JP2014019590A - Method for manufacturing aqueous gallium nitrate solution - Google Patents

Method for manufacturing aqueous gallium nitrate solution Download PDF

Info

Publication number
JP2014019590A
JP2014019590A JP2012157283A JP2012157283A JP2014019590A JP 2014019590 A JP2014019590 A JP 2014019590A JP 2012157283 A JP2012157283 A JP 2012157283A JP 2012157283 A JP2012157283 A JP 2012157283A JP 2014019590 A JP2014019590 A JP 2014019590A
Authority
JP
Japan
Prior art keywords
nitric acid
gallium
aqueous
aqueous solution
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012157283A
Other languages
Japanese (ja)
Inventor
Kazuji Sano
和司 佐野
Yoshiki Takeda
佳樹 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2012157283A priority Critical patent/JP2014019590A/en
Publication of JP2014019590A publication Critical patent/JP2014019590A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an aqueous gallium nitrate solution capable of manufacturing an aqueous gallium nitrate solution by dissolving gallium into an aqueous nitric acid solution within a brief period.SOLUTION: An aqueous gallium nitrate solution is manufactured by atomizing and dissolving liquid gallium into an aqueous nitric acid solution as follows: while an aqueous nitric acid solution (or hot water) maintained at a temperature of 60°C or above is being intensely agitated at a 240-1000 rpm (or at a per-volume power of 1/W or above) with agitation blades, etc., a high-purity (5-6 N) liquid gallium is added to the aqueous nitric acid solution (or hot water) through capillaries consisting of one or more tubes with inner diameters of 0.1-5 mm (preferably 1-3 mm) (or nitric acid is added following the addition of hot water).

Description

本発明は、硝酸ガリウム水溶液の製造方法に関し、特に、酸化ガリウムの製造などに使用する硝酸ガリウム水溶液の製造方法に関する。   The present invention relates to a method for producing an aqueous gallium nitrate solution, and more particularly to a method for producing an aqueous gallium nitrate solution used for producing gallium oxide.

硝酸ガリウム水溶液は、半導体や発光素子などの製造原料として使用される酸化ガリウムの製造などに使用されている。このような硝酸ガリウム水溶液は、高純度の金属ガリウムを濃硝酸に投入して撹拌しながら溶解させて、加熱することによって得ることができる(例えば、特許文献1参照)。   Gallium nitrate aqueous solution is used for the production of gallium oxide used as a production raw material for semiconductors and light emitting devices. Such an aqueous gallium nitrate solution can be obtained by putting high-purity metallic gallium into concentrated nitric acid, dissolving it with stirring, and heating (for example, see Patent Document 1).

特開2009−29694号公報(段落番号0028)JP 2009-29694 A (paragraph number 0028)

しかし、酸化ガリウム製造用の硝酸ガリウム水溶液を製造するために、高純度(5〜6N)のガリウムを硝酸で溶解しようとしても、非常に溶け難く、溶解時間が非常に長いという問題がある。   However, in order to produce a gallium nitrate aqueous solution for producing gallium oxide, there is a problem that even if high purity (5-6N) gallium is dissolved in nitric acid, it is very difficult to dissolve and the dissolution time is very long.

したがって、本発明は、このような従来の問題点に鑑み、ガリウムを短時間で硝酸水溶液に溶解させて硝酸ガリウム水溶液を製造することができる、硝酸ガリウム水溶液の製造方法を提供することを目的とする。   Accordingly, the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a method for producing an aqueous gallium nitrate solution that can produce an aqueous gallium nitrate solution by dissolving gallium in an aqueous nitric acid solution in a short time. To do.

本発明者らは、上記課題を解決するために鋭意研究した結果、液体ガリウムを微粒化して硝酸水溶液に溶解させることにより、ガリウムを短時間で硝酸水溶液に溶解させて硝酸ガリウム水溶液を製造することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the inventors of the present invention have made liquid gallium atomized and dissolved in an aqueous nitric acid solution, thereby dissolving gallium in an aqueous nitric acid solution in a short time to produce an aqueous gallium nitrate solution. As a result, the present invention has been completed.

