JPH06271989A - Ferritic heat resistant steel for nuclear fusion furnace and its production - Google Patents

Ferritic heat resistant steel for nuclear fusion furnace and its production

Info

Publication number
JPH06271989A
JPH06271989A JP5298527A JP29852793A JPH06271989A JP H06271989 A JPH06271989 A JP H06271989A JP 5298527 A JP5298527 A JP 5298527A JP 29852793 A JP29852793 A JP 29852793A JP H06271989 A JPH06271989 A JP H06271989A
Authority
JP
Japan
Prior art keywords
steel
tantalum oxide
resistant steel
less
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5298527A
Other languages
Japanese (ja)
Inventor
Kazushi Hamada
一志 浜田
Kazunari Tokuno
一成 徳納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5298527A priority Critical patent/JPH06271989A/en
Publication of JPH06271989A publication Critical patent/JPH06271989A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PURPOSE:To produce a heat resistant steel for nuclear fusion reactor structure, excellent in high temp. creep strength. CONSTITUTION:This steel is a heat resistant steel for nuclear fusion reactor which has a composition consisting of, by weight, 0.05-0.15% C, 0.02-0.25% Si, 0.01-0.50% Mn, <=0.01% P, <=0.01% S, 5.0-13.0% Cr, 0.3-3.0% W, 0.05-0.40% V, 0.002-0.08% N, 0.3-2.5% tantalum oxide of <=1mum grain size, 0.25-3.0% total Ta, and the balance iron with inevitable impurities and containing, if necessary, one or <=2 elements among Ti, B, Mg, Y, Zr, La, Ce, and Ca. After the addition of Ta of 0.007/O to 0.0013/O Ta to a molten steel containing 0.002-0.08% dissolved oxygen, tantalum oxide is added.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低誘導放射化、高温ク
リープ強度及び靭性に優れ、核融合炉第一壁等に用いる
耐熱鋼板及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant steel sheet which is excellent in low induction activation, high-temperature creep strength and toughness and is used for the first wall of a fusion reactor, etc.

【0002】[0002]

【従来の技術】核融合炉は、実験炉において既に臨界プ
ラズマ条件を達成している。現在、その第一壁用構造材
料としてSUS316が用いられている。しかし、商用
炉で想定される中性子照射量ではボイドスエリングの問
題からSUS316は使用できない。代わってSUS3
16にTiを添加したJPCA鋼や、フェライト系であ
るHT−9鋼(12Cr−1Mo−W−V)が開発され
た。さらに、Journal of Nuclear
Materials 133&134(1985)14
9−155に記載されているように、使用中の補修やシ
ャットダウン後廃棄処分時の放射能汚染の低減が経済的
に著しく有利であることから、第一壁材料として誘導放
射化の少ない低放射化材料が要求されるようになり、ボ
イドスエリングの少ないフェライト鋼で且つ有害元素で
あるNi,Cu,Mo,Nb,Hf,Al,Co,Ag
などを極力低減した鋼が要求されるようになった。
2. Description of the Related Art A nuclear fusion reactor has already achieved critical plasma conditions in an experimental reactor. Currently, SUS316 is used as the structural material for the first wall. However, SUS316 cannot be used at the neutron irradiation dose expected in a commercial reactor due to the problem of void swelling. SUS3 instead
JPCA steel in which Ti is added to 16 and HT-9 steel (12Cr-1Mo-W-V) which is a ferrite system have been developed. In addition, Journal of Nuclear
Materials 133 & 134 (1985) 14
As described in 9-155, it is economically remarkably advantageous to reduce radioactive contamination at the time of repair during use and at the time of disposal after shutdown. Therefore, low radiation with little induced activation is used as the first wall material. Material is required, and it is a ferritic steel with less void swelling and harmful elements such as Ni, Cu, Mo, Nb, Hf, Al, Co and Ag.
Nowadays, steels that have reduced the above are required.

【0003】低放射化鋼としてはCr−W系鋼(「Al
loy DevelopmentFor Irradi
ation Performance/Semiann
ual Progress Report For P
eriod EndingSeptember 30,
1985;U.S.Department ofEne
rgy,p117−123」、及び「耐熱材料第123
委員会研究報告Vol.27, No.1,pp105−1
17」に記載)や特公平3−61749号公報に記載さ
れているような8Cr−2W−Ta−V鋼等が開発され
ている。これらの鋼はW,V,Ta等の添加によって、
高温クリープ強度をHT−9鋼並みにしようとするもの
である。
As a low activation steel, a Cr-W type steel ("Al
loy Development For Irradi
ation Performance / Semiann
ual Progress Report For P
eriod Ending September 30,
1985; U. S. Department of Ene
rgy, p117-123 ", and" heat resistant material No. 123 "
Committee Research Report Vol. 27, No.1, pp105-1
17 ") and Japanese Patent Publication No. 3-61749, 8Cr-2W-Ta-V steel and the like have been developed. By adding W, V, Ta, etc. to these steels,
It is intended to make the high temperature creep strength equal to that of HT-9 steel.

