JPH06271922A - Production of high cleanliness metal by making molten metal drips - Google Patents

Production of high cleanliness metal by making molten metal drips

Info

Publication number
JPH06271922A
JPH06271922A JP5057637A JP5763793A JPH06271922A JP H06271922 A JPH06271922 A JP H06271922A JP 5057637 A JP5057637 A JP 5057637A JP 5763793 A JP5763793 A JP 5763793A JP H06271922 A JPH06271922 A JP H06271922A
Authority
JP
Japan
Prior art keywords
inclusions
molten
molten metal
cao
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5057637A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kawashima
康弘 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5057637A priority Critical patent/JPH06271922A/en
Publication of JPH06271922A publication Critical patent/JPH06271922A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/118Refining the metal by circulating the metal under, over or around weirs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/111Treating the molten metal by using protecting powders
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To provide a producing method of high cleanliness metal by making molten metal drips. CONSTITUTION:(1) In the producing method of a clean metal by passing the drips 3 of molten metal 9 through molten slag layer in a vessel having the atmospheric pressure adjusted to non-oxidization and absorbing inclusion in the molten metal 9 into the slag 4 to separate and remove the inclusion, before passing through the molten slag layer, the molten metal 9 is made to be fine drips by passing through a refractory-made porous nozzle 2, and also, after changing the form of the inclusion in the molten steel, the molten metal is dropped into the slag layer and made to be the drips to produce the high cleanliness metal. (2) The porous nozzle 2 used is the one having plural holes of 0.5-20mm the inner diameter and 5-100mm the length and <=5% apparent porosity of the refractory material and the composition composed of one or more kinds among 100% oxide of CaO, 100% oxide of SiO2, an oxide containing >=5% CaO and nitride containing >=5% CaO.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融金属の粒滴化によ
る高清浄性金属の製造方法および溶融金属中の介在物の
無害化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a highly clean metal by forming droplets of molten metal and detoxifying inclusions in the molten metal.

【0002】[0002]

【従来の技術】例えば、高い清浄度が要求される鋼の製
造方法として、従来から様々な手段が提案されている。
これらのうちの代表的なものとしては、下記〜に示
す方法がある。
2. Description of the Related Art For example, various means have hitherto been proposed as a method for producing steel requiring high cleanliness.
Typical of these are the following methods.

【0003】フラックス吹き込み法 溶鋼中の介在物を除去する手段としては最も一般的なも
のであり、取鍋などの容器内の溶鋼中にCaO を主成分と
するフラックスを吹き込み、そのフラックスと溶鋼中の
介在物とを接触させて凝集させることにより、介在物を
浮上除去する方法である。すなわち、溶鋼を脱酸すると
きに生成して介在物となる脱酸生成物のうち、 Al2O3
主成分とするものの除去が最も困難であるため、この方
法ではフラックス中の主成分である CaOと、介在物のそ
れである Al2O3とを結合させて、低融点化合物を形成さ
せ、 Al2O3を分離、除去することに特徴がある。
Flux Blowing Method The most common means for removing inclusions in molten steel is to blow a flux containing CaO as a main component into the molten steel in a container such as a ladle, and to remove the flux and the molten steel. In this method, the inclusions are floated and removed by bringing the inclusions into contact with each other to cause aggregation. In other words, among the deoxidation products that are generated when deoxidizing molten steel and serve as inclusions, it is the most difficult to remove those that contain Al 2 O 3 as the main component, so this method is not the main component in the flux. It is characterized in that a certain CaO is combined with Al 2 O 3 which is an inclusion to form a low melting point compound, and Al 2 O 3 is separated and removed.

【0004】さらに、溶鋼中にフラックスを吹き込むた
めに用いるガスが、溶鋼の攪拌を促進し、吹き込んだフ
ラックスを溶鋼中に均一に分散させるため、 CaOとAl2O
3 との結合を一層促進するという効果をも有する。
Further, the gas used for blowing the flux into the molten steel promotes the stirring of the molten steel and uniformly disperses the blown flux in the molten steel. Therefore, CaO and Al 2 O
It also has the effect of further promoting the binding with 3 .

【0005】ガスバブリング法 溶鋼中の介在物除去の簡易法として広く行われている方
法である。これも取鍋などの容器内の溶鋼表面にスラグ
層を形成させておき、溶鋼中にガスを吹き込むことによ
り溶鋼を攪拌して溶鋼中の介在物を浮上させ、溶鋼表面
のスラグで介在物を吸収させるものである。介在物の除
去効果は、上記のフラックス吹き込み法よりも劣る
が、処理操作が極めて簡便である。
Gas bubbling method is a widely used method for removing inclusions in molten steel. This also forms a slag layer on the surface of molten steel in a container such as a ladle, stirs the molten steel by blowing gas into the molten steel to levitate the inclusions in the molten steel, and removes the inclusions with the slag on the surface of the molten steel. It is what is absorbed. Although the effect of removing inclusions is inferior to that of the above-mentioned flux blowing method, the treatment operation is extremely simple.

【0006】ESR法(エレクトロスラグ再溶解法) この方法は、清浄鋼を溶製する際の最も効果的な方法と
して知られているものである。水冷鋳型内で、電極形状
にした清浄化したい鋼材の先端を、スラグ自身の持つ電
気抵抗で発熱、溶融させたスラグ層中に浸漬し、そのス
ラグの抵抗熱で鋼材自身を連続的に再溶解させて液滴化
し、これが溶融スラグ層中を滴下する過程で溶鋼液滴中
の介在物を液滴表面に排出させる。その介在物をスラグ
に吸収させ、清浄化処理を行うものである。
ESR method (electroslag remelting method) This method is known as the most effective method for producing clean steel. In the water-cooled mold, the tip of the steel material to be cleaned that has been made into an electrode shape is immersed in the slag layer that is heated and melted by the electrical resistance of the slag itself, and the steel material itself is continuously remelted by the resistance heat of the slag. The droplets are made into droplets, and the inclusions in the molten steel droplets are discharged to the droplet surface in the process of dropping into the molten slag layer. The inclusions are absorbed in the slag to perform the cleaning process.

【0007】このESRによる処理速度は、上記また
はの方法と比較すると極めて小さいが、供給する電力
量によりある程度は制御することが可能である。また溶
鋼中の介在物 (主成分:Al2O3) が直接、溶融スラグ (主
成分:CaO) と接触する確率が高いため、介在物の形態を
Al2O3系から Al2O3−CaO 系に形態変化させることが可
能である。さらにこの場合には、介在物が再び溶鋼中に
入って処理後の鋼片中に残っても、介在物として無害、
またはそれに近い微細介在物とすることができる。具体
的には、このESR法により処理した後の介在物の粒径
は、10μm 以下のものに変化し、大きな介在物 (数10μ
m 程度の粒径の介在物) を完全に除去することができ
る。
Although the processing speed by ESR is extremely small as compared with the above method or method, it can be controlled to some extent by the amount of electric power supplied. Also, since the inclusions (main component: Al 2 O 3 ) in molten steel have a high probability of coming into direct contact with the molten slag (main component: CaO), the morphology of inclusions
It is possible to change the morphology from the Al 2 O 3 system to the Al 2 O 3 —CaO system. Furthermore, in this case, even if the inclusions enter the molten steel again and remain in the treated steel billet, they are harmless as inclusions,
Alternatively, fine inclusions close thereto can be used. Specifically, the particle size of inclusions after being processed by this ESR method is changed to 10 μm or less, and large inclusions (several tens of μm
It is possible to completely remove inclusions having a particle size of about m 2.

【0008】流滴脱ガス法 真空排気された容器に溶鋼を注入し、溶鋼中のガスが膨
張するエネルギーを利用して溶鋼を微細粒滴化すること
により、反応表面積を大きくして脱ガスを促進させるも
のである。この方法では、一度に多量の溶鋼を連続的に
処理することができる。
Droplet degassing method Molten steel is injected into a vacuum-evacuated container, and the energy in which the gas in the molten steel expands is used to make the molten steel into fine droplets, thereby increasing the reaction surface area and degassing. It promotes. In this method, a large amount of molten steel can be continuously processed at one time.