すなわち、本発明による硝酸ガリウム水溶液の製造方法は、液体ガリウムを微粒化して硝酸水溶液に溶解させて硝酸ガリウム水溶液を製造することを特徴とする。この硝酸ガリウム水溶液の製造方法において、硝酸水溶液を撹拌しながら細管を通して液体ガリウムを硝酸水溶液に添加することにより、あるいは、水を撹拌しながら細管を通して液体ガリウムを水に添加した後に硝酸を添加することにより、液体ガリウムを微粒化して硝酸水溶液に溶解させるのが好ましい。この場合、撹拌が240〜1000rpmの強撹拌であるのが好ましく、あるいは、撹拌が硝酸水溶液の容積当りの動力を1W/L以上として行われるのが好ましく、また、細管が内径0.1〜5mmの1本以上のチューブであるのが好ましい。また、液体ガリウムを硝酸水溶液または水に添加する際に硝酸水溶液または水の温度を60℃以上に維持するのが好ましい。さらに、液体ガリウムを硝酸水溶液に溶解させる際に硝酸水溶液に過酸化水素を添加するのが好ましい。   That is, the method for producing an aqueous gallium nitrate solution according to the present invention is characterized in that liquid gallium is atomized and dissolved in an aqueous nitric acid solution to produce an aqueous gallium nitrate solution. In this method for producing an aqueous gallium nitrate solution, the liquid gallium is added to the aqueous nitric acid solution through a thin tube while stirring the aqueous nitric acid solution, or the nitric acid is added after adding the liquid gallium to the water through the thin tube while stirring water. Thus, it is preferable to atomize liquid gallium and dissolve it in an aqueous nitric acid solution. In this case, stirring is preferably strong stirring at 240 to 1000 rpm, or stirring is preferably performed with a power per volume of nitric acid aqueous solution of 1 W / L or more, and the narrow tube has an inner diameter of 0.1 to 5 mm. One or more tubes are preferred. In addition, when adding liquid gallium to an aqueous nitric acid solution or water, the temperature of the aqueous nitric acid solution or water is preferably maintained at 60 ° C. or higher. Further, it is preferable to add hydrogen peroxide to the aqueous nitric acid solution when the liquid gallium is dissolved in the aqueous nitric acid solution.

本発明によれば、液体ガリウムを微粒化して硝酸水溶液に溶解させることにより、ガリウムを短時間で硝酸水溶液に溶解させて硝酸ガリウム水溶液を製造することができる。   According to the present invention, liquid gallium is atomized and dissolved in an aqueous nitric acid solution, whereby gallium can be dissolved in an aqueous nitric acid solution in a short time to produce an aqueous gallium nitrate solution.

実施例1および比較例1において、液体ガリウムの添加を開始してから所定時間経過後の水溶液中に溶解したガリウム濃度を示す図である。In Example 1 and Comparative Example 1, it is a figure which shows the gallium density | concentration melt | dissolved in the aqueous solution after progress for a predetermined time, after adding liquid gallium was started. 実施例1および比較例1において、液体ガリウムの添加を開始してから所定時間経過後のガリウムの溶解進捗率を示す図である。In Example 1 and Comparative Example 1, it is a figure which shows the dissolution progress rate of the gallium after progress for a predetermined time, after the addition of liquid gallium was started. 実施例2において、液体ガリウムの温水への添加が終了した直後の溶液のレーザー顕微鏡写真である。In Example 2, it is a laser micrograph of the solution immediately after the addition of liquid gallium to warm water is completed.

本発明による硝酸ガリウム水溶液の製造方法の実施の形態では、液体ガリウム(例えば、高純度(5〜6N)の液体ガリウム)を微粒化して硝酸水溶液に溶解させて硝酸ガリウム水溶液を製造する。   In the embodiment of the method for producing a gallium nitrate aqueous solution according to the present invention, liquid gallium (for example, high purity (5-6N) liquid gallium) is atomized and dissolved in the nitric acid aqueous solution to produce the gallium nitrate aqueous solution.