【0004】また高温クリープ強度に優れた材料とし
て、酸化物を分散させた鋼が開発されている。特開平1
−272746号公報に記載されているようにメカニカ
ルアロイング法にてY2 3 及びTiO2 を分散させた
鋼、もしくは特願平4−45820号に記載されている
ように2〜12Cr−W鋼にTa2 5 を分散させた鋼
が第一壁用構造材料として研究されている。
As a material excellent in high temperature creep strength, steel in which oxide is dispersed has been developed. JP-A-1
Steel obtained by dispersing Y 2 O 3 and TiO 2 at a mechanical alloying method, as described in -272746 discloses or 2~12Cr-W, as described in Japanese Patent Application No. Hei 4-45820 A steel in which Ta 2 O 5 is dispersed has been studied as a structural material for the first wall.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、Cr−
W系鋼では高温保持中にWが粗大なFe2 Wとして析出
し固溶強化に寄与するW量が減少すること、及びV炭窒
化物、Ta炭窒化物が粗大化し分散強化効果が減少する
ため、高温クリープ破断強度が十分ではない。また特公
平3−61749号公報記載の8Cr−2W−Ta,V
鋼は靭性確保の点からNiを添加しているため十分な低
放射化材料とは言えず、またCr−W系鋼と同じ理由で
高温クリープ破断強度も十分ではない。そこで高温でも
粗大化しない粒子を鋼中に分散させて高温クリープ破断
強度を高める必要がある。
However, Cr-
In W-based steels, W precipitates as coarse Fe 2 W during high temperature holding and the amount of W contributing to solid solution strengthening decreases, and V carbonitrides and Ta carbonitrides become coarser and the dispersion strengthening effect decreases. Therefore, the high temperature creep rupture strength is not sufficient. Also, 8Cr-2W-Ta, V described in Japanese Patent Publication No. 3-61749 is disclosed.
Since steel has Ni added thereto from the viewpoint of ensuring toughness, it cannot be said to be a sufficiently low activation material, and the high temperature creep rupture strength is not sufficient for the same reason as Cr-W steel. Therefore, it is necessary to increase the high temperature creep rupture strength by dispersing in the steel particles that do not coarsen even at high temperatures.

【0006】一方、特開平1−272746号公報記載
のY2 3 及びTiO2 を分散させた鋼は、高温クリー
プ強度は十分であるが、粉末冶金的製造方法によるため
コストが高く商業炉用の構造材料にはなじまない。特願
平4−45820号記載の鋼は従来の溶製法にて酸化物
を分散させているため比較的低コストであるが、Ta2
5 が製鋼中に凝集することがありクリープ強度が低下
する場合がある。
On the other hand, the steel described in JP-A-1-272746 in which Y 2 O 3 and TiO 2 are dispersed has sufficient high temperature creep strength, but it is expensive due to the powder metallurgical manufacturing method and is used for commercial furnaces. Does not fit into the structural materials of. The steel described in Japanese Patent Application No. 4-45820 has a relatively low cost because the oxide is dispersed by the conventional melting method, but Ta 2
O 5 may agglomerate during steel making and the creep strength may decrease.

【0007】本発明は高温クリープ破断強度を向上さ
せ、同時に低放射化も実現し、しかも低コスト量産型の
フェライト系耐熱鋼を提供することを目的とする。
An object of the present invention is to provide a ferritic heat-resistant steel which has improved high-temperature creep rupture strength and at the same time has low emission, and which is of low cost and mass-produced.

【0008】[0008]

【課題を解決するための手段】本発明は、鋼中で高温長
時間で安定である酸化物であって且つ低放射化元素であ
るTaの酸化物を分散させ、分散強化によって高温クリ
ープ破断強度を向上させると同時に低放射化も実現し、
さらに溶解法によって酸化タンタルを分散させることを
特徴とするもので、その発明の要旨とするところは下記
のとおりである。
DISCLOSURE OF THE INVENTION The present invention is to disperse an oxide of Ta, which is an oxide which is stable at high temperature and long time in steel and which is a low activation element, and by dispersion strengthening, high temperature creep rupture strength. It also realizes low emission at the same time,
Further, it is characterized in that tantalum oxide is dispersed by a dissolution method, and the gist of the invention is as follows.

【0009】(1)C:0.05〜0.15%、Si:
0.02〜0.25%、Mn:0.01〜0.50%、
P:0.01%以下、S:0.01%以下、Cr:5.
0〜13.0%、W:0.3〜3.0%、V:0.05
〜0.40%、N:0.002〜0.08%、酸化タン
タル:0.3〜2.5%、酸化タンタルとして存在する
Taも含めた全Ta量:0.25〜3.0%を含み、残
部Fe及び不可避的不純物からなり、且つ酸化タンタル
の平均粒径が1μm以下であることを特徴とする核融合
炉用フェライト系耐熱鋼。
(1) C: 0.05 to 0.15%, Si:
0.02-0.25%, Mn: 0.01-0.50%,
P: 0.01% or less, S: 0.01% or less, Cr: 5.
0 to 13.0%, W: 0.3 to 3.0%, V: 0.05
-0.40%, N: 0.002-0.08%, tantalum oxide: 0.3-2.5%, total Ta amount including Ta existing as tantalum oxide: 0.25-3.0% And a balance of Fe and unavoidable impurities, and an average particle diameter of tantalum oxide is 1 μm or less.

【0010】(2)重量基準で、さらにTi:0.00
2〜0.05%、B:0.0001〜0.01%、M
g:0.001〜0.05%、Y:0.001〜0.0
5%、Zr:0.001〜0.05%、La:0.00
1〜0.05%、Ce:0.001〜0.05%、C
a:0.001〜0.05%の1種もしくは2種以上を
含有することを特徴とする前項1記載の核融合炉用フェ
ライト系耐熱鋼。
(2) Ti: 0.00 by weight
2 to 0.05%, B: 0.0001 to 0.01%, M
g: 0.001 to 0.05%, Y: 0.001 to 0.0
5%, Zr: 0.001 to 0.05%, La: 0.00
1 to 0.05%, Ce: 0.001 to 0.05%, C
a: 0.001 to 0.05% of 1 type or 2 types or more, The ferritic heat resistant steel for fusion reactors of the preceding clause 1 characterized by the above-mentioned.

