以下のピッチでグリッド状に平行に配列さ
せたもので、導体グリッドと平行な方向に振動している
光の電界成分はこのグリッド偏光子で反射され、導体グ
リッドと垂直な方向に振動している光の電界成分は、グ
リッド偏光子を透過する性質を有する。グリッド偏光子
は、導体グリッドのピッチ間隔dと幅aがその偏光特性
に影響する。ピッチ間隔dが小さい程偏光特性が良くな
り、a/dは0.5〜0.7が良いとされている。従って、偏光
波長が短くなればなる程、導体グリッドのピッチを短く
しなければならないが、短くすれば導体グリッド単独
で、導体間の隙間を中空状態にしておくことが難しくな
り、透明基板上に、導体グリッドを形成している。
(Prior Art) As shown in FIG. 2, a grid polarizer is one in which thin conductor wires are arranged in parallel in a grid pattern at a pitch equal to or less than the wavelength of the target light, and vibrates in a direction parallel to the conductor grid. The electric field component of the existing light is reflected by the grid polarizer, and the electric field component of the light vibrating in the direction perpendicular to the conductor grid has a property of transmitting through the grid polarizer. In the grid polarizer, the pitch distance d and the width a of the conductor grid affect the polarization characteristics. It is said that the smaller the pitch interval d is, the better the polarization characteristic is, and a / d is preferably 0.5 to 0.7. Therefore, the shorter the polarization wavelength is, the shorter the pitch of the conductor grid must be made.However, if it is made shorter, it becomes difficult to leave the gap between the conductors hollow by the conductor grid alone. , Forming a conductor grid.

しかし、従来のグリッド偏光子は、第3図に示すよう
に、適当な基板の上にホトレジスト層を積層し、ホログ
ラフィック露光法で表面に正弦波状のレジストパターン
を作成し、その斜面に導体を蒸着させるか(ア)、又
は、ブレーズドグレーティングのレプリカを作成し、斜
方向からその斜面に導体を蒸着させて製作している
(イ)。しかし、斜面に導体を蒸着させた場合、蒸着パ
ターン形状が不均一となり、偏光特性を一定にすること
が難しいと云う問題があった。また、斜面に導体パター
ンを形成した時に、偏光特性が良くない原因として、斜
面の導体で反射された光が、反対側の斜面から基板内に
入射する可能性が考えられる。また、基板にレプリカを
用いる場合、レプリカの材質は通常樹脂が用いられる。
しかし、樹脂は熱に弱くまた赤外域の波長に対する透過
率は低いので、赤外域における偏光子としての性能は良
くないと云う問題がある。
However, in the conventional grid polarizer, as shown in FIG. 3, a photoresist layer is laminated on an appropriate substrate, a sinusoidal resist pattern is formed on the surface by a holographic exposure method, and a conductor is provided on the slope. It is produced by vapor deposition (a) or by making a replica of the blazed grating and vapor-depositing a conductor on the slope from the oblique direction (a). However, when the conductor is vapor-deposited on the slope, the vapor-deposition pattern shape becomes non-uniform and it is difficult to make the polarization characteristic constant. Further, when the conductor pattern is formed on the slope, the reason why the polarization characteristic is not good is that the light reflected by the conductor on the slope may enter the substrate from the slope on the opposite side. When a replica is used for the substrate, resin is usually used as the material of the replica.
However, since the resin is weak against heat and has a low transmittance for wavelengths in the infrared region, there is a problem that the performance as a polarizer in the infrared region is not good.

(発明が解決しようとする課題) 本発明は、赤外域の光に対して透過率及び偏光特性の
良い赤外用グリッド偏光子の製造方法を提供することを
目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to provide a method for manufacturing an infrared grid polarizer having good transmittance and polarization characteristics for light in the infrared region.

(課題を解決するための手段) 本発明は、赤外光に対して吸収の少い耐熱性基板の両
面を光学研磨し、同基板の両面に反射防止膜を積層した
後、入射側の反射防止膜の上面にAu、ホトレジストをコ
ートし、このホトレジストにホログラフィック露光法で
断面正弦半波状のレジストパターンを形成し、このレジ
ストパターンをマスクとしてArイオンビームエッチング
を行い、その後残存レジストを灰化除去することにより
矩形断面の高密度平行線条よりなるAuの格子パターンを
形成させることを特徴とする。
(Means for Solving the Problems) The present invention is to optically polish both surfaces of a heat-resistant substrate that absorbs little infrared light, and laminate an antireflection film on both surfaces of the substrate, and then reflect on the incident side. The upper surface of the prevention film is coated with Au and a photoresist, a resist pattern with a half-sine cross-section is formed on this photoresist by the holographic exposure method, Ar ion beam etching is performed using this resist pattern as a mask, and then the remaining resist is ashed. It is characterized by forming an Au lattice pattern consisting of high-density parallel filaments of rectangular cross section by removing.