この硝酸ガリウム水溶液の製造方法の実施の形態では、硝酸水溶液を撹拌しながら細管を通して液体ガリウムを硝酸水溶液に添加することにより、あるいは、水を撹拌しながら細管を通して液体ガリウムを水に添加した後に硝酸を添加することにより、液体ガリウムを微粒化して硝酸水溶液に溶解させるのが好ましい。従来のように、ガリウムの塊をそのまま硝酸水溶液に添加したり、温水に添加した後に硝酸を添加するのではなく、(予め溶解させた)液体ガリウムを(微粒滴状態に)微粒化して硝酸水溶液に溶解させることにより、ガリウム粒子の表面積を増大して硝酸水溶液への溶解速度を向上させる。   In the embodiment of the method for producing an aqueous gallium nitrate solution, the liquid gallium is added to the aqueous nitric acid solution through the capillary while stirring the aqueous nitric acid solution, or after adding the liquid gallium to the water through the capillary tube while stirring the water. It is preferable that liquid gallium is atomized and dissolved in an aqueous nitric acid solution. Instead of adding the gallium lump directly to the aqueous nitric acid solution or adding the nitric acid after adding it to the warm water as in the past, the liquid gallium (preliminarily dissolved) is atomized (in the form of fine droplets) and the aqueous nitric acid solution To increase the surface area of the gallium particles and improve the dissolution rate in the aqueous nitric acid solution.

液体ガリウムを微粒化するためには、硝酸水溶液を強く撹拌しながら細管を通して液体ガリウムを硝酸水溶液に添加することにより、あるいは、水を強く撹拌しながら細管を通して液体ガリウムを水に添加した後に硝酸を添加することにより、液体ガリウムが硝酸水溶液中または水中で分散して浮遊可能な微粒滴(粒径0.1〜100μm、好ましくは0.1〜10μm、さらに好ましくは0.1〜7μm)に微粒化して硝酸水溶液または水に分散させるのが好ましい。   In order to atomize liquid gallium, the liquid gallium is added to the aqueous nitric acid solution through a thin tube while stirring the aqueous nitric acid solution vigorously, or after adding the liquid gallium to the water through the thin tube while stirring water strongly. Addition of fine particles into fine droplets (particle size 0.1 to 100 μm, preferably 0.1 to 10 μm, more preferably 0.1 to 7 μm) in which liquid gallium can be dispersed and floated in an aqueous nitric acid solution or in water It is preferable to disperse it in a nitric acid aqueous solution or water.

この撹拌は、撹拌羽根などにより240〜1000rpm(または容積当りの動力が1/W以上)の高い撹拌速度で行うのが好ましい。液体ガリウムは比重が大きいため、硝酸水溶液または水を撹拌しないと、液体ガリウムが硝酸水溶液中または水中で沈降して、硝酸水溶液への溶解速度が低くなるが、硝酸水溶液または水を撹拌しながら細管を通して液体ガリウムを硝酸水溶液または水に添加することにより、液体ガリウムを微粒化して硝酸水溶液または水に分散させれば、硝酸水溶液への溶解速度を高くすることができる。なお、撹拌速度が240rpmより低いと、液体ガリウムが硝酸水溶液中または水中で沈降し易くなるので、撹拌速度を240〜1000rpmにするのが好ましく、400〜800rpmにするのがさらに好ましい。例えば、撹拌速度を100rpmとして低速で撹拌した場合に、投入した液体ガリウムの60%を硝酸水溶液に溶解するのに要した時間が32時間以上であっても、撹拌速度を600rpmとして高速で撹拌すると、その溶解時間を5時間程度にすることができる。   This stirring is preferably performed at a high stirring speed of 240 to 1000 rpm (or a power per volume of 1 / W or more) with a stirring blade or the like. Since liquid gallium has a large specific gravity, if the nitric acid aqueous solution or water is not stirred, the liquid gallium will settle in the nitric acid aqueous solution or water, and the dissolution rate in the nitric acid aqueous solution will be low. If liquid gallium is atomized and dispersed in aqueous nitric acid or water by adding liquid gallium to aqueous nitric acid or water, the dissolution rate in aqueous nitric acid can be increased. If the stirring speed is lower than 240 rpm, liquid gallium tends to settle in an aqueous nitric acid solution or in water. Therefore, the stirring speed is preferably 240 to 1000 rpm, and more preferably 400 to 800 rpm. For example, when stirring is performed at a low speed with a stirring speed of 100 rpm, even if the time required to dissolve 60% of the charged liquid gallium in the aqueous nitric acid solution is 32 hours or more, stirring at a high speed with a stirring speed of 600 rpm. The dissolution time can be about 5 hours.