【0011】(3)重量基準でC:0.05〜0.15
%、Si:0.02〜0.25%、Mn:0.01〜
0.50%、P:0.01%以下、S:0.01%以
下、Cr:5.0〜13.0%、W:0.3〜3.0
%、V:0.05〜0.40%、N:0.002〜0.
08%、溶存酸素():0.002〜0.08%を含
み、残部Fe及び不可避的不純物からなる溶鋼に、T
a:0.0007/〜0.0013/ %を添加し
た後、酸化タンタル:0.3〜2.7%を添加すること
を特徴とする核融合炉用フェライト系耐熱鋼の製造方
法。
(3) C: 0.05 to 0.15 by weight
%, Si: 0.02 to 0.25%, Mn: 0.01 to
0.50%, P: 0.01% or less, S: 0.01% or less, Cr: 5.0-13.0%, W: 0.3-3.0
%, V: 0.05 to 0.40%, N: 0.002 to 0.
08%, dissolved oxygen ( O 2 ): 0.002 to 0.08%, the balance of molten steel consisting of Fe and unavoidable impurities, T
a: 0.0007 / O to 0.0013 / O % is added, and then tantalum oxide: 0.3 to 2.7% is added, the method for producing a ferritic heat-resistant steel for a fusion reactor.

【0012】(4)溶鋼が重量基準で、さらにTi:
0.002〜0.05%、B:0.0001〜0.01
%、Mg:0.001〜0.05%、Y:0.001〜
0.05%、Zr:0.001〜0.05%、La:
0.001〜0.05%、Ce:0.001〜0.05
%、Ca:0.001〜0.05%の1種もしくは2種
以上を含有することを特徴とする前項3記載の核融合炉
用フェライト系耐熱鋼の製造方法。
(4) Molten steel is on a weight basis and Ti:
0.002-0.05%, B: 0.0001-0.01
%, Mg: 0.001-0.05%, Y: 0.001-
0.05%, Zr: 0.001 to 0.05%, La:
0.001-0.05%, Ce: 0.001-0.05
%, Ca: 0.001-0.05% of 1 type or 2 types or more, The manufacturing method of the ferritic heat resistant steel for fusion reactors of the preceding clause 3 characterized by the above-mentioned.

【0013】[0013]

【作用】以下本発明について詳細に説明する。本発明の
特徴は低放射化に有害な元素であるNi,Cu,Mo,
Nb,Hf,Al,Co,Agなどを極力低減させ、分
散強化機構により強度を向上させる分散粒子として酸化
タンタルを含有させたことにある。酸化タンタルは比重
が8程度と鉄より若干重く溶鋼中に添加してもスラグと
して浮上しないこと、低放射化であること、鋼中で高温
長時間安定であることから選定した。実際にはタンディ
ッシュもしくはレードル中に酸化タンタル含芯ワイヤー
によって添加する方法、もしくは鋳型に酸化タンタル含
芯ワイヤーを設置し溶鋼を注入する方法で酸化タンタル
を溶鋼中に分散させることができる。
The present invention will be described in detail below. The feature of the present invention is that Ni, Cu, Mo, which are elements harmful to low emission,
This is because tantalum oxide was contained as dispersed particles for reducing Nb, Hf, Al, Co, Ag, etc. as much as possible and improving the strength by the dispersion strengthening mechanism. Tantalum oxide, which has a specific gravity of about 8 and is slightly heavier than iron, does not float as slag even when added to molten steel, has low radiation, and is stable in steel at high temperature for a long time. Actually, the tantalum oxide can be dispersed in the molten steel by a method of adding the tantalum oxide-containing core wire to the tundish or the ladle, or a method of placing the tantalum oxide-containing core wire in the mold and injecting the molten steel.

【0014】次に、本発明の目的とする特性を達成する
ためには各々の構成元素について以下に述べるように適
正範囲に限定する必要がある。Cは固溶強化元素として
また炭化物を生成しクリープ破断強度を向上させる働き
があり、その効果は0.05%以上で顕著である。一方
0.15%を超えると溶接性が低下するため0.05〜
0.15%に限定した。
Next, in order to achieve the desired characteristics of the present invention, it is necessary to limit each constituent element to an appropriate range as described below. C functions as a solid solution strengthening element and also forms carbides to improve creep rupture strength, and the effect is remarkable at 0.05% or more. On the other hand, if it exceeds 0.15%, the weldability decreases, so
It was limited to 0.15%.

【0015】Siは酸化タンタルを還元するため0.2
5%以下にする必要がある。一方0.02%未満である
と溶鋼の粘性が増し鋳造が困難になると共に、溶接欠陥
が増加するため、0.02〜0.25%に限定した。M
nはわずかではあるが固溶強化によりクリープ破断強度
を向上させる働きがある。しかし、0.50%を超える
と靭性が低下するため、0.01〜0.5%に限定し
た。
Si is 0.2 because it reduces tantalum oxide.
It should be 5% or less. On the other hand, if it is less than 0.02%, the viscosity of the molten steel increases, casting becomes difficult, and welding defects increase, so it was limited to 0.02 to 0.25%. M
Although n is small, it has a function of improving creep rupture strength by solid solution strengthening. However, if it exceeds 0.50%, the toughness decreases, so the content is limited to 0.01 to 0.5%.

【0016】Pは粒界脆化を招くため0.01%以下に
限定した。Pできる限り低いほうが望ましい。Sは靭性
の低下を招くため0.01%以下に限定した。Sはでき
る限り低いほうが望ましい。Crは高温での耐食性、耐
酸化性を向上させる耐熱鋼には不可欠の元素である。そ
の効果は5.0%以上で顕著である。一方13.0%を
超えると、δフェライトを生成し靭性を低下させるた
め、5.0〜13.0%に限定した。
Since P causes grain boundary embrittlement, it is limited to 0.01% or less. P It is desirable that it is as low as possible. Since S causes a decrease in toughness, it is limited to 0.01% or less. It is desirable that S be as low as possible. Cr is an essential element for heat resistant steels that improve corrosion resistance and oxidation resistance at high temperatures. The effect is remarkable at 5.0% or more. On the other hand, if it exceeds 13.0%, δ ferrite is formed and the toughness is lowered, so the content was limited to 5.0 to 13.0%.