【0009】粒滴中の介在物は、溶鋼を微細な粒滴にす
ることにより、相互の表面張力 (界面張力) の作用によ
り粒滴表面に排出され、効率的に介在物が除去される。
しかも、粒滴径が小さいほど小さい介在物が排出される
ことから、種々の粒滴径の微細化技術が提案され実施さ
れている。
The inclusions in the droplets are discharged to the surface of the droplets by the action of mutual surface tension (interfacial tension) by making molten steel into fine droplets, and the inclusions are efficiently removed.
Moreover, since smaller inclusions are discharged as the particle size is smaller, various techniques for making the particle size smaller have been proposed and implemented.

【0010】このような真空流滴脱ガス法と溶融スラグ
を用いる清浄鋼の溶製方法として、例えば、特開平2−
263913号公報には、介在物が排出された後の粒滴を、溶
融スラグ層に落下させてスラグ中を通過させることによ
り、スラグに介在物を吸収させ、介在物と溶鋼を分離す
ることにより、ESRと同様の効果を持たせることを特
徴とする清浄鋼の製造方法が示されている。この方法で
はESR処理の場合よりも粒滴を小さくすることが可能
であるため、より微細な介在物を排出させ、それをスラ
グに吸収させることで、より清浄性の高い鋼を製造する
ことができる。
[0010] As a method for producing clean steel using such a vacuum drop degassing method and molten slag, for example, Japanese Unexamined Patent Publication No.
In the 263913 publication, the droplets after the inclusions are discharged are dropped into the molten slag layer and passed through the slag, whereby the slag absorbs the inclusions and separates the inclusions from the molten steel. , ESR, and a method for producing clean steel characterized by having the same effect as ESR. With this method, it is possible to make the droplets smaller than in the case of ESR treatment. Therefore, by ejecting finer inclusions and absorbing them in the slag, it is possible to produce steel with higher cleanliness. it can.

【0011】粒滴を利用した精錬法 無酸化雰囲気で、溶融金属流に高圧高速の不活性ガスを
吹き付けて粉霧状の微細な溶融金属粒とし、これを滴下
して溶融スラグ中を通過させる過程で精錬を行う方法が
ある (特開昭52−42412 号公報参照) 。
Refining method using droplets In a non-oxidizing atmosphere, a high-pressure and high-speed inert gas is blown to the molten metal stream to form fine atomized fine molten metal particles, which are dropped and passed through the molten slag. There is a method of refining in the process (see JP-A-52-42412).

【0012】また、多数の細孔を有する耐火板から溶鋼
を通過させることにより、溶鋼を微細粒にして無酸化雰
囲気の鋳型内等の溶融スラグ層に落下させ、この微細溶
鋼粒がスラグ層を通過する過程でスラグによる精錬を施
した後、鋳造を行う方法がある (特開昭52−143922号公
報参照) 。
Further, by passing the molten steel through a refractory plate having a large number of pores, the molten steel is made into fine particles and dropped into a molten slag layer such as in a mold in an non-oxidizing atmosphere, and these fine molten steel particles form the slag layer. There is a method in which refining with slag is performed in the process of passing and then casting is performed (see Japanese Patent Application Laid-Open No. 52-143922).

【0013】[0013]

【発明が解決しようとする課題】前記、の取鍋内で
処理する清浄鋼の溶製方法は、介在物をスラグに接触さ
せて除去するものであるため、あるレベル (例えば、溶
鋼中の酸素濃度、すなわちトータル酸素が20ppm 程度)
までは介在物の量を低減することができるが、微細な介
在物は残留し、それ以上の清浄度を期待する場合、決し
て効果的とは言えない。
Since the above-mentioned method for producing clean steel to be processed in the ladle is to remove inclusions by bringing them into contact with slag, a certain level (for example, oxygen in molten steel) is required. Concentration, that is, total oxygen is about 20ppm)
Although the amount of inclusions can be reduced up to, fine inclusions remain, and it cannot be said to be effective in the case where higher cleanliness is expected.

【0014】よって、これらの処理においても、介在物
に起因するノズル閉塞などの操業上の問題、および製品
における表面疵や内部欠陥等の問題は解消されない。し
たがって、さらに介在物粒径が50μm 未満の介在物をも
確実に低減させるには、他の効果的な方法を採用する必
要がある。
Therefore, even in these processes, problems in operation such as nozzle clogging due to inclusions and problems such as surface flaws and internal defects in the product cannot be solved. Therefore, it is necessary to adopt another effective method in order to surely reduce the inclusions having an inclusion particle size of less than 50 μm.

【0015】前記のESR法は、清浄化、介在物形態
制御の点では有効な手段であるが、鋼材電極1本単位の
バッチ的な処理法にすぎない。さらに、清浄化する鋼材
を電極の形状とするための工程と再溶解し液滴化させる
ための溶融エネルギー (電力) が必要であるから、設備
上、コスト上からも大量処理には適しない方法である。
供給する電力量を増加させて処理効率を向上させようと
しても、再溶解速度 (溶鋼滴下速度) には限界があるた
め、大量処理 (例えば、50〜100kg/秒) には至らず、こ
の方法で清浄鋼を大量に製造することはできない。
The ESR method described above is an effective means in terms of cleaning and control of inclusion morphology, but it is only a batch-wise processing method for each steel material electrode. In addition, it requires a process to make the steel material to be cleaned into the shape of an electrode and melting energy (electric power) to remelt it into droplets. Is.
Even if an attempt is made to improve the processing efficiency by increasing the amount of electric power supplied, since the remelting rate (molten steel dropping rate) is limited, large-scale processing (for example, 50 to 100 kg / sec) is not achieved, and this method It is not possible to produce clean steel in large quantities at.

【0016】に述べた流滴脱ガス法では前記のよう
に、真空下の容器に溶鋼を注入し、鋼中のガスまたは鋼
中に吹き込んだガスの膨張エネルギーにより溶鋼を微細
粒滴化させる。したがって、ESR法の場合よりも液滴
粒径が小さいため介在物の除去効率が高く、大量の溶鋼
が処理できる。しかしこの方法は、真空排気設備および
真空容器が必要である。また、真空下で清浄化された溶
鋼から、大気による再酸化を防止しつつ真空状態で連続
鋳造機などを用いてスラブを製造することは、設備上、
操業上から解決しなければならない問題も多く、このよ
うな連続真空流滴脱ガス法と真空連続鋳造を組合せる方
法の実現はかなり困難である に述べた粒滴を利用する精錬法では、液滴を滴下させ
て短時間で単にスラグ層を通過させ、スラグに介在物を
吸収させるだけであり、液滴中に残留した非延性の Al2
O3系介在物を延性介在物等に形態変化させることができ
ない。
In the flow drop degassing method described above, as described above, molten steel is injected into a container under vacuum, and the molten steel is made into fine particles by the expansion energy of the gas in the steel or the gas blown into the steel. Therefore, since the droplet diameter is smaller than in the case of the ESR method, the efficiency of removing inclusions is high, and a large amount of molten steel can be processed. However, this method requires an evacuation facility and a vacuum container. Further, from molten steel cleaned under vacuum, to produce a slab using a continuous casting machine in a vacuum state while preventing reoxidation by the atmosphere, in terms of equipment,
There are many problems that must be solved from the operational point of view, and it is quite difficult to realize such a method combining continuous vacuum drop degassing and vacuum continuous casting. drops simply passes the slag layer in a short time by dropwise, only to absorb the inclusions slag, non ductility remaining in the droplets Al 2
The morphology of O 3 -based inclusions cannot be changed to ductile inclusions.

【0017】細孔を有する耐火板による溶鋼の微細化に
ついても、 Al2O3系介在物が細孔部に付着して細孔の閉
塞が生じ、このため溶鋼を通過させることができず、多
量の溶鋼処理ができないなどの欠点がある。
Regarding refining of molten steel with a refractory plate having pores, Al 2 O 3 -based inclusions adhere to the pores and block the pores, which prevents the molten steel from passing through. It has the drawback that it cannot process a large amount of molten steel.