なお、液体ガリウムを硝酸水溶液に添加するより、液体ガリウムを最初に水に添加した後に硝酸を添加した方が、表面酸化により微粒滴同士が凝集し難くなって、浮遊状態を維持し易くなるので、液体ガリウムを水に添加した後に硝酸を添加するのが好ましい。   Rather than adding liquid gallium to an aqueous nitric acid solution, adding liquid nitric acid to water first and then adding nitric acid makes it more difficult for the droplets to aggregate due to surface oxidation, making it easier to maintain a floating state. It is preferable to add nitric acid after adding liquid gallium to water.

この撹拌では、液体ガリウムが硝酸水溶液中または水中で分散して浮遊可能な微粒滴になればよく、せん断力の強い撹拌機の他、スタティックミキサ、ラインミキサ、ホモジナイザ、超音波分散機、サンドグラインダなどを使用することができる。   In this stirring, liquid gallium may be dispersed in nitric acid aqueous solution or in water to form fine droplets that can float. In addition to a stirrer with strong shearing force, static mixer, line mixer, homogenizer, ultrasonic disperser, sand grinder Etc. can be used.

また、液体ガリウムの添加は、内径0.1〜5mm(好ましくは1〜3mm)の1本以上のチューブからなる細管を通して行うのが好ましい。液体ガリウムを通過させるチューブが細くなるほど、ガリウム粒子が小さくなって、ガリウム粒子1個当たりの表面積が増大して、硝酸水溶液への溶解速度が高くなるが、単位時間当りに供給できる液体ガリウムの量が少なくなって(液体ガリウムの添加速度が低くなって)、経済性に劣るので、チューブの内径は、0.1〜5mmであるのが好ましく、1〜3mmであるのがさらに好ましい。なお、チューブを細くするとともにチューブの数を増やせば、1本のチューブによる液体ガリウムの添加速度が低くても、全チューブによる液体ガリウムの添加速度を高めることができるので、硝酸水溶液への溶解速度と高めるとともに液体ガリウムの単位時間当たりの供給量を増大することができる。   The addition of liquid gallium is preferably carried out through a thin tube composed of one or more tubes having an inner diameter of 0.1 to 5 mm (preferably 1 to 3 mm). The thinner the tube through which liquid gallium passes, the smaller the gallium particles, the greater the surface area per gallium particle and the higher the dissolution rate in aqueous nitric acid solution, but the amount of liquid gallium that can be supplied per unit time Therefore, the inner diameter of the tube is preferably from 0.1 to 5 mm, and more preferably from 1 to 3 mm. If the number of tubes is reduced and the number of tubes is increased, the liquid gallium addition rate of all tubes can be increased even if the liquid gallium addition rate of one tube is low. And the supply amount of liquid gallium per unit time can be increased.

また、液体ガリウムの添加は、液体ガリウムを噴霧して行ってもよい。例えば、細管の先端にベンチュリ管を接続して圧縮空気により液体ガリウムを噴霧して添加しても、液体ガリウムを微粒化して硝酸水溶液に溶解させることができる。   The addition of liquid gallium may be performed by spraying liquid gallium. For example, even when a Venturi tube is connected to the tip of a thin tube and liquid gallium is sprayed and added with compressed air, the liquid gallium can be atomized and dissolved in an aqueous nitric acid solution.

また、液体ガリウムの硝酸水溶液への溶解速度を高めるために、液体ガリウムを硝酸水溶液に溶解させる際に硝酸水溶液の温度を60℃以上に維持するのが好ましい。しかし、液体ガリウムを硝酸水溶液に溶解させる際に硝酸水溶液の温度を60℃以上に維持すると、硝酸の分解によりNOxが生成する。このようなNOxの生成を最小限に抑えるとともに、硝酸の分解により生成されたNOxを硝酸に戻して、硝酸の酸化力を回復させ、液体ガリウムの硝酸水溶液への溶解率を高めて、所望のガリウム濃度(例えば、5〜15質量%)の硝酸ガリウム水溶液を得るために、液体ガリウムを硝酸水溶液に溶解させる際に(途中で)硝酸水溶液に過酸化水素を添加するのが好ましい。例えば、液体ガリウムを硝酸水溶液に添加してから1日経過後に過酸化水素を添加するのが好ましい。このように過酸化水素を添加することにより、液体ガリウムの硝酸水溶液の溶解率を100%にすることができる。   In order to increase the dissolution rate of liquid gallium in an aqueous nitric acid solution, the temperature of the aqueous nitric acid solution is preferably maintained at 60 ° C. or higher when the liquid gallium is dissolved in the aqueous nitric acid solution. However, if the temperature of the aqueous nitric acid solution is maintained at 60 ° C. or higher when liquid gallium is dissolved in the aqueous nitric acid solution, NOx is generated due to decomposition of nitric acid. In addition to minimizing the production of such NOx, the NOx produced by the decomposition of nitric acid is returned to nitric acid to recover the oxidizing power of nitric acid, and increase the dissolution rate of liquid gallium in aqueous nitric acid solution to achieve a desired level. In order to obtain a gallium nitrate aqueous solution having a gallium concentration (for example, 5 to 15% by mass), it is preferable to add hydrogen peroxide to the nitric acid aqueous solution when liquid gallium is dissolved in the nitric acid aqueous solution. For example, it is preferable to add hydrogen peroxide one day after adding liquid gallium to the aqueous nitric acid solution. Thus, by adding hydrogen peroxide, the dissolution rate of the aqueous solution of nitric acid in liquid gallium can be made 100%.