(作用) グリッド偏光子は、細い線状の導体を平行に並べたも
のであるが、導体細条は基板上に保持されているので、
強度上全く問題がなく、基板は測定光を透過させるため
に、導体を保持する基板に透過率の高い材質を用いてい
るから、透過率は良好である。
(Operation) The grid polarizer is a thin linear conductor arranged in parallel, but since the conductor strip is held on the substrate,
Since there is no problem in terms of strength and the substrate uses a material having high transmittance for transmitting the measurement light, the substrate holding the conductor has high transmittance.

本発明は、基板上に導体(Au)の高密度の平行線パタ
ーンをArイオンビームエッチングにより形成させたもの
で、このことにより導体パターンが基板上に基板面と平
行に形成され、導体パターンにおける反射光が反対側の
斜面からグリッド偏光子基板に再入射することがなくな
り、偏光特性が向上した。また、基板上に形成される導
体の平行線パターンが鮮明にしかも高密度で形成するこ
とが可能になり、この点からも偏光特性が向上した。
In the present invention, a high-density parallel line pattern of conductors (Au) is formed on a substrate by Ar ion beam etching, whereby a conductor pattern is formed on the substrate in parallel with the substrate surface. The reflected light does not re-enter the grid polarizer substrate from the opposite slope, and the polarization characteristics are improved. Further, the parallel line pattern of the conductor formed on the substrate can be formed clearly and with high density, and the polarization characteristic is improved also from this point.

特に、赤外領域では、Siのように吸収が少ないもので
あっても、表面反射率の大なる材料があり、基板面を反
射防止膜でコートすることで、基板の対象光の透過率が
向上し、狭い波長範囲なら100%の透過率を得ることも
可能となり、更に偏光特性が向上した。
In particular, in the infrared region, there are materials with high surface reflectance even if they have low absorption such as Si. By coating the substrate surface with an antireflection film, the transmittance of the target light of the substrate is It is also possible to obtain 100% transmittance in a narrow wavelength range, further improving the polarization characteristics.

(実施例) 第1図に本発明の一実施例の工程図を示す。第1図に
おいて、A図は導体グリッド5の加工前のグリッド基板
の構成層を示したもので、このグリッド基板は、まず、
両面研磨したSi基板1(厚み260μm,外径50mmφ)の両
面に真空蒸着法により誘電体多層膜ZnS,MgF2を蒸着し、
反射防止膜2,3を形成した。次に入射側の反射防止膜2
の上面に、導体グリッド5との付着力を良くするため
に、導体付着膜4としてNi−Cr膜(厚み20Å)を真空蒸
着させた。付着膜4の上面に導体グリッド5となるAu膜
(700Å)を真空蒸着させた。更に、導体グリッド5の
上面に、フォトレジスト6としてOFPR5000を2500Å厚さ
にスピンコートし、90℃で30分フレッシュエアオーブン
による焼成を行って製作したものである。
(Embodiment) FIG. 1 shows a process drawing of an embodiment of the present invention. In FIG. 1, FIG. A shows the constituent layers of the grid substrate before the conductor grid 5 is processed.
Dielectric multilayer films ZnS, MgF 2 are deposited on both sides of the Si substrate 1 (thickness 260 μm, outer diameter 50 mmφ) polished on both sides by vacuum deposition method,
Antireflection films 2 and 3 were formed. Next, the antireflection film 2 on the incident side
A Ni-Cr film (thickness 20Å) was vacuum-deposited as the conductor adhering film 4 on the upper surface of the in order to improve the adhesion with the conductor grid 5. An Au film (700 Å) to be the conductor grid 5 was vacuum-deposited on the upper surface of the adhesion film 4. Further, OFPR5000 as the photoresist 6 is spin-coated on the upper surface of the conductor grid 5 to a thickness of 2500 Å and baked in a fresh air oven at 90 ° C for 30 minutes to manufacture.