【0018】すなわち、 Al2O3系介在物は高融点であ
り、通常の温度の溶鋼中では固体であるから、耐火板と
反応することがなく、溶鋼よりも低温度の耐火板細孔の
内壁に一旦接触するとその内壁面に付着、堆積して行く
だけになり、耐火板の細孔は閉塞するのである。この現
象は、介在物の融点が高いのものである限り、その程度
に若干の差はあっても耐火板の材質の種類を問わず発生
するものである。
That is, since the Al 2 O 3 -based inclusions have a high melting point and are solid in the molten steel at normal temperature, they do not react with the refractory plate and the pores of the refractory plate at a temperature lower than that of the molten steel. Once in contact with the inner wall, it only adheres to and deposits on the inner wall, and the pores of the refractory plate are closed. As long as the melting point of the inclusion is high, this phenomenon occurs regardless of the type of material of the fireproof plate, although there is a slight difference in the degree.

【0019】また高圧高速のガス吹きによる溶鋼の微細
化法については、大量の溶鋼を処理すると、溶鋼の微細
化効率が低下して精錬効率が悪くなるという欠点があ
る。
Further, the method of refining molten steel by high-pressure and high-speed gas blowing has a drawback that when a large amount of molten steel is treated, the refining efficiency is deteriorated because the refining efficiency of the molten steel decreases.

【0020】したがって、多量の溶融金属を無酸化雰囲
気の大気圧下で微細粒滴とし、さらに Al2O3系介在物が
溶鋼を通過させるノズルなどに付着しないように、流動
性のよい低融点の延性介在物に形態変化させ、しかも低
融点介在物がノズルと反応してノズルを過度に溶損させ
ないような、耐火物ノズルを用いる清浄鋼の製造方法は
まだ開発されていない。
Therefore, a large amount of molten metal is formed into fine droplets under atmospheric pressure in an non-oxidizing atmosphere, and further, Al 2 O 3 inclusions do not adhere to a nozzle or the like through which molten steel passes, and have a low melting point with good fluidity. No method has yet been developed for producing clean steel using refractory nozzles that changes the form of ductile inclusions and does not cause excessive melting and damage of the nozzles due to the low melting point inclusions reacting with the nozzles.

【0021】本発明は、上記の課題を解決するためにな
されたものであり、本発明の目的は、高い清浄性が要求
される金属、例えば軸受鋼やコードワイヤー用鋼あるい
は薄板用鋼などの製造において、脱酸などの精錬が完了
した溶鋼中の脱酸生成物である介在物、耐火物やスラグ
に起因する高融点の Al2O3系介在物によるノズル閉塞の
防止およびこれらの介在物の除去とともに、製品におい
て欠陥となる介在物の無害化を行うのに好適な方法を提
供することにある。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to make a metal such as a bearing steel, a steel for a cord wire or a steel for a thin plate, which is required to have high cleanliness. In production, inclusions that are deoxidation products in molten steel that has undergone refining such as deoxidation, prevention of nozzle clogging by high melting point Al 2 O 3 inclusions due to refractories and slag, and these inclusions It is an object of the present invention to provide a method suitable for detoxifying the inclusions that become defective in the product together with removing the above.

【0022】[0022]

【課題を解決するための手段】本発明の要旨は、次の
(1) および(2) の高清浄性金属の製造方法にある。
The summary of the present invention is as follows.
It is in the method for producing a highly clean metal of (1) and (2).

【0023】(1)無酸化調整した大気圧の容器内におい
て、溶融金属の粒滴を溶融スラグ層を通過させ、溶融金
属中の介在物をスラグに吸収させて介在物を分離、除去
することにより清浄金属を製造する方法であって、溶融
スラグ層を通過させる前に、溶融金属を耐火物製の多孔
性ノズルを通して微細な粒滴とするとともに、溶鋼中の
介在物の形態を変化させた後、前記スラグ層に滴下させ
ることを特徴とする溶融金属の粒滴化による高清浄性金
属の製造方法。
(1) In a non-oxidized adjusted atmospheric pressure container, molten metal particles are passed through a molten slag layer, and inclusions in the molten metal are absorbed by the slag to separate and remove inclusions. A method of producing a clean metal by means of which, before passing through the molten slag layer, the molten metal is made into fine droplets through a refractory porous nozzle and the form of inclusions in the molten steel is changed. Then, the method for producing a highly clean metal by forming droplets of a molten metal into the slag layer.

【0024】(2)上記(1) に記載の耐火物製の多孔性ノ
ズルが、内径 0.5〜20mm、長さ5〜100mm の孔を多数個
有し、その耐火物素材の見掛気孔率は5%以下であり、
組成はCaO が100 %の酸化物、SiO2が100 %の酸化物、
CaO を5%以上含有する酸化物およびCaO を5%以上含
有する窒化物の1種もしくは2種以上からなる多孔性ノ
ズルであることを特徴とする請求項1に記載の溶融金属
の粒滴化による高清浄性金属の製造方法。
(2) The refractory porous nozzle described in (1) above has a large number of holes having an inner diameter of 0.5 to 20 mm and a length of 5 to 100 mm, and the apparent porosity of the refractory material is 5% or less,
The composition is 100% CaO oxide, 100% SiO 2 oxide,
2. A droplet nozzle for molten metal according to claim 1, which is a porous nozzle composed of one or more kinds of oxides containing 5% or more of CaO and nitrides containing 5% or more of CaO 2. A method for producing a highly clean metal according to.

【0025】ここで、「100 %」とは通常いわれる「高
純度」を、「窒化物」とは「耐火物として使用されるも
の」を、それぞれ意味する。
Here, "100%" means "high purity" which is usually said, and "nitride" means "a material used as a refractory material".

【0026】本発明者らは前記の課題を解決するため、
ESR法、流滴脱ガス法の双方の特徴を生かして、無酸
化雰囲気の大気圧下で溶融金属の粒滴化を行うことによ
る粒滴表面への介在物の排出と、溶融スラグによる介在
物吸収および溶融金属からの介在物の分離除去とによる
清浄化、ならびに延性介在物に形態変化させることによ
る介在物の無害化を実現する方法などについて検討し、
以下の〜の新知見を得た。
In order to solve the above problems, the present inventors have
By utilizing the characteristics of both the ESR method and the flow degassing method, the molten metal is made into droplets under atmospheric pressure in a non-oxidizing atmosphere, and the inclusions are discharged to the surface of the droplets, and inclusions are formed by the molten slag. A method of cleaning by absorption and separation and removal of inclusions from molten metal, and a method for realizing harmless inclusions by changing the form of ductile inclusions, etc.
The following new findings were obtained.

【0027】溶融金属の微細粒滴化方法 Arガスなどで無酸化雰囲気にした大気圧の容器内で、溶
融金属をシャワーのように微細な粒滴にする方法とし
て、多数の細孔 (1本の細孔の直径 0.5〜20mm、長さ5
〜100mm 、個数は通過させる溶融金属量によって決定さ
れる) を有する耐火物で製作した多孔性ノズルを用いる
ことが最適である。
Method for making fine droplets of molten metal In a container at atmospheric pressure in which the atmosphere is non-oxidized with Ar gas or the like, the molten metal is made into fine droplets like a shower. Pore diameter of 0.5-20mm, length 5
It is optimal to use a porous nozzle made of refractory material having a diameter of ~ 100 mm, the number of which is determined by the amount of molten metal passed through.

【0028】介在物による多孔性ノズルの閉塞防止 多孔ノズルにAl脱酸した溶融金属を通過させると、脱酸
生成物である Al2O3系介在物が多孔性ノズル内壁に付着
してノズル閉塞が生じ、溶融金属を通過させることが不
可能となり、目的を達することができない。例えば、Al
脱酸鋼の処理に材質が Al2O3の直径φ3mm×102 個の多
孔性ノズル(外径φ50mm、長さ10mm、見掛気孔率0.2
%) を用いた場合、介在物により通過溶鋼量が約100kg
で通過不可能となる。
Prevention of Blockage of Porous Nozzle by Inclusion When passing molten metal deoxidized by Al through a porous nozzle, Al 2 O 3 -based inclusion, which is a deoxidation product, adheres to the inner wall of the porous nozzle and causes nozzle clogging. Occurs, it becomes impossible to pass the molten metal, and the purpose cannot be achieved. For example, Al
For the treatment of deoxidized steel, a porous nozzle made of Al 2 O 3 with a diameter of φ3 mm × 102 (outer diameter φ50 mm, length 10 mm, apparent porosity 0.2
%), The amount of molten steel passing through is approximately 100 kg due to inclusions.
It becomes impossible to pass by.