【0017】Wは固溶強化により高温クリープ破断強度
を著しく向上させる。その効果は0.3%以上で顕著に
現れる。一方3.0%を超えると粗大な金属間化合物を
つくり靭性を著しく低下させるため0.3〜3.0%に
限定した。Vは固溶強化及び析出強化によって高温クリ
ープ強度を高める。その効果は0.05%以上で顕著と
なるが、0.40%を超える添加はδフェライトの生成
による靭性低下を招くため、0.05〜0.40%に限
定した。
W remarkably improves the high temperature creep rupture strength by solid solution strengthening. The effect becomes remarkable at 0.3% or more. On the other hand, if it exceeds 3.0%, a coarse intermetallic compound is formed and the toughness is remarkably reduced, so the content is limited to 0.3 to 3.0%. V enhances high temperature creep strength by solid solution strengthening and precipitation strengthening. Although the effect becomes remarkable at 0.05% or more, addition of more than 0.40% causes a decrease in toughness due to the formation of δ ferrite, so the content was limited to 0.05 to 0.40%.

【0018】Nは固溶強化及び炭窒化物の析出強化によ
って高温クリープ強度を高める。その効果は0.002
%以上で顕著となるが、0.08%を超える添加は靭性
低下を招くため、0.002〜0.08%に限定した。
Taは酸化タンタルとして存在するものが大部分である
が、固溶TaもしくはTaCとしても存在する。これら
のTa源は、溶鋼中に酸化タンタルを添加する前に添加
するTaによるもの、もしくは酸化タンタルの一部が分
解したものである。酸化タンタルが0.3%の場合の全
Ta量は0.25%以上となる。さらに全Ta量として
3.0%を超えると靭性の低下を招くため、0.25〜
3.0%に限定した。
N increases the high temperature creep strength by solid solution strengthening and carbonitride precipitation strengthening. The effect is 0.002
%, The content becomes remarkable, but addition of more than 0.08% causes a decrease in toughness, so the content was limited to 0.002 to 0.08%.
Most of Ta exists as tantalum oxide, but it also exists as solid solution Ta or TaC. These Ta sources are due to Ta added before the addition of tantalum oxide in molten steel, or a part of tantalum oxide decomposed. When tantalum oxide is 0.3%, the total Ta amount is 0.25% or more. Further, if the total Ta amount exceeds 3.0%, the toughness is deteriorated, so 0.25 to
It was limited to 3.0%.

【0019】酸化タンタル(化学型は主にTa2 5
は分散強化源として働き高温クリープ破断強度を著しく
向上させる。その効果は0.3%以上で著しいが、2.
5%を超える添加はクリープ延性の低下に起因するクリ
ープ破断強度の低下を招き、また靭性も低下する。さら
に酸化タンタルは比較的高価であり大量の添加は好まし
くない。そのため0.3〜2.5%に限定した。酸化タ
ンタルはTa2 5 の他、Ta6 O,TaO,Ta
2 O,TaO2 ,Ta0.832 ,Ta0.972 ,Ta
0.8 2 ,Fe4 Ta2 9 ,FeTaO4 ,FeTa
6 ,Ta2 CrO6,CrTaO4 等の形で存在す
る。Ta中には不可避的不純物としてNb,Si,A
l,Ca,Mn,Ti等が含まれている。
Tantalum oxide (chemical type is mainly Ta 2 O 5 )
Acts as a dispersion strengthening source and significantly improves the high temperature creep rupture strength. The effect is remarkable at 0.3% or more, but 2.
Addition of more than 5% causes a decrease in creep rupture strength due to a decrease in creep ductility and also a decrease in toughness. Further, tantalum oxide is relatively expensive and it is not preferable to add it in a large amount. Therefore, it is limited to 0.3 to 2.5%. Tantalum oxide is Ta 2 O 5 , Ta 6 O, TaO, Ta
2 O, TaO 2 , Ta 0.83 O 2 , Ta 0.97 O 2 , Ta
0.8 O 2 , Fe 4 Ta 2 O 9 , FeTaO 4 , FeTa
It exists in the form of O 6 , Ta 2 CrO 6 , CrTaO 4, and the like. Nb, Si, and A are inevitable impurities in Ta.
1, Ca, Mn, Ti, etc. are included.

【0020】酸化タンタルの平均粒径を1μm以下とし
たのは、平均粒径が1μmを超えると添加量が適正範囲
内であっても酸化タンタルの単位面積あたりの数が少な
くなり高温クリープ破断強度の向上につながらないばか
りか、酸化タンタルが脆性破壊の起点になりやすく靭性
が著しく低下するためである。1μm以下であれば小さ
い程、高温クリープ破断強度が向上する。
The average particle size of tantalum oxide is set to 1 μm or less, because when the average particle size exceeds 1 μm, the number of tantalum oxide per unit area is small and the high temperature creep rupture strength This is because tantalum oxide is apt to be the starting point of brittle fracture and the toughness is significantly reduced. The smaller the thickness is 1 μm or less, the higher the high temperature creep rupture strength is.