次に、上記によって製作したグリッド基板のフォトレ
ジスト6に、ホログラフィック露光法による2光束干渉
縞を焼き付けた。光源にはHe−Cdレーザー(λ=4416
Å)を用い、スペシャルフィルターと軸外放物面鏡によ
り平行光束を作る。焼き付ける干渉縞は、ピッチ間隔が
使用波長の1/10程度になるように、2000本/mmとした。
次に現像を行い、B図に示すように、レジスト6の断面
形状が正弦半波状即ち、a/dが0.5となるようにした。こ
の断面形状の調整は、露光時間と現像時間の調整によっ
て行うことができる。
Next, two-beam interference fringes were printed on the photoresist 6 of the grid substrate manufactured as described above by the holographic exposure method. He-Cd laser (λ = 4416)
Å) is used to create a parallel light flux with a special filter and an off-axis parabolic mirror. The interference fringes to be printed were 2000 lines / mm so that the pitch interval was about 1/10 of the used wavelength.
Next, development was carried out so that the resist 6 had a sinusoidal half-wave cross section, that is, a / d of 0.5, as shown in FIG. The adjustment of the cross-sectional shape can be performed by adjusting the exposure time and the development time.

次に、上記フォトレジストパターン6をマスクとして
Arイオンビームエッチングを行い、C図に示すように、
導体グリッド5と導体付着膜4にフォトレジストパター
ン6のパターンニングを行い、平行なグリッドパターン
を形成させた。上記エッチングを、加速電圧500eV,ガス
圧1.6×10-4Torrで行った。このときのレジスト6と導
体グリッド5のエッチングレートは約1:4である。
Next, using the photoresist pattern 6 as a mask
Ar ion beam etching is performed, and as shown in FIG.
Photoresist patterns 6 were patterned on the conductor grid 5 and the conductor adhering film 4 to form parallel grid patterns. The above etching was performed at an acceleration voltage of 500 eV and a gas pressure of 1.6 × 10 −4 Torr. At this time, the etching rates of the resist 6 and the conductor grid 5 are about 1: 4.

最後に、上記でエッチングマスクとして用いていたフ
ォトレジスト6を、バレルタイププラズマエッチング装
置により、O2プラズマで灰化除去し、最後に洗浄を行
い、D図に示すような、グリッド偏光子Gを製作した。
Finally, the photoresist 6 used as the etching mask in the above is ashed and removed by O 2 plasma by a barrel type plasma etching device, and finally washed to obtain a grid polarizer G as shown in FIG. I made it.

また、上記実施例ではSi基板2の両面に反射防止膜2,
3をコーティングして、測定波長域での透過率を向上さ
せているが、基板2に透過率の良い材質のものを使用す
れば、上記反射防止膜2,3をコーティングする必要はな
くなる。
Further, in the above-mentioned embodiment, the antireflection film 2,
3 is coated to improve the transmittance in the measurement wavelength range, but if the substrate 2 is made of a material having a high transmittance, it is not necessary to coat the antireflection films 2 and 3.

(発明の効果) 本発明によれば、Arイオンビームエッチングにより基
板上にAuの平行線パターンを製作しているので、従来の
蒸着法などと比し、高密度で鮮明な平行線パターンが製
作でき、偏光特性の一段と向上した赤外用グリッド偏光
子を提供できる。
(Effect of the invention) According to the present invention, since the parallel line pattern of Au is manufactured on the substrate by Ar ion beam etching, a high-density and clear parallel line pattern is manufactured as compared with the conventional vapor deposition method. Thus, an infrared grid polarizer having further improved polarization characteristics can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の工程図、第2図はグリッド
偏光子の作用説明図、第3図は従来例の斜視図である。 1……Si基板、2,3……反射防止膜、4……導体付着
膜、5……導体グリッド、6……フォトレジスト、G…
…グリッド偏光子。
FIG. 1 is a process drawing of an embodiment of the present invention, FIG. 2 is an operation explanatory view of a grid polarizer, and FIG. 3 is a perspective view of a conventional example. 1 ... Si substrate, 2,3 ... antireflection film, 4 ... conductor adhesion film, 5 ... conductor grid, 6 ... photoresist, G ...
… Grid polarizer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】赤外光に対して吸収の少い耐熱性基板の両
面を光学研磨し、同基板の両面に反射防止膜を積層した
後、入射側の反射防止膜の上面にAu、ホトレジストをコ
ートし、このホトレジストにホログラフィック露光法で
断面正弦半波状のレジストパターンを形成し、このレジ
ストパターンをマスクとしてArイオンビームエッチング
を行い、その後残存レジストを灰化除去することにより
矩形断面の高密度平行線条よりなるAuの格子パターンを
形成させることを特徴とする赤外用グリッド偏光子の製
造方法。
1. A heat-resistant substrate that absorbs little infrared light is optically polished on both sides, an antireflection film is laminated on both sides of the substrate, and then Au or a photoresist is formed on the upper surface of the antireflection film on the incident side. Is coated on the photoresist by a holographic exposure method to form a sinusoidal half-wave cross-sectional resist pattern, Ar ion beam etching is performed using this resist pattern as a mask, and then the residual resist is removed by ashing to increase the rectangular cross-section height. A method for manufacturing an infrared grid polarizer, which comprises forming an Au lattice pattern composed of density parallel lines.
JP1049162A 1989-02-28 1989-02-28 Method for manufacturing infrared grid polarizer Expired - Lifetime JP2566003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1049162A JP2566003B2 (en) 1989-02-28 1989-02-28 Method for manufacturing infrared grid polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1049162A JP2566003B2 (en) 1989-02-28 1989-02-28 Method for manufacturing infrared grid polarizer