【0029】図7(a) は、この例における使用後の Al2
O3製多孔性ノズルの縦断面の写真の模写図である。図7
(b) は、図7(a) における円部の拡大写真の模写図であ
る。
FIG. 7A shows Al 2 after use in this example.
It is a copy drawing of the photograph of the longitudinal section of the porous nozzle made of O 3 . Figure 7
FIG. 7B is a copy of an enlarged photograph of the circle in FIG. 7A.

【0030】このときの溶鋼は炭素鋼(sol.Al:0.06
%)、溶鋼温度は1600℃である。図示するように多孔性
ノズルの表面に、厚さ約2mmのAl2O3 の群落状介在物が
付着し、細孔は完全に閉塞した。
The molten steel at this time is carbon steel (sol.Al:0.06
%), The molten steel temperature is 1600 ° C. As shown in the figure, a group-like inclusion of Al 2 O 3 having a thickness of about 2 mm adhered to the surface of the porous nozzle, and the pores were completely closed.

【0031】Al脱酸した溶融金属をノズルが閉塞するこ
となく通過させるためには、高融点のAl2O3 系介在物を
多孔性ノズルの材質によって流動性のよい低融点介在物
に形態変化させるのがよい。したがって、耐火物の材質
は Al2O3そのものよりも Al2O3と容易に反応して低融点
介在物(例えば、 Al2O3−CaO 系、 Al2O3−SiO2系な
ど) に形態変化させることができる、高純度CaO 、高純
度SiO2、CaO を5%以上含有する酸化物およびCaO を5
%以上含有する窒化物が適する。また、耐火物の見掛気
孔率には、ある好適な範囲がある。
In order to pass the deoxidized molten metal without blocking the nozzle, the Al 2 O 3 -based inclusion having a high melting point is transformed into a low-melting inclusion having good fluidity depending on the material of the porous nozzle. It is better to let them do it. Therefore, the refractory material reacts more easily with Al 2 O 3 than with Al 2 O 3 itself and becomes a low melting point inclusion (for example, Al 2 O 3 -CaO system, Al 2 O 3 -SiO 2 system, etc.). High-purity CaO, high-purity SiO 2 , oxides containing 5% or more of CaO and CaO 5 which can change the form.
A nitride containing at least% is suitable. Further, the apparent porosity of the refractory material has a certain suitable range.

【0032】介在物除去 溶融金属を微細な溶融金属粒滴にすることで、流滴脱ガ
ス法と同様に粒滴中の介在物は、溶融金属の表面張力お
よび介在物の浮力によって粒滴の表面に排出される。ま
た粒滴表面に排出された介在物を溶融金属と分離させる
ため、ESR法と同様に溶融金属粒滴を溶融スラグ層に
滴下させ、このスラグ層を通過するときに形態変化させ
た低融点介在物をスラグに吸収させることができる。
Inclusion removal By converting the molten metal into fine molten metal droplets, the inclusions in the droplets are formed by the surface tension of the molten metal and the buoyancy of the inclusions, as in the case of the drop degassing method. It is discharged to the surface. In order to separate the inclusions discharged on the surface of the droplets from the molten metal, the molten metal droplets are dropped on the molten slag layer in the same manner as the ESR method, and the low melting point inclusions whose shape is changed when passing through this slag layer. Objects can be absorbed by slag.

【0033】[0033]

【作用】本発明の方法を図1に基づいて詳述する。The method of the present invention will be described in detail with reference to FIG.

【0034】図1は、本発明の方法を実施する装置の例
を示す概略の縦断面図である。溶鋼9を受鋼した取鍋1
は、その底部に溶鋼9を溶鋼粒滴3として落下させるた
めの多孔性ノズル2を有する。この取鍋1はその底部
で、大気圧で無酸化調整を行うことが可能な容器、すな
わちタンディッシュ6とシール可能な状態で連設され、
タンディッシュ6内にはその雰囲気を無酸化状態に維持
するためのArガスが導入される。タンディッシュ6内に
は堰5が設けられており、処理後の溶鋼10は堰5の下部
で連通して貯留され、堰5は溶鋼粒滴3が落下する側の
処理後の溶鋼10の表面のスラグ4の溶融層を維持する機
能を有する。タンディッシュ6の非スラグ貯留側の下部
には、連続鋳造のための浸漬ノズル8と鋳型7が備えら
れる。
FIG. 1 is a schematic vertical sectional view showing an example of an apparatus for carrying out the method of the present invention. Ladle 1 that received molten steel 9
Has a porous nozzle 2 at the bottom thereof for dropping molten steel 9 as molten steel droplets 3. At its bottom, this ladle 1 is connected to a container capable of performing non-oxidative adjustment at atmospheric pressure, that is, a tundish 6 in a sealable manner.
Ar gas is introduced into the tundish 6 to maintain the atmosphere in an unoxidized state. A weir 5 is provided in the tundish 6, and the molten steel 10 after the treatment is communicated and stored under the weir 5, and the weir 5 is the surface of the treated molten steel 10 on the side where the molten steel droplets 3 drop. It has a function of maintaining the molten layer of the slag 4. An immersion nozzle 8 and a mold 7 for continuous casting are provided in the lower part of the tundish 6 on the non-slag storage side.

【0035】溶鋼9を受鋼した取鍋1が搬送され、図示
するようにタンディッシュ6の上に搭載され、シールと
雰囲気調整が行われた後、多孔性ノズル2から溶鋼9を
溶鋼粒滴3として滴下させ、溶融状態のスラグ4の層を
通過させる。タンディッシュ6内のスラグ4は、タンデ
ィッシュ6の滴下側に設けられた投入口( 図示せず )か
ら装入することができる。
The ladle 1 which has received the molten steel 9 is conveyed, mounted on the tundish 6 as shown in the drawing, and after the sealing and the atmosphere adjustment are performed, the molten steel 9 is sprayed with the molten steel 9 through the porous nozzle 2. 3 is dropped and passed through the layer of the molten slag 4. The slag 4 in the tundish 6 can be loaded from an input port (not shown) provided on the drip side of the tundish 6.

【0036】溶鋼9が多孔性ノズル2を通過することに
より微細な溶鋼粒滴3となり、粒滴中の介在物は介在物
の浮力および溶融金属の表面張力によって粒滴表面に排
出される。この介在物をスラグ4で吸収させ、高清浄化
を行う。
The molten steel 9 passes through the porous nozzle 2 to form fine molten steel droplets 3, and inclusions in the droplets are discharged to the surface of the droplets by the buoyancy of the inclusions and the surface tension of the molten metal. The inclusions are absorbed by the slag 4 for high cleaning.

【0037】次に、多孔性ノズルの素材耐火物の性状と
構造を前記のように限定した理由を説明する。
Next, the reason for limiting the properties and structure of the refractory material of the porous nozzle as described above will be explained.

【0038】多孔性ノズルの材質として、高純度 CaO、
高純度SiO2製の耐火物を用いると、溶鋼が多孔性ノズル
を通過する際に溶鋼中の Al2O3系介在物と耐火物を効果
的に反応させて、 Al2O3−CaO 系などの低融点介在物に
形態変化させることができる。
As the material of the porous nozzle, high purity CaO,
When a refractory made of high-purity SiO 2 is used, the Al 2 O 3 -based inclusions in the molten steel and the refractory react effectively when the molten steel passes through the porous nozzle, and the Al 2 O 3 -CaO-based The morphology can be changed to a low melting point inclusion such as.