【0021】なお、酸化タンタルの平均粒径は以下のよ
うに測定する。任意の3断面で酸化タンタルを合計30
0個以上計測する。円形に見える場合はその直径を粒径
とする。楕円、多角形もしくは不定形の場合はその粒子
を平行線で挟んだ最短距離と最長距離の幾何平均を粒径
とする。これら粒径の算術平均を平均粒径と定義する。
The average particle size of tantalum oxide is measured as follows. Total 30 tantalum oxide on any 3 cross sections
Measure 0 or more. When it looks like a circle, its diameter is taken as the particle size. In the case of an ellipse, a polygon or an irregular shape, the particle size is the geometric average of the shortest distance and the longest distance between the particles. The arithmetic average of these particle sizes is defined as the average particle size.

【0022】次に、製造条件の限定理由について述べ
る。は酸化タンタルの分散を制御する上で重要であ
る。が0.002%未満であると、後に添加する酸化
タンタルの歩留まりが著しく低下する。また0.08%
を超えると酸化タンタルが粗大化するため、0.002
〜0.08%に限定した。
Next, the reasons for limiting the manufacturing conditions will be described. O is important in controlling the dispersion of tantalum oxide. If O is less than 0.002%, the yield of tantalum oxide to be added later is significantly reduced. 0.08% again
Exceeds 0.002, tantalum oxide becomes coarse, so 0.002
Limited to ~ 0.08%.

【0023】Taは、(単位はwt%)を測定後、
0.0007/〜0.0013/%の範囲で添加す
ると酸化タンタルの歩留りが高く且つ酸化タンタルも微
細に分散する。0.0007/%未満であると後に添
加する酸化タンタルが分解してしまう。また0.001
3/%を超えると酸化タンタルの粗大化または過剰の
固溶Taによって靭性が低下する。
Ta is measured by measuring O (unit: wt%),
When added in the range of 0.0007 / O 2 to 0.0013 / O %, the yield of tantalum oxide is high and tantalum oxide is finely dispersed. If it is less than 0.0007 / O 2, tantalum oxide to be added later is decomposed. Also 0.001
If it exceeds 3 / O 2 %, the toughness decreases due to the coarsening of tantalum oxide or the excessive solid solution Ta.

【0024】 溶鋼に添加する酸化タンタル:0.3〜2.7% 、Taのバランスを本発明範囲のようにとれば、酸化
タンタル(化学型は主にTa2 5 )の歩留りは約90
%程度になるため酸化タンタルを0.3〜2.5%分散
させるためには溶鋼中に酸化タンタルを0.3〜2.7
%の範囲で添加する必要がある。
If the balance of tantalum oxide added to molten steel: 0.3 to 2.7% O 2 and Ta is within the range of the present invention, the yield of tantalum oxide (chemical type is mainly Ta 2 O 5 ) is about. 90
%, About 0.3% to about 2.5%, and in order to disperse 0.3 to 2.5% of tantalum oxide, 0.3 to 2.7 of tantalum oxide is contained in molten steel.
It is necessary to add in the range of%.

【0025】なお、添加するときの溶鋼温度は1570
〜1680℃が好ましい。Ti,B,Mg,Y,Zr,
La,Ce,Caは添加することでクリープ強度を低下
させずに靭性を向上させる。特に板厚の厚い場合にそれ
らの効果は大きい。Tiは0.002%以上の添加によ
ってその析出物が結晶粒を微細にし、靭性を向上させ
る。しかし0.05%超の添加ではTi析出物が粗大と
なって逆に靭性を低下させるため0.002〜0.05
%に限定した。
The molten steel temperature at the time of addition is 1570
-1680 degreeC is preferable. Ti, B, Mg, Y, Zr,
By adding La, Ce and Ca, the toughness is improved without lowering the creep strength. Especially when the plate thickness is large, those effects are great. When Ti is added in an amount of 0.002% or more, the precipitate makes the crystal grains finer and improves the toughness. However, if over 0.05% is added, the Ti precipitates become coarse and conversely the toughness decreases, so 0.002 to 0.05
Limited to%.

【0026】Bは0.0001%以上の添加で焼き入れ
性を高め靭性を向上させる。この効果は極厚鋼板の場合
に顕著である。0.01%超の添加では粗大なBNが析
出し靭性を低下させるため0.0001〜0.01%に
限定した。Mg,Y,Zr,La,Ce,Caはそれぞ
れ0.001%以上の添加で鋼の清浄度を増し且つ偏析
を緩和するため靭性を向上させる。一方、それぞれ0.
05%超の添加では酸化タンタルを還元しクリープ強度
を低下させるため、これらの元素のそれぞれの添加量を
0.001〜0.05%に限定した。これら元素の添加
は酸化タンタル添加前に行うことが望ましい。
When B is added in an amount of 0.0001% or more, the hardenability is enhanced and the toughness is improved. This effect is remarkable in the case of an extremely thick steel plate. If added in excess of 0.01%, coarse BN precipitates and reduces toughness, so the content was limited to 0.0001 to 0.01%. Mg, Y, Zr, La, Ce, and Ca each add 0.001% or more to increase the cleanliness of steel and reduce segregation to improve toughness. On the other hand, 0.
Since the addition of more than 05% reduces tantalum oxide and reduces the creep strength, the addition amount of each of these elements was limited to 0.001 to 0.05%. It is desirable to add these elements before adding tantalum oxide.

【0027】本発明鋼の好ましい熱処理条件は、900
℃以上の焼きならし及び660℃以上の焼き戻し、また
は圧延後焼きならしを省略し700℃以上の焼き戻しを
行うことである。焼き戻しによってV炭窒化物が析出し
高温クリープ破断強度がさらに向上する。
The preferable heat treatment conditions for the steel of the present invention are 900
Normalizing at or above ℃ and tempering at or above 660 ° C. or normalizing after rolling is omitted, and tempering at or above 700 ° C. is performed. By tempering, V carbonitrides are deposited and the high temperature creep rupture strength is further improved.