Publications (2)

Publication Number Publication Date
JPH02228608A JPH02228608A (en) 1990-09-11
JP2566003B2 true JP2566003B2 (en) 1996-12-25

Family

ID=12823393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1049162A Expired - Lifetime JP2566003B2 (en) 1989-02-28 1989-02-28 Method for manufacturing infrared grid polarizer

Country Status (1)

Country Link
JP (1) JP2566003B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2654366B2 (en) * 1994-12-28 1997-09-17 インターナショナル・ビジネス・マシーンズ・コーポレイション Micro polarimeter and micro polarimeter system
JP3492864B2 (en) 1996-09-30 2004-02-03 京セラ株式会社 Manufacturing method of polarizing element
JP4527986B2 (en) * 2004-01-07 2010-08-18 旭化成イーマテリアルズ株式会社 Wire grid polarizer
JP4392270B2 (en) * 2004-03-05 2009-12-24 日本分光株式会社 High sensitivity reflection measuring device
WO2006004010A1 (en) * 2004-06-30 2006-01-12 Zeon Corporation Electromagnetic wave shielding grid polarizer and its manufacturing method and grid polarizer manufacturing method
KR20060042481A (en) * 2004-11-09 2006-05-15 엘지전자 주식회사 Liquid crystal display with reflective polarizer
JP5359128B2 (en) * 2008-09-01 2013-12-04 ソニー株式会社 Polarizing element and manufacturing method thereof
JP5235208B2 (en) * 2010-07-29 2013-07-10 旭化成イーマテリアルズ株式会社 Wire grid polarizer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066203A (en) * 1983-09-22 1985-04-16 Matsushita Electric Ind Co Ltd Polarizing element
JP2537595B2 (en) * 1985-05-17 1996-09-25 富士通株式会社 Polarizer
JPS6215518A (en) * 1985-07-15 1987-01-23 Mitsubishi Electric Corp Polarizing converter

Also Published As

Publication number Publication date
JPH02228608A (en) 1990-09-11

Similar Documents

Publication Publication Date Title
US4514479A (en) Method of making near infrared polarizers
Priambodo et al. Fabrication and characterization of high-quality waveguide-mode resonant optical filters
US4009933A (en) Polarization-selective laser mirror
US6665119B1 (en) Wire grid polarizer
US5748368A (en) Polarization optical element
US5907436A (en) Multilayer dielectric diffraction gratings
Kanamori et al. Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching
KR100623026B1 (en) Wire-grid Polarizer and Fabrication Method thereof
JP2004280050A5 (en)
JP2566003B2 (en) Method for manufacturing infrared grid polarizer
US4241109A (en) Technique for altering the profile of grating relief patterns
JP2659024B2 (en) Grid polarizer
JPH0720303A (en) Reflection-preventing structure
JPS5842003A (en) Polarizing plate
JPH0815510A (en) Binary optics and their production
EP1635199A1 (en) Wire grid polarizer and manufacturing method thereof
JPH04263140A (en) Glass substrate having non-reflective coating
JPH07294730A (en) Production of polarizing element
US20080124942A1 (en) Method for forming thin film heads using a bi-layer anti-reflection coating for photolithographic applications and a device thereof
US4359373A (en) Method of formation of a blazed grating
JPS58223101A (en) Production of polygonal mirror
JPH0225803A (en) Polarized beam splitter
Yu et al. Synthesis of wave plates using multilayered subwavelength structure
EP0490320B1 (en) A method for producing a diffraction grating
CA1298724C (en) Reflectivity mirrors and transversely variable transmission apertures with an azimuthal symmetry

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 13