【0039】多孔性ノズルの材質を、CaO を5%以上含
有する酸化物( 例えば、 CaO−MgO、 CaO−ZrO2、 CaO
−SiO2、 CaO−MgO −SiO2など)、またはCaO を5%以
上含有する窒化物(例えば、 CaO−BN、 CaO−Si3N4
ど)、またはこれらの酸化物または窒化物を2種以上含
有する化合物とするのは、CaO 含有量が5%未満の耐火
物の場合には、溶融金属中の Al2O3介在物が多いとき、
CaO が不足して Al2O3介在物とCaO が反応せず、低融点
の Al2O3−CaO 系介在物を形成しなくなるからである。
また、窒化物は耐火物として有効なものであり、BやSi
の窒化物も反応してB2O3やSiO2を形成し、低融点介在物
への形態変化に有効に作用するからである。
The material of the porous nozzle is made of an oxide containing 5% or more of CaO (for example, CaO-MgO, CaO-ZrO 2 , CaO).
-SiO 2, CaO-MgO -SiO 2, etc.), or a nitride containing 5% or more of CaO (e.g., CaO-BN, CaO-Si 3 etc. N 4), or two of these oxides or nitrides The compounds to be contained above are refractory materials having a CaO content of less than 5%, when there are many Al 2 O 3 inclusions in the molten metal,
This is because the CaO is insufficient and the Al 2 O 3 inclusions do not react with CaO, and the low melting point Al 2 O 3 —CaO inclusions are not formed.
In addition, nitride is an effective refractory material, and B and Si
This is because the nitride also reacts to form B 2 O 3 or SiO 2 and effectively acts on the morphological change to a low melting point inclusion.

【0040】すなわち、無酸化雰囲気の容器内におい
て、Al脱酸により生成した溶鋼中の高融点で非延性の A
l2O3系介在物が、細孔の多孔性ノズル内を通過する過程
でノズル内壁に衝突し、上記のノズル材質と反応して流
動性のある低融点介在物となるから、ノズル閉塞は発生
せず、溶鋼は細孔を有する多孔性ノズルを通過する。
That is, in a non-oxidizing atmosphere container, high melting point and non-ductile A in molten steel produced by Al deoxidation
The l 2 O 3 -based inclusions collide with the inner wall of the nozzle in the process of passing through the porous nozzle having pores, and react with the above-mentioned nozzle material to become fluid low-melting-point inclusions. Not generated, the molten steel passes through a porous nozzle with pores.

【0041】したがって、ノズルの細孔が小さいほど、
溶融金属中の Al2O3系介在物のノズル細孔の内壁に衝突
する確率が高くなり、高融点非延性の Al2O3系介在物が
低融点介在物へ形態変化する反応効率が促進される。
Therefore, the smaller the pores of the nozzle,
The probability that the Al 2 O 3 -based inclusions in the molten metal will collide with the inner walls of the nozzle pores will increase, and the reaction efficiency of the transformation of the high melting point non-ductile Al 2 O 3 -based inclusions into the low melting point inclusions will be promoted. To be done.

【0042】しかし、 Al2O3系介在物がノズル耐火物と
反応して低融点介在物が生成され、これが溶鋼滴下粒と
ともに流出すると、ノズル耐火物が溶損する。しかし、
この溶損は過度であってはならないから、その防止策と
して見掛気孔率が5%以下の高緻密質耐火物を用い、溶
融金属が接触する多孔性ノズル界面の反応層を極力小さ
くすることで、ノズルの溶損が軽減される。
However, the Al 2 O 3 -based inclusions react with the nozzle refractory material to form low-melting-point inclusions, which flow out together with the molten steel droplets, causing the nozzle refractory material to melt. But,
Since this erosion should not be excessive, use a highly dense refractory material with an apparent porosity of 5% or less and minimize the reaction layer at the interface of the porous nozzle with which the molten metal contacts as a preventive measure. Therefore, the melting loss of the nozzle is reduced.

【0043】耐火物の見掛気孔率が5%を超えると、気
孔(耐火物を構成する粒子間)をとおして介在物との反
応が進行し、耐火物粒子を脱落させながら溶損が進行す
るため、ノズル耐火物の溶損量が増大する。よって、耐
火物素材としての見掛気孔率を5%以下とした。
When the apparent porosity of the refractory exceeds 5%, the reaction with the inclusions proceeds through the pores (between the particles constituting the refractory), and the melting loss progresses while the refractory particles are removed. Therefore, the amount of melting damage of the nozzle refractory increases. Therefore, the apparent porosity of the refractory material is set to 5% or less.

【0044】多孔性ノズルの細孔の個数は処理量に応じ
て適宜設定できるが、細孔直径はφ0.5 〜20mmに制限さ
れる。細孔直径がφ 0.5mm未満では、取鍋内の溶融金属
ヘッド( 静圧 )が50mm程度以下となった場合、ノズル耐
火物と溶融金属の表面張力に打ち勝って溶融金属を通過
させることができない。一方、φ20mmを超えると介在物
がノズルの内壁に衝突する確率が低下して前記の反応効
率が落ちる。
The number of pores of the porous nozzle can be appropriately set according to the throughput, but the pore diameter is limited to φ 0.5 to 20 mm. If the pore diameter is less than φ0.5 mm and the molten metal head (static pressure) in the ladle is about 50 mm or less, the surface tension of the nozzle refractory and molten metal cannot be overcome and the molten metal cannot pass through. . On the other hand, when the diameter exceeds 20 mm, the probability that the inclusions collide with the inner wall of the nozzle decreases, and the reaction efficiency decreases.

【0045】細孔の長さは5〜200mm とする。細孔の長
さが5mm未満では溶融金属の静圧に対する多孔性ノズル
の強度が得られず、また前記の反応効率が低い。一方、
200mm 以上では圧損が大きくなりすぎて、溶融金属が通
過しない。
The length of the pores is 5 to 200 mm. If the pore length is less than 5 mm, the strength of the porous nozzle against the static pressure of the molten metal cannot be obtained, and the reaction efficiency is low. on the other hand,
Above 200 mm, the pressure loss becomes too large and molten metal does not pass through.

【0046】ノズルの細孔間隔は、取鍋内の溶融金属ヘ
ッドに対する多孔性ノズルの強度との関係により決定さ
れるものである。すなわち、選択した耐火物の材質、ノ
ズル長さ( 厚さ )および溶融金属ヘッドの三要因から決
まる。この間隔は多孔性ノズルの強度さえ維持できる範
囲であれば実用上問題はなく、また、溶融金属の清浄性
にはそれほど大きい影響は与えない。
The pore spacing of the nozzles is determined by the relationship with the strength of the porous nozzle with respect to the molten metal head in the ladle. That is, it depends on three factors: the refractory material selected, the nozzle length (thickness), and the molten metal head. This interval has no practical problem as long as it can maintain the strength of the porous nozzle, and does not significantly affect the cleanliness of the molten metal.

【0047】多孔性ノズルの外径は、処理速度に応じた
細孔径、個数および長さを有するノズルが、溶融金属ヘ
ッドに耐えるかどうかにより決定される。介在物とノズ
ル耐火物との反応は、細孔の内壁との衝突により促進さ
れるため、多孔性ノズルの外径そのものと前記の反応効
率や溶融金属の清浄性とはあまり関係がない。
The outer diameter of the porous nozzle is determined by whether or not the nozzle having the pore size, the number and the length according to the processing speed can withstand the molten metal head. Since the reaction between the inclusions and the refractory material in the nozzle is promoted by the collision with the inner wall of the pore, the outer diameter itself of the porous nozzle has little relation to the reaction efficiency and the cleanliness of the molten metal.

【0048】上記の手段でノズル閉塞と過度の溶損を防
止し、かつ溶融金属を微細な溶融金属粒滴にすることが
可能である。その一例として、Al脱酸したsol.Al:0.05
%、温度:1600 ℃の炭素鋼の溶鋼を、直径φ3mm×102
個の多孔性ノズル〔外径φ50mm、長さ30mm、材質: CaO
(見掛気孔率1%)、SiO2(見掛気孔率2%)、30%Ca
O−MgO −SiO2(見掛気孔率5%)および10% CaO−BN
(見掛気孔率0.2 %)〕を用いて1800Kg処理した。これ
らのうち、前三者の使用後の多孔性ノズルの状況を図
2、図3および図4に示す。
By the above means, it is possible to prevent nozzle clogging and excessive melting loss, and to make molten metal into fine molten metal droplets. As an example, Al deoxidized sol.Al:0.05
%, Temperature: 1600 ℃ molten steel of carbon steel, diameter φ3mm × 102
One porous nozzle (outer diameter φ50 mm, length 30 mm, material: CaO
(Apparent porosity 1%), SiO 2 (apparent porosity 2%), 30% Ca
O-MgO-SiO 2 (apparent porosity 5%) and 10% CaO-BN
(Apparent porosity 0.2%)] was used to treat 1800 kg. Of these, the states of the porous nozzles after the use of the former three are shown in FIGS. 2, 3 and 4.