以下、本発明による硝酸ガリウム水溶液の製造方法の実施例について詳細に説明する。   Hereinafter, the Example of the manufacturing method of the gallium nitrate aqueous solution by this invention is described in detail.

[実施例1]
2枚のタービン羽根と4枚の邪魔板を備えた撹拌機を10Lのビーカーに設置し、純水5,000gと60%の硝酸2.711g(26モル、33.8質量%、100%の硝酸に換算すると20.3質量%)をビーカーに入れた後、硝酸水溶液を60℃に維持して、攪拌速度600rpmで攪拌しながら、内径3mmの1本のチューブ(テフロン(登録商標)チューブ)を通して、(予め溶解させた)液体ガリウム300g(4.3モル、3.7質量%)を硝酸水溶液に添加した(HNO(モル)/(Ga(モル)/3)当量は1.57)。
[Example 1]
A stirrer equipped with two turbine blades and four baffle plates was placed in a 10 L beaker, and 5,000 g of pure water and 2.711 g of 60% nitric acid (26 mol, 33.8% by mass, 100% (20.3% by mass in terms of nitric acid) was placed in a beaker, and the nitric acid aqueous solution was maintained at 60 ° C. and stirred at a stirring speed of 600 rpm, and a single tube having an inner diameter of 3 mm (Teflon (registered trademark) tube) Through, 300 g (4.3 mol, 3.7 mass%) of liquid gallium (predissolved) was added to the aqueous nitric acid solution (HNO 3 (mol) / (Ga (mol) / 3) equivalent was 1.57) .

液体ガリウムを添加してから2時間後、4時間後、7時間後、8時間後の水溶液を50mLずつサンプリングして、水溶液中のガリウム濃度をICPで測定し、ガリウムの溶解進捗率を算出したところ、水溶液中のガリウム濃度は、それぞれ1.35質量%、2.35質量%、2.88質量%、3.09質量%であり、ガリウムの溶解進捗率は、それぞれ36.05%、62.75%、76.91%、82.51%であった。   After 2 hours, 4 hours, 7 hours, and 8 hours after the addition of liquid gallium, 50 mL of the aqueous solution was sampled, the gallium concentration in the aqueous solution was measured by ICP, and the dissolution progress rate of gallium was calculated. However, the gallium concentration in the aqueous solution is 1.35% by mass, 2.35% by mass, 2.88% by mass, and 3.09% by mass, respectively, and the dissolution progress rates of gallium are 36.05% and 62%, respectively. .75%, 76.91%, 82.51%.

[比較例1]
チューブを通さずに液体ガリウムをそのまま硝酸水溶液に添加し、撹拌速度を100rpmとした以外は、実施例1と同様の方法により、液体ガリウムを硝酸水溶液に添加したところ、液体ガリウムが大きな塊になってビーカーの底に溜まっていた。
[Comparative Example 1]
Liquid gallium was added to the nitric acid aqueous solution by the same method as in Example 1 except that liquid gallium was added as it was to the nitric acid aqueous solution without passing through the tube, and the stirring speed was 100 rpm. At the bottom of the beaker.