【0028】[0028]

【実施例】50kg真空溶解において成分を調整した
後、タンディッシュに溶鋼(1600〜1650℃)を
注ぎ、同時に酸化タンタルを含芯した鉄製のワイヤー
(肉厚0.5t、外径7φ)をタンディッシュ中に添加
した。インゴットに鋳造した後、室温まで放冷し120
0℃に加熱した後、仕上温度1000℃で厚さ25mm
に圧延し空冷後930〜1080℃で焼き入れし、70
0〜790℃で焼き戻しを行い供試鋼を作成した。供試
鋼から6φ×30GLのクリープ試験片を加工し、65
0℃で10000hのクリープ破断強度(CRS)を調
査した。また2mmVノッチシャルピー試験片を加工し
0℃の衝撃吸収エネルギー(vE0)も調査した。
Example: After adjusting the components in 50 kg vacuum melting, molten steel (1600 to 1650 ° C.) was poured into a tundish, and at the same time, an iron wire (wall thickness 0.5 t, outer diameter 7φ) containing tantalum oxide was added to the tundish. Added in dish. After casting into an ingot, let cool to room temperature 120
After heating to 0 ℃, finish temperature is 1000 ℃ and thickness is 25mm.
Rolled, air-cooled, and then quenched at 930 to 1080 ° C. to 70
A sample steel was prepared by tempering at 0 to 790 ° C. A 6φ × 30GL creep test piece was machined from the test steel and
The creep rupture strength (CRS) of 10000 h at 0 ° C. was investigated. Further, a 2 mmV notch Charpy test piece was processed and the impact absorption energy (vE0) at 0 ° C. was also investigated.

【0029】その結果を表1、表2(表1のつづき)、
表3、表4(表3のつづき)に示す。これらの表から分
かるように本発明鋼であるNo.1〜13はクリープ破
断強度が高いのに対して、比較鋼であるNo.14〜2
9のクリープ破断強度は低い。本発明鋼No.1,2,
3,4と比較鋼No.14,15の6鋼種から酸化タン
タルの効果を知ることができる。比較鋼No.14は溶
存酸素量が低かったため酸化タンタルの歩留りが低下
し、酸化タンタル含有量が本発明範囲の下限(0.3
%)未満になった。その結果、分散強化が十分でなく強
度が低くなった。
The results are shown in Table 1, Table 2 (continued from Table 1),
The results are shown in Table 3 and Table 4 (continued from Table 3). As can be seen from these tables, the steel of the present invention No. 1 to 13 have high creep rupture strength, while comparative steel No. 14-2
9 has a low creep rupture strength. Invention Steel No. 1, 2,
Comparative steel Nos. 3 and 4 and comparative steel No. The effect of tantalum oxide can be known from the six steel types 14 and 15. Comparative steel No. No. 14 had a low dissolved oxygen content, so that the yield of tantalum oxide decreased, and the tantalum oxide content was lower than the lower limit (0.3
%). As a result, the dispersion strengthening was not sufficient and the strength was low.

【0030】本発明鋼No.1,2,3,4は酸化タン
タル含有量の順にクリープ破断強度が少しづつ高くなっ
ているが、いずれも高い水準である。比較鋼No.15
は酸化タンタル含有量が本発明範囲の上限(2.5%)
を超えているため靭性が著しく低下している。また比較
鋼No.15はクリープ破断強度は十分高いものの、酸
化タンタルを2.62%含有しているにもかかわらず、
酸化タンタル1.88%含有の本発明鋼No.4よりは
低くなっている。
Inventive Steel No. Creep rupture strengths of 1, 2, 3, and 4 gradually increase in the order of tantalum oxide content, but all are at high levels. Comparative steel No. 15
Is the upper limit of the tantalum oxide content of the present invention range (2.5%)
The toughness is remarkably deteriorated because it exceeds. Comparative steel No. Although 15 has a sufficiently high creep rupture strength, it contains 2.62% tantalum oxide,
Inventive Steel No. 1 containing 1.88% tantalum oxide. It is lower than 4.

【0031】比較鋼No.16はCが不足しているた
め、固溶強化及び炭化物による析出強化が十分でなくク
リープ破断強度が低下した。比較鋼No.17はSiが
過剰であるため、酸化タンタルが分解されクリープ破断
強度が低下した。比較鋼No.18はMnが多すぎて延
性が低下し、十分塑性変形しないうちに破断に至ったた
めクリープ破断強度がかえって低くなった。また圧延中
に一部割れが生じていた。
Comparative steel No. No. 16 had insufficient C, so solid solution strengthening and precipitation strengthening by carbide were not sufficient, and the creep rupture strength decreased. Comparative steel No. Since No. 17 had an excessive amount of Si, tantalum oxide was decomposed and the creep rupture strength was lowered. Comparative steel No. No. 18 had too much Mn to reduce ductility, and rupture occurred before sufficient plastic deformation, so the creep rupture strength was rather low. In addition, some cracks occurred during rolling.

【0032】比較鋼No.19はCrとWが多すぎるた
めδフェライトが35%存在した組織となり、この比較
的柔らかいδフェライト相が低応力でクリープ破断に至
ったためクリープ破断強度が低くなった。また靭性も著
しく低下した。比較鋼No.20はWが不足しているた
め固溶強化が十分でなくクリープ破断強度が低下した。
Comparative steel No. No. 19 had a structure in which 35% of δ-ferrite was present due to too much Cr and W, and this relatively soft δ-ferrite phase led to creep rupture with low stress, resulting in low creep rupture strength. Also, the toughness was significantly reduced. Comparative steel No. Since No. 20 had insufficient W, the solid solution strengthening was insufficient and the creep rupture strength decreased.