【0049】図2は CaOの場合、図3はSiO2の場合およ
び図4は30% CaO−MgO −SiO2の場合のノズルの縦断面
を示す写真の模写図である。図示するように、細孔の入
口コーナー部のみが溶損して丸くなっているが、前記図
7(a) のような Al2O3の群落状介在物は全く付着しなか
った。上記10% CaO−BNの場合も同様であった。
[0049] Figure 2 in the case of CaO, FIG. 3 is a replication view photograph showing a longitudinal section of the nozzle in the case when the SiO 2 and 4 of 30% CaO-MgO -SiO 2. As shown in the figure, only the entrance corners of the pores were melted and rounded, but the Al 2 O 3 group inclusions as shown in FIG. 7 (a) did not adhere at all. The same was true for the above 10% CaO-BN.

【0050】このようなノズル材質として適正な気孔率
と組成を有する、 CaO、SiO2、 CaO−MgO −SiO2および
CaO−BNを用いた場合の介在物形態は Al2O3−CaO 系と
なり、この介在物の融点は Al2O3とCaO の比率次第で
は、 Al2O3−CaO 系状態図から明らかなように1400℃程
度まで低下する。
[0050] having the composition as appropriate porosity as such nozzle materials, CaO, SiO 2, CaO- MgO -SiO 2 and
When CaO-BN is used, the inclusion morphology is Al 2 O 3 -CaO system, and the melting point of this inclusion is obvious from the Al 2 O 3 -CaO system phase diagram, depending on the ratio of Al 2 O 3 and CaO. As you can see, it drops to about 1400 ℃.

【0051】溶融金属は上記の細孔を有する多孔性ノズ
ルを通過することによって、微細な粒滴となり、微細な
溶融金属中の介在物は粒滴表面に効率よく排出される。
図5および図6は、この例を比較して示す粒滴表面の走
査電子顕微鏡写真の複写図である。
The molten metal passes through the porous nozzle having the above-mentioned pores to form fine droplets, and the inclusions in the fine molten metal are efficiently discharged to the surface of the droplets.
FIG. 5 and FIG. 6 are copy diagrams of scanning electron micrographs of the surface of the droplets showing the comparison of this example.

【0052】図5は前記図2に示す CaO製多孔ノズルを
用いた場合の、粒滴表面に排出された球状の Al2O3−Ca
O 介在物を、図6は前記図7に示すAl2O3 製多孔性ノズ
ルを用いた場合の、粒滴表面に排出された群落状のAl2O
3 介在物を、それぞれ示すものである。
FIG. 5 shows the spherical Al 2 O 3 —Ca discharged on the surface of the droplet when the CaO porous nozzle shown in FIG. 2 is used.
As for the O inclusions, FIG. 6 shows the cluster-like Al 2 O discharged onto the surface of the droplet when the Al 2 O 3 porous nozzle shown in FIG. 7 is used.
The three inclusions are shown respectively.

【0053】用いる溶融スラグには、溶融金属が通過し
やすく、かつ介在物を吸収しやすい性能を持たせる必要
があり、 Al2O3系介在物と濡れ性がよく、かつ反応しや
すい組成のものを選択する。例えば、 CaO−CaF2−Al2O
3 系のスラグが挙げられる。
It is necessary that the molten slag to be used has such a property that the molten metal can easily pass therethrough and that the inclusions can be easily absorbed, and the composition has good wettability with Al 2 O 3 -based inclusions and easily reacts. Select one. For example, CaO-CaF 2 -Al 2 O
3 series slag can be mentioned.

【0054】[0054]

【実施例】図1に示す装置を用いて次の実験を行った。EXAMPLE The following experiment was conducted using the apparatus shown in FIG.

【0055】表1に示す化学組成のAlで脱酸した1600℃
の溶鋼2000kgと次の条件の多孔性ノズルを用いた。
Deoxidized with Al having the chemical composition shown in Table 1 at 1600 ° C.
2000 kg of molten steel and a porous nozzle under the following conditions were used.

【0056】[0056]

【表1】 [Table 1]

【0057】多孔性ノズル: 材質:高純度、高密度の CaO(見掛気孔率:1%) 高純度、高密度のSiO2(見掛気孔率:2%) 高密度の30% CaO−MgO −SiO2(見掛気孔率:5%) 高密度の10% CaO−BN(見掛気孔率:0.5 %) 細孔:径φ3mm、個数102 、間隔2.5mm 外径:φ50mm 長さ: 30mm 雰囲気中酸素濃度を 0.1%以下、予熱温度を1200℃に調
整したタンディシュの中に、溶鋼を 420kg/minで多孔性
ノズル内を通過させ、微細粒滴にして注入した。タンデ
ィシュ内のスラグには表2に示す組成の溶融スラグを用
い、これに微細粒滴を滴下させた。溶融スラグが鋳型内
に流入しないように堰で遮断して連続鋳造を行った。
Porous Nozzle: Material: High-purity, high-density CaO (apparent porosity: 1%) High-purity, high-density SiO 2 (apparent porosity: 2%) High-density 30% CaO-MgO -SiO 2 (apparent porosity: 5%) High density 10% CaO-BN (apparent porosity: 0.5%) Pore: Diameter φ3mm, number 102, spacing 2.5mm Outer diameter: φ50mm Length: 30mm Atmosphere Molten steel was passed through a porous nozzle at a rate of 420 kg / min into a tundish adjusted to a medium oxygen concentration of 0.1% or less and a preheating temperature of 1200 ° C, and was injected as fine droplets. The molten slag having the composition shown in Table 2 was used as the slag in the tundish, and fine particle droplets were dropped on this. Continuous casting was performed by blocking with a weir so that the molten slag did not flow into the mold.

【0058】[0058]

【表2】 [Table 2]

【0059】比較例は、上記の多孔性ノズルの細孔総断
面積と同じ断面積を持つ直径φ30mmの単孔ノズル (材
質:アルミナグラファイト) を用いて、溶融スラグを使
用しない場合とこれを使用する場合とした。
In the comparative example, a single-hole nozzle (material: alumina graphite) having a diameter of 30 mm and the same cross-sectional area as the total pore cross-sectional area of the above-mentioned porous nozzle was used, and no molten slag was used. If you want to.

【0060】評価は、処理前後でトータル酸素と介在物
総個数との減少率および介在物の平均大きさを比較する
方法で行った。さらに、処理前後の介在物形態の変化も
調査した。これらの結果を表3〜表6に示す。
The evaluation was performed by a method of comparing the reduction rate of total oxygen and the total number of inclusions and the average size of inclusions before and after the treatment. Furthermore, the change in inclusion morphology before and after the treatment was also investigated. The results are shown in Tables 3 to 6.

【0061】[0061]

【表3】 [Table 3]

【0062】[0062]

【表4】 [Table 4]

【0063】[0063]

【表5】 [Table 5]

【0064】[0064]

【表6】 [Table 6]

【0065】表3に示すように、CaO 製の多孔性ノズル
ではトータル酸素値が、処理前の取鍋内溶鋼での42ppm
から処理後のタンディシュ内では9ppm まで低下し、そ
の減少率は約80%に達した。SiO2製の多孔性ノズルでは
同様に44ppm から10ppmに、CaO −MgO −SiO2製の多孔
性ノズルでは同様に45ppm から11ppmに、 CaO−BN製の
多孔性ノズルでは同様に46ppm から10ppmに、それぞれ
低下し、その減少率はいずれも約80%であった。
As shown in Table 3, the total oxygen value of the CaO porous nozzle was 42 ppm in the molten steel in the ladle before the treatment.
In the treated tundish, it decreased to 9ppm, and the reduction rate reached about 80%. To 10ppm from 44ppm similarly in SiO 2 made of porous nozzle, similarly to 11ppm from 45ppm is a porous nozzle made of CaO -MgO -SiO 2, similarly to 10ppm from 46ppm is a porous nozzle made of CaO-BN, The decrease rate was about 80% in each case.