また、液体ガリウムを硝酸水溶液に添加してから4時間後、7時間後、26時間後、29時間後、32時間後の水溶液を50mLずつサンプリングして、水溶液中のガリウム濃度をICPで測定し、ガリウムの溶解進捗率を算出したところ、水溶液中のガリウム濃度は、それぞれ0.07質量%、0.13質量%、1.76質量%、2.03質量%、2.20質量%であり、ガリウムの溶解進捗率は、それぞれ1.87%、3.47%、47.00%、54.21%、58.75%であった。   In addition, 4 hours, 7 hours, 26 hours, 29 hours, and 32 hours after the addition of liquid gallium to the nitric acid aqueous solution, 50 mL each of the aqueous solution was sampled, and the gallium concentration in the aqueous solution was measured by ICP. When the progress rate of dissolution of gallium was calculated, the gallium concentration in the aqueous solution was 0.07% by mass, 0.13% by mass, 1.76% by mass, 2.03% by mass, and 2.20% by mass, respectively. The progress rates of dissolution of gallium were 1.87%, 3.47%, 47.00%, 54.21%, and 58.75%, respectively.

[比較例2〜3]
撹拌速度をそれぞれ100rpm(比較例2)および200rpm(比較例3)とした以外は、実施例1と同様の方法により、液体ガリウムを硝酸水溶液に添加したところ、比較例1と同様に、液体ガリウムが大きな塊になってビーカーの底に溜まっていた。
[Comparative Examples 2-3]
Liquid gallium was added to the aqueous nitric acid solution by the same method as in Example 1 except that the stirring speed was 100 rpm (Comparative Example 2) and 200 rpm (Comparative Example 3), respectively. Became a big lump and collected at the bottom of the beaker.

[比較例4]
チューブを通さずに液体ガリウムをそのまま硝酸水溶液に添加した以外は、実施例1と同様の方法により、液体ガリウムを硝酸水溶液に添加したところ、比較例1と同様に、液体ガリウムが大きな塊になってビーカーの底に溜まっており、600rpmで強く撹拌しても、液体ガリウムの塊をほとんど微粒滴に分離することができなかった。
[Comparative Example 4]
When liquid gallium was added to the nitric acid aqueous solution by the same method as in Example 1 except that liquid gallium was added as it was to the nitric acid aqueous solution without passing through the tube, the liquid gallium became a large lump as in Comparative Example 1. The liquid gallium lump could hardly be separated into fine droplets even when vigorously stirred at 600 rpm.

実施例1および比較例1の結果を図1および図2に示す。これらの図から、実施例1では、比較例1と比べて、非常に短い時間で液体ガリウムを溶解させることができるのがわかる。   The results of Example 1 and Comparative Example 1 are shown in FIGS. From these figures, it can be seen that in Example 1, liquid gallium can be dissolved in a very short time compared to Comparative Example 1.

[実施例2]
実際の製造プラントとして、60℃の温水200kgを(インバーター周波数40Hzで容積400L当りの動力を1W/L(=電流1.5A×電圧200V×√3×0.8(力率)/400L)にして)撹拌機により240rpmの高速で撹拌しながら、(予め60℃で溶融させた)液体ガリウム50kgを添加速度150g/分で内径3mmの1本のチューブを通して、温水に添加した後、60%の硝酸290kgを添加して、液体ガリウムを溶解させたところ、3日で95%のガリウムを溶解することができた。なお、液体ガリウムの温水への添加が終了した直後で硝酸を添加する前の溶液のレーザー顕微鏡写真を図3に示す。この写真から、温水に添加された液体ガリウムが粒径2〜7μmの微粒滴状態に微粒化されて温水中に分散しているのがわかる。
[Example 2]
As an actual manufacturing plant, 200 kg of 60 ° C hot water (inverter frequency 40 Hz and power per 400 L volume is 1 W / L (= 1.5 A current × 200 V × √3 × 0.8 (power factor) / 400 L) While stirring with a stirrer at a high speed of 240 rpm, 50 kg of liquid gallium (previously melted at 60 ° C.) was added to warm water through a single tube with an inner diameter of 3 mm at an addition rate of 150 g / min, and then 60% When 290 kg of nitric acid was added to dissolve liquid gallium, 95% gallium could be dissolved in 3 days. FIG. 3 shows a laser micrograph of the solution immediately after the addition of liquid gallium to the warm water and before the addition of nitric acid. From this photograph, it can be seen that the liquid gallium added to the warm water is atomized into fine droplets having a particle diameter of 2 to 7 μm and dispersed in the warm water.