【0033】比較鋼No.21はVの不足により固溶強
化及び析出強化が不十分であるためクリープ破断強度が
低下した。比較鋼No.22はVが過剰であるためδフ
ェライトが析出しクリープ破断強度及び靭性が低下し
た。比較鋼No.23はNが過剰であるため、クリープ
破断強度は高いものの靭性が低下している。
Comparative Steel No. In No. 21, creep rupture strength decreased because solid solution strengthening and precipitation strengthening were insufficient due to lack of V. Comparative steel No. In No. 22, since V was excessive, δ ferrite was precipitated and the creep rupture strength and toughness were lowered. Comparative steel No. In No. 23, since N is excessive, the creep rupture strength is high but the toughness is reduced.

【0034】比較鋼No.24は溶鋼中へ添加したTa
が過剰であるため酸化タンタルの粒径が1μm超とな
り、クリープ破断強度及び靭性共に低下した。比較鋼N
o.25は全Taが過剰であるため、クリープ破断強度
は高いものの靭性が低下している。比較鋼No.26は
Tiが過剰であるため、粗大なTiNが析出し靭性が低
下した。
Comparative Steel No. 24 is Ta added to the molten steel
However, the particle size of tantalum oxide exceeds 1 μm and the creep rupture strength and toughness are both reduced. Comparative steel N
o. In No. 25, since the total Ta is excessive, the creep rupture strength is high, but the toughness is lowered. Comparative steel No. In No. 26, since Ti was excessive, coarse TiN was precipitated and the toughness was lowered.

【0035】比較鋼No.27はBが過剰であるため粗
大なBNが析出し靭性が低下した。比較鋼No.28は
Mgが過剰であるため酸化タンタルが還元され、酸化タ
ンタル量が0.25%未満になりクリープ破断強度が低
下した。比較鋼No.29はLaCe及びCaが過剰で
あるため酸化タンタルが還元され、酸化タンタル量が
0.25%未満になりクリープ破断強度が低下した。
Comparative Steel No. In No. 27, since B was excessive, coarse BN was precipitated and the toughness was lowered. Comparative steel No. In No. 28, since tantalum oxide was reduced because Mg was excessive, the amount of tantalum oxide was less than 0.25%, and the creep rupture strength decreased. Comparative steel No. In No. 29, since LaCe and Ca were excessive, tantalum oxide was reduced, the amount of tantalum oxide was less than 0.25%, and the creep rupture strength was lowered.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【発明の効果】以上に述べたように、本発明に係る高温
強度に優れた核融合炉用フェライト系鋼によれば、例え
ば従来の核融合炉用鋼に比べ高温強度、特に高温クリー
プ破断強度が大幅に改善され、しかも靭性、加工性に優
れているため、核融合炉第一壁材料として極めて大きな
効果を奏するものである。
As described above, according to the ferritic steel for a fusion reactor excellent in high temperature strength of the present invention, for example, the high temperature strength, especially the high temperature creep rupture strength as compared with the conventional fusion reactor steel. Is significantly improved, and the toughness and workability are excellent, so that it is extremely effective as a first wall material for a fusion reactor.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量基準で C :0.05〜0.15%、 Si:0.02〜0.25%、 Mn:0.01〜0.50%、 P :0.01%以下、 S :0.01%以下、 Cr:5.0〜13.0%、 W :0.3〜3.0%、 V :0.05〜0.40%、 N :0.002〜0.08%、 酸化タンタル:0.3〜2.5% 酸化タンタルとして存在するTaも含めた全Ta量:
0.25〜3.0%を含み、残部Fe及び不可避的不純
物からなり、且つ酸化タンタルの平均粒径が1μm以下
であることを特徴とする核融合炉用フェライト系耐熱
鋼。
1. C: 0.05 to 0.15%, Si: 0.02 to 0.25%, Mn: 0.01 to 0.50%, P: 0.01% or less, S on a weight basis. : 0.01% or less, Cr: 5.0 to 13.0%, W: 0.3 to 3.0%, V: 0.05 to 0.40%, N: 0.002 to 0.08% Tantalum oxide: 0.3 to 2.5% Total Ta amount including Ta existing as tantalum oxide:
A ferritic heat-resistant steel for a fusion reactor, comprising 0.25 to 3.0%, balance Fe and unavoidable impurities, and having an average particle size of tantalum oxide of 1 μm or less.
【請求項2】 重量基準で、さらに Ti:0.002〜0.05%、 B :0.0001〜0.01%、 Mg:0.001〜0.05%、 Y :0.001〜0.05%、 Zr:0.001〜0.05%、 La:0.001〜0.05%、 Ce:0.001〜0.05%、 Ca:0.001〜0.05%の1種もしくは2種以上
を含有することを特徴とする請求項1記載の核融合炉用
フェライト系耐熱鋼。
2. On a weight basis, Ti: 0.002 to 0.05%, B: 0.0001 to 0.01%, Mg: 0.001 to 0.05%, Y: 0.001 to 0. 0.05%, Zr: 0.001 to 0.05%, La: 0.001 to 0.05%, Ce: 0.001 to 0.05%, Ca: 0.001 to 0.05%, one kind Alternatively, the ferritic heat-resistant steel for a fusion reactor according to claim 1, containing two or more kinds.
【請求項3】 重量基準で C :0.05〜0.15%、 Si:0.02〜0.25%、 Mn:0.01〜0.50%、 P :0.01%以下、 S :0.01%以下、 Cr:5.0〜13.0%、 W :0.3〜3.0%、 V :0.05〜0.40%、 N :0.002〜0.08%、 溶存酸素():0.002〜0.08%を含み、残部
Fe及び不可避的不純物からなる溶鋼に、 Ta:0.0007/〜0.0013/ %を添加
した後、 酸化タンタル:0.3〜2.7%を添加することを特徴
とする核融合炉用フェライト系耐熱鋼の製造方法。
3. C: 0.05 to 0.15%, Si: 0.02 to 0.25%, Mn: 0.01 to 0.50%, P: 0.01% or less, S on a weight basis. : 0.01% or less, Cr: 5.0 to 13.0%, W: 0.3 to 3.0%, V: 0.05 to 0.40%, N: 0.002 to 0.08% , dissolved oxygen (O): comprises 0.002 to 0.08%, the molten steel and the balance Fe and unavoidable impurities, Ta: 0.0007 / O ~0.0013 / O% after addition of tantalum oxide : 0.3-2.7% is added, The manufacturing method of the ferritic heat resistant steel for fusion reactors characterized by the above-mentioned.
【請求項4】 溶鋼が重量基準で、さらに Ti:0.002〜0.05%、 B :0.0001〜0.01%、 Mg:0.001〜0.05%、 Y :0.001〜0.05%、 Zr:0.001〜0.05%、 La:0.001〜0.05%、 Ce:0.001〜0.05%、 Ca:0.001〜0.05%の1種もしくは2種以上
を含有することを特徴とする請求項3記載の核融合炉用
フェライト系耐熱鋼の製造方法。
4. Molten steel is based on weight, and further Ti: 0.002-0.05%, B: 0.0001-0.01%, Mg: 0.001-0.05%, Y: 0.001. -0.05%, Zr: 0.001-0.05%, La: 0.001-0.05%, Ce: 0.001-0.05%, Ca: 0.001-0.05% The method for producing a ferritic heat-resistant steel for a fusion reactor according to claim 3, characterized in that it contains one kind or two or more kinds.
JP5298527A 1993-01-25 1993-11-29 Ferritic heat resistant steel for nuclear fusion furnace and its production Pending JPH06271989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5298527A JPH06271989A (en) 1993-01-25 1993-11-29 Ferritic heat resistant steel for nuclear fusion furnace and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1024993 1993-01-25
JP5-10249 1993-01-25
JP5298527A JPH06271989A (en) 1993-01-25 1993-11-29 Ferritic heat resistant steel for nuclear fusion furnace and its production