【0066】一方、表4に示すように、比較例のうちス
ラグなしでは処理後のトータル酸素値は30ppm までしか
低下せず、減少率も26.8%に留まった。スラグありでは
同様に38.0ppm までしか低下せず、減少率は8.4 %であ
った。
On the other hand, as shown in Table 4, in the comparative examples, without slag, the total oxygen value after the treatment decreased only to 30 ppm, and the reduction rate remained at 26.8%. Similarly, with slag, it decreased only to 38.0 ppm, and the rate of decrease was 8.4%.

【0067】表5から明らかなように、介在物総個数で
比較すると、処理後の介在物の減少率は本発明例では77
〜83%であり、著しく減少している。
As is clear from Table 5, when the total number of inclusions is compared, the reduction rate of the inclusions after the treatment is 77 in the present invention.
~ 83%, which is a significant decrease.

【0068】表6に示すように、比較例のスラグなしで
は介在物総個数の減少率は約16%であり、スラグありで
は逆に4.7 %増加している。このように、比較例ではい
ずれも介在物総個数低減の効果はみられない。
As shown in Table 6, the reduction rate of the total number of inclusions was about 16% without the slag in the comparative example, and was increased by 4.7% with the slag. As described above, in each of the comparative examples, the effect of reducing the total number of inclusions is not observed.

【0069】介在物の平均大きさは、本発明例、比較例
ともに処理前の52〜55μm(max は300 μm)から、本発明
例の処理後ではいずれも 8.5〜10.5μm(max は25μm)に
減少し、比較例の35μm(スラグなし)、61μm(スラグあ
り) に対し非常に小さくなっている。
The average size of the inclusions ranges from 52 to 55 μm (max is 300 μm) before the treatment in both the inventive examples and the comparative examples, and from 8.5 to 10.5 μm (max is 25 μm) after the treatment of the inventive examples. To 35 μm (without slag) and 61 μm (with slag) in the comparative example, which is very small.

【0070】処理前の介在物の形態は、いずれもその約
98%がAl2O3 系の非延性の群落状介在物であるが、処理
後の介在物の形態は、本発明例ではいずれも全介在物の
約93〜96%が Al2O3−CaO 系の球状の延性介在物に変化
した。一方、比較例のスラグなしの処理後では、全介在
物の37%が Al2O3−CaO 系の球状の延性介在物となって
いるが、処理前より処理後の方が介在物が増加し、大き
くなっていることから、取鍋からの注入流によってスラ
グを溶鋼中に巻き込んでいるものと推定される。したが
って、介在物の形態変化には若干の効果はあるかもしれ
ないが、鋼の清浄化には全く効果がない。
The form of inclusions before treatment is about
While 98% is a community-like inclusions of non-ductile Al 2 O 3 system, the form of inclusions after treatment, either in the present invention example about 93-96% of the total inclusions Al 2 O 3 - It was changed to a CaO-based spherical ductile inclusion. On the other hand, after the treatment without slag in the comparative example, 37% of all the inclusions were spherical ductile inclusions of Al 2 O 3 -CaO system, but the inclusions increased after the treatment than before treatment. However, since it has grown, it is presumed that the slag is entrained in the molten steel by the injection flow from the ladle. Therefore, although the morphology of inclusions may have some effect, it has no effect on the cleaning of steel.

【0071】[0071]

【発明の効果】本発明の方法によれば、溶融金属中の高
融点、非延性の群落状 Al2O3系介在物を、低融点の球状
Al2O3−CaO 系延性介在物に形態変化させた後に、溶融
金属を微細粒滴化してこの粒滴表面に介在物を排出さ
せ、この液滴をスラグ中に滴下させて、その表面の介在
物をスラグに吸収させて介在物を除去し、高清浄性の金
属を大量に製造することが可能である。
According to the method of the present invention, the high melting point, non-ductile, cluster-like Al 2 O 3 -based inclusions in the molten metal are converted into low melting point spherical particles.
After changing the morphology to Al 2 O 3 -CaO-based ductile inclusions, the molten metal is made into fine droplets and the inclusions are discharged onto the surface of these droplets. Inclusions can be absorbed in slag to remove the inclusions, and a large amount of highly clean metal can be produced.

【0072】形態が変化した介在物は、流動性のよい低
融点介在物であるため、介在物によるノズル閉塞は発生
しない。溶融金属中に介在物が残留しても非常に微細
な、かつ延性の介在物であるため製品において無害であ
る。
Since the inclusions of which the form has changed are low-melting inclusions having good fluidity, the nozzles will not be blocked by the inclusions. Even if inclusions remain in the molten metal, they are very fine and ductile inclusions, so they are harmless in products.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施する装置の例を示す概略の
縦断面図である。
FIG. 1 is a schematic vertical sectional view showing an example of an apparatus for carrying out the method of the present invention.

【図2】CaO 製多孔性ノズルの使用後の例を示すノズル
縦断面の写真の模写図である。
FIG. 2 is a copy of a photograph of a vertical cross section of a nozzle showing an example after using a porous nozzle made of CaO 2.

【図3】SiO2製多孔性ノズルの使用後の例を示すノズル
縦断面の写真の模写図である。
FIG. 3 is a copy of a photograph of a vertical cross section of a nozzle showing an example after using a porous nozzle made of SiO 2 .

【図4】CaO−MgO −SiO2製多孔性ノズルの使用後の例
を示すノズル縦断面の写真の模写図である。
FIG. 4 is a copy of a photograph of a vertical cross section of a nozzle showing an example after using a porous nozzle made of CaO—MgO—SiO 2 .

【図5】CaO 製多孔性ノズルを用いたときの、鋼の粒滴
表面に排出された Al2O3−CaO系球状介在物の例を示す
走査電子顕微鏡写真の複写図である。
FIG. 5 is a copy of a scanning electron micrograph showing an example of Al 2 O 3 —CaO based spherical inclusions discharged to the surface of steel droplets when a CaO porous nozzle is used.

【図6】Al2O3 製多孔性ノズルを用いたときの、鋼の粒
滴表面に排出された群落状Al2O3 系介在物の例を示す走
査電子顕微鏡写真の複写図である。
FIG. 6 is a copying diagram of a scanning electron micrograph showing an example of a cluster-like Al 2 O 3 -based inclusion discharged onto the surface of steel droplets when an Al 2 O 3 porous nozzle is used.

【図7】Al2O3 製多孔性ノズルの使用後の例を示す図で
ある。(a) は、Al2O3 系介在物により閉塞した場合のノ
ズル縦断面の写真の模写図である。(b) は、(a) の円部
の拡大写真の模写図である。
FIG. 7 is a diagram showing an example after using a porous nozzle made of Al 2 O 3 . (a) is a copy of a photograph of a vertical cross section of a nozzle when it is blocked by an Al 2 O 3 -based inclusion. (b) is a copy of the enlarged photograph of the circle in (a).