[比較例5]
温水を撹拌しなかった以外は、実施例2と同様の方法により、液体ガリウムを溶解させたところ、95%のガリウムを溶解するのに7日以上かかった。
[Comparative Example 5]
When liquid gallium was dissolved by the same method as in Example 2 except that hot water was not stirred, it took 7 days or more to dissolve 95% gallium.

[比較例6]
温水を(インバーター周波数10Hzで容積400L当りの動力を0.1W/Lにして)60rpmの低速で撹拌した以外は、実施例2と同様の方法により、液体ガリウムを溶解させたところ、95%のガリウムを溶解するのに7日以上かかった。
[Comparative Example 6]
The liquid gallium was dissolved by the same method as in Example 2 except that the hot water was stirred at a low speed of 60 rpm (with an inverter frequency of 10 Hz and a power per 400 L of volume of 0.1 W / L). It took more than 7 days to dissolve gallium.

[実施例3]
チューブの先端にベンチュリ管を接続して圧縮空気により液体ガリウムを硝酸水溶液に噴霧して添加した以外は、実施例1と同様の方法により、液体ガリウムを微粒化して硝酸水溶液に溶解させたところ、実施例1と同様に、非常に短い時間で液体ガリウムを溶解させることができた。
[Example 3]
A liquid gallium was atomized and dissolved in an aqueous nitric acid solution by the same method as in Example 1 except that a venturi tube was connected to the tip of the tube and liquid gallium was sprayed and added to the aqueous nitric acid solution with compressed air. As in Example 1, liquid gallium could be dissolved in a very short time.

Claims (8)

液体ガリウムを微粒化して硝酸水溶液に溶解させて硝酸ガリウム水溶液を製造することを特徴とする、硝酸ガリウム水溶液の製造方法。 A method for producing a gallium nitrate aqueous solution, wherein liquid gallium is atomized and dissolved in a nitric acid aqueous solution to produce a gallium nitrate aqueous solution. 前記硝酸水溶液を撹拌しながら細管を通して前記液体ガリウムを前記硝酸水溶液に添加することにより、前記液体ガリウムを微粒化して前記硝酸水溶液に溶解させることを特徴とする、請求項1に記載の硝酸ガリウム水溶液の製造方法。 The gallium nitrate aqueous solution according to claim 1, wherein the liquid gallium is atomized and dissolved in the nitric acid aqueous solution by adding the liquid gallium to the nitric acid aqueous solution through a thin tube while stirring the nitric acid aqueous solution. Manufacturing method. 水を撹拌しながら細管を通して前記液体ガリウムを水に添加した後に硝酸を添加することにより、前記液体ガリウムを微粒化して前記硝酸水溶液に溶解させることを特徴とする、請求項1に記載の硝酸ガリウム水溶液の製造方法。 The gallium nitrate according to claim 1, wherein the liquid gallium is atomized and dissolved in the nitric acid aqueous solution by adding nitric acid after adding the liquid gallium to the water through a thin tube while stirring water. A method for producing an aqueous solution. 前記撹拌が240〜1000rpmの強撹拌であることを特徴とする、請求項2または3に記載の硝酸ガリウム水溶液の製造方法。 The method for producing an aqueous gallium nitrate solution according to claim 2 or 3, wherein the stirring is strong stirring at 240 to 1000 rpm. 前記撹拌が前記硝酸水溶液の容積当りの動力を1W/L以上として行われることを特徴とする、請求項2または3に記載の硝酸ガリウム水溶液の製造方法。 The method for producing a gallium nitrate aqueous solution according to claim 2 or 3, wherein the stirring is performed at a power per volume of the nitric acid aqueous solution of 1 W / L or more. 前記細管が内径0.1〜5mmの1本以上のチューブであることを特徴とする、請求項2乃至5のいずれかに記載の硝酸ガリウム水溶液の製造方法。 The method for producing an aqueous gallium nitrate solution according to any one of claims 2 to 5, wherein the narrow tube is one or more tubes having an inner diameter of 0.1 to 5 mm. 前記液体ガリウムを前記硝酸水溶液または水に添加する際に前記硝酸水溶液または水の温度を60℃以上に維持することを特徴とする、請求項2乃至6のいずれかに記載の硝酸ガリウム水溶液の製造方法。 The gallium nitrate aqueous solution according to any one of claims 2 to 6, wherein the temperature of the nitric acid aqueous solution or water is maintained at 60 ° C or higher when the liquid gallium is added to the nitric acid aqueous solution or water. Method. 前記液体ガリウムを前記硝酸水溶液に溶解させる際に前記硝酸水溶液に過酸化水素を添加することを特徴とする、請求項1乃至7のいずれかに記載の硝酸ガリウム水溶液の製造方法。 The method for producing a gallium nitrate aqueous solution according to any one of claims 1 to 7, wherein hydrogen peroxide is added to the nitric acid aqueous solution when the liquid gallium is dissolved in the nitric acid aqueous solution.
JP2012157283A 2012-07-13 2012-07-13 Method for manufacturing aqueous gallium nitrate solution Pending JP2014019590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012157283A JP2014019590A (en) 2012-07-13 2012-07-13 Method for manufacturing aqueous gallium nitrate solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012157283A JP2014019590A (en) 2012-07-13 2012-07-13 Method for manufacturing aqueous gallium nitrate solution