Publications (1)

Publication Number Publication Date
JPH06271989A true JPH06271989A (en) 1994-09-27

Family

ID=26345500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5298527A Pending JPH06271989A (en) 1993-01-25 1993-11-29 Ferritic heat resistant steel for nuclear fusion furnace and its production

Country Status (1)

Country Link
JP (1) JPH06271989A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105239010A (en) * 2014-07-11 2016-01-13 中国科学院金属研究所 Novel Cr-Y-O nanocluster oxide dispersion strengthening reduced activation steel
WO2021147271A1 (en) * 2020-01-23 2021-07-29 清华大学 Interphase-precipitation-enhanced low-activation ferritic steel and preparation method therefor
CN116970875A (en) * 2023-09-25 2023-10-31 上海核工程研究设计院股份有限公司 Tantalum-containing ferrite heat-resistant steel and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105239010A (en) * 2014-07-11 2016-01-13 中国科学院金属研究所 Novel Cr-Y-O nanocluster oxide dispersion strengthening reduced activation steel
WO2021147271A1 (en) * 2020-01-23 2021-07-29 清华大学 Interphase-precipitation-enhanced low-activation ferritic steel and preparation method therefor
CN116970875A (en) * 2023-09-25 2023-10-31 上海核工程研究设计院股份有限公司 Tantalum-containing ferrite heat-resistant steel and manufacturing method thereof
CN116970875B (en) * 2023-09-25 2023-12-15 上海核工程研究设计院股份有限公司 Tantalum-containing ferrite heat-resistant steel and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3689009B2 (en) High corrosion resistance high strength austenitic stainless steel and its manufacturing method
US4963200A (en) Dispersion strengthened ferritic steel for high temperature structural use
US4227925A (en) Heat-resistant alloy for welded structures
KR20010021263A (en) High strength low alloy heat resistant steel
CN111826583B (en) High-corrosion-resistance boron stainless steel material and preparation method and application thereof
US3807991A (en) Ferritic stainless steel alloy
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
JPH02220735A (en) Production of high tensile strength steel for welding and low temperature including titanium oxide
JP5331700B2 (en) Ferritic stainless steel excellent in workability of welds and corrosion resistance of steel materials and method for producing the same
JP6665658B2 (en) High strength steel plate
JPH10121170A (en) Nickel-chromium alloy excellent in corrosion resistance and production thereof
JPH06271989A (en) Ferritic heat resistant steel for nuclear fusion furnace and its production
JPH05171341A (en) Production of thick steel plate excellent in toughness in welding heat-affected zone
JPH093590A (en) Oxide dispersion strengthened ferritic heat resistant steel sheet and its production
US3649257A (en) Fully dense consolidated-powder superalloys
JPH10310820A (en) Production of steel for fusion reactor excellent in low temperature toughness and creep strength
RU2233906C1 (en) Austenite steel
JPH09111413A (en) Heat resistant steel for nuclear fusion reactor, excellent in toughness, and its production
JPH01191765A (en) High-tensile steel for low temperature use excellent in toughness in weld zone and containing dispersed fine-grained titanium oxide and sulfide
JP3481417B2 (en) Thick steel plate with excellent toughness of weld heat affected zone
JPH07126810A (en) Ferritic heat resistant steel for fusion reactor excellent in weldability and its production
JP2696624B2 (en) Oxide dispersion strengthened ferritic heat-resistant steel sheet
JP2002038218A (en) Method for producing boron-containing austenitic stainless steel plate
JPH04111962A (en) Production of high-speed tool steel
JP3687315B2 (en) B-containing stainless steel and method for producing hot rolled sheet thereof