【符号の説明】[Explanation of symbols]

1:取鍋、2:多孔性ノズル、 3:溶鋼粒滴、4:ス
ラグ、5:堰、 6:タンディッシュ、7:鋳型、
8:浸漬ノズル、9:溶鋼、10:処理後溶鋼
1: Ladle, 2: Porous nozzle, 3: Molten steel droplets, 4: Slag, 5: Weir, 6: Tundish, 7: Mold,
8: Immersion nozzle, 9: Molten steel, 10: Molten steel after treatment

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】無酸化調整した大気圧の容器内において、
溶融金属の粒滴を溶融スラグ層を通過させ、溶融金属中
の介在物をスラグに吸収させて介在物を分離、除去する
ことにより清浄金属を製造する方法であって、溶融スラ
グ層を通過させる前に、溶融金属を耐火物製の多孔性ノ
ズルを通して微細な粒滴とするとともに、溶鋼中の介在
物の形態を変化させた後、前記スラグ層に滴下させるこ
とを特徴とする溶融金属の粒滴化による高清浄性金属の
製造方法。
1. A non-oxidation-controlled atmospheric pressure container,
A method for producing clean metal by passing droplets of molten metal through a molten slag layer, absorbing inclusions in the molten metal by the slag, separating and removing inclusions, and passing through the molten slag layer. Before, while the molten metal is made into fine droplets through a refractory porous nozzle, after changing the form of inclusions in the molten steel, the molten metal particles characterized by being dropped into the slag layer A method for producing a highly clean metal by dripping.
【請求項2】請求項1に記載の耐火物製の多孔性ノズル
が、内径 0.5〜20mm、長さ5〜100mm の孔を多数個有
し、その耐火物素材の見掛気孔率は5%以下であり、組
成はCaO が100 %の酸化物、SiO2が100 %の酸化物、Ca
O を5%以上含有する酸化物およびCaO を5%以上含有
する窒化物の1種もしくは2種以上からなる多孔性ノズ
ルであることを特徴とする請求項1に記載の溶融金属の
粒滴化による高清浄性金属の製造方法。
2. The refractory porous nozzle according to claim 1 has a large number of holes having an inner diameter of 0.5 to 20 mm and a length of 5 to 100 mm, and the refractory material has an apparent porosity of 5%. The composition is as follows: 100% CaO oxide, 100% SiO 2 oxide, Ca
A droplet nozzle for molten metal according to claim 1, which is a porous nozzle made of one kind or two or more kinds of oxides containing 5% or more of O 2 and nitrides containing 5% or more of CaO 2. A method for producing a highly clean metal according to.
JP5057637A 1993-03-18 1993-03-18 Production of high cleanliness metal by making molten metal drips Pending JPH06271922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5057637A JPH06271922A (en) 1993-03-18 1993-03-18 Production of high cleanliness metal by making molten metal drips

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5057637A JPH06271922A (en) 1993-03-18 1993-03-18 Production of high cleanliness metal by making molten metal drips

Publications (1)

Publication Number Publication Date
JPH06271922A true JPH06271922A (en) 1994-09-27

Family

ID=13061408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5057637A Pending JPH06271922A (en) 1993-03-18 1993-03-18 Production of high cleanliness metal by making molten metal drips

Country Status (1)

Country Link
JP (1) JPH06271922A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013162260A1 (en) * 2012-04-23 2013-10-31 포항공과대학교 산학협력단 Apparatus for refining molten metal, and refining method using same
WO2013168983A1 (en) * 2012-05-08 2013-11-14 포항공과대학교 산학협력단 Apparatus for manufacturing clean steel and refining method using same
WO2013172613A1 (en) * 2012-05-14 2013-11-21 주식회사 포스코 High cleanliness molten steel production method and refining device
KR101356861B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Refining device of high purity molten steel
KR101356803B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Refining device of high purity molten steel
KR101356906B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Refining device of high purity molten steel
KR101356842B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Refining device of high purity molten steel and refining slag
KR101356909B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Refining device of high purity molten steel and method thereof
KR101356889B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Refining device of high purity molten steel and refining slag
KR101356854B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Refining device of high purity molten steel
KR101356928B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Method of manufacturing high purity molten steel and the refining device thereof
KR101356858B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Refining device of high purity molten steel
KR101356850B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Refining device of high purity molten steel
JP2014019590A (en) * 2012-07-13 2014-02-03 Dowa Electronics Materials Co Ltd Method for manufacturing aqueous gallium nitrate solution
KR101400643B1 (en) * 2012-05-14 2014-05-27 주식회사 포스코 Desulfurization method by forming droplets of molten steel and the desulfurization device thereof
KR101462168B1 (en) * 2012-12-26 2014-11-14 주식회사 포스코 Treatment apparatus for molten metal and the method thereof
CN109954853A (en) * 2017-12-14 2019-07-02 鞍钢股份有限公司 Efficient electroslag washing device and method
CN114921611A (en) * 2022-05-23 2022-08-19 辽宁北祥重工机械制造有限公司 Process method for producing large-scale high-quality alloy structural steel and high-quality carbon structural steel ingots

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013162260A1 (en) * 2012-04-23 2013-10-31 포항공과대학교 산학협력단 Apparatus for refining molten metal, and refining method using same
WO2013168983A1 (en) * 2012-05-08 2013-11-14 포항공과대학교 산학협력단 Apparatus for manufacturing clean steel and refining method using same
KR101356850B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Refining device of high purity molten steel
KR101400643B1 (en) * 2012-05-14 2014-05-27 주식회사 포스코 Desulfurization method by forming droplets of molten steel and the desulfurization device thereof
WO2013172613A1 (en) * 2012-05-14 2013-11-21 주식회사 포스코 High cleanliness molten steel production method and refining device
KR101356906B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Refining device of high purity molten steel
KR101356842B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Refining device of high purity molten steel and refining slag
KR101356909B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Refining device of high purity molten steel and method thereof
KR101356889B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Refining device of high purity molten steel and refining slag
KR101356854B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Refining device of high purity molten steel
KR101356928B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Method of manufacturing high purity molten steel and the refining device thereof
US9752202B2 (en) 2012-05-14 2017-09-05 Posco High cleanliness molten steel production method and refining device
KR101356803B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Refining device of high purity molten steel
EP2851439A4 (en) * 2012-05-14 2016-01-20 Posco High cleanliness molten steel production method and refining device
KR101356858B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Refining device of high purity molten steel
EP2851439B1 (en) * 2012-05-14 2019-03-06 Posco High cleanliness molten steel production method and refining device
CN104395484A (en) * 2012-05-14 2015-03-04 Posco公司 High cleanliness molten steel production method and refining device
JP2015523465A (en) * 2012-05-14 2015-08-13 ポスコ High clean molten steel manufacturing method and refining equipment
KR101356861B1 (en) * 2012-05-14 2014-01-28 주식회사 포스코 Refining device of high purity molten steel
JP2014019590A (en) * 2012-07-13 2014-02-03 Dowa Electronics Materials Co Ltd Method for manufacturing aqueous gallium nitrate solution
CN104884640A (en) * 2012-12-26 2015-09-02 株式会社Posco Apparatus and method for processing molten iron
EP2940155A4 (en) * 2012-12-26 2016-08-03 Posco Apparatus and method for processing molten iron
KR101462168B1 (en) * 2012-12-26 2014-11-14 주식회사 포스코 Treatment apparatus for molten metal and the method thereof
CN109954853A (en) * 2017-12-14 2019-07-02 鞍钢股份有限公司 Efficient electroslag washing device and method
CN114921611A (en) * 2022-05-23 2022-08-19 辽宁北祥重工机械制造有限公司 Process method for producing large-scale high-quality alloy structural steel and high-quality carbon structural steel ingots

Similar Documents

Publication Publication Date Title
JPH06271922A (en) Production of high cleanliness metal by making molten metal drips
US4277281A (en) Continuous filter for molten copper
KR100227252B1 (en) Method of refining molten metal
JP2017166026A (en) Manufacturing method of high cleanliness steel
WO1995032312A1 (en) Method and apparatus for refining molten metal
JP2001335854A (en) Apparatus and method for refining high purity metal
JP6547638B2 (en) Method of manufacturing high purity steel
KR100368239B1 (en) A process of refining molten steel for high clean steel
KR100213326B1 (en) Refining method of r.h vacuum degasing and the same device
JP2896198B2 (en) Casting method for steel with excellent resistance to hydrogen-induced cracking
KR101062953B1 (en) Immersion nozzle
JP3892569B2 (en) Method for cleaning molten steel
JPH0873923A (en) Production of clean steel having excellent hydrogen induced crack resistance
KR20000042054A (en) Method for scouring high pure steel of aluminum deoxidation
JP2614915B2 (en) Melting method of clean steel using droplet degassing method
JPH07188731A (en) Method for melting urtralow oxygen steel
JPS63149057A (en) Method for cleaning molten steel in tundish
RU2095429C1 (en) Method of producing roller-bearing steel
GB2057904A (en) Purifying molten copper
JPS62203647A (en) Production of high carbon steel wire
JP3570569B2 (en) Refining method of molten metal
JP2019206744A (en) Refining process for molten steel
JPH04333359A (en) Method for detoxicating inclusion in steel
JPH1157959A (en) Method for cleaning molten steel
JPH08246035A (en) Production of stainless steel