Publications (1)

Publication Number Publication Date
JP2014019590A true JP2014019590A (en) 2014-02-03

Family

ID=50194904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012157283A Pending JP2014019590A (en) 2012-07-13 2012-07-13 Method for manufacturing aqueous gallium nitrate solution

Country Status (1)

Country Link
JP (1) JP2014019590A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107973336A (en) * 2017-12-25 2018-05-01 清远先导材料有限公司 The preparation method of gallium nitrate solution
CN108046311A (en) * 2017-12-25 2018-05-18 清远先导材料有限公司 The preparation method of high-purity gallium oxide
WO2021079571A1 (en) * 2019-10-24 2021-04-29 信越化学工業株式会社 Method for producing gallium precursor, and method for producing layered product using same

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU447367A1 (en) * 1973-01-15 1974-10-25 Государственный ордена Октябрьской Революции научно-исследовательский и проектный институт редкометаллической промышленности Method for producing hydroxides of scattered elements of the gallium subgroup
JPS582209A (en) * 1981-06-23 1983-01-07 Sumitomo Metal Mining Co Ltd Manufacture of metallic nitrate
JPS60110437U (en) * 1983-12-28 1985-07-26 住友金属鉱山株式会社 Continuous micro-feeding device for metal or alloy melt
JPS63183138A (en) * 1987-01-23 1988-07-28 Nippon Light Metal Co Ltd Refining method for metallic gallium
JPH06271922A (en) * 1993-03-18 1994-09-27 Sumitomo Metal Ind Ltd Production of high cleanliness metal by making molten metal drips
JPH07300301A (en) * 1994-05-10 1995-11-14 Hitachi Ltd Hydrogen gas-producing apparatus
JPH10338522A (en) * 1997-06-04 1998-12-22 Mitsui Mining & Smelting Co Ltd Production of gallium oxide powder
JPH11269569A (en) * 1998-03-24 1999-10-05 Furukawa Co Ltd Gallium refining
JP2002518356A (en) * 1998-06-12 2002-06-25 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing alkali metal alkoxide
JP2002241860A (en) * 2001-02-09 2002-08-28 Furukawa Co Ltd Method of refining metal
CN1467157A (en) * 2002-07-12 2004-01-14 清华大学 Method for preparing gallium nitrate
JP2004505167A (en) * 2000-08-02 2004-02-19 サーノフ コーポレイション Preparation of alkaline earth metal thiogallate phosphor with high luminous efficiency
CN1762825A (en) * 2005-09-07 2006-04-26 中国铝业股份有限公司 Gallium nitrate preparation method
JP2008031527A (en) * 2006-07-28 2008-02-14 Mitsubishi Materials Corp Method for dissolving metal
JP2009029694A (en) * 2007-06-29 2009-02-12 Sumitomo Chemical Co Ltd Gallium oxide, and method of manufacturing the same
RU2354611C1 (en) * 2007-08-03 2009-05-10 Георгий Георгиевич Кознов Method of gallium oxide production
US7604843B1 (en) * 2005-03-16 2009-10-20 Nanosolar, Inc. Metallic dispersion

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU447367A1 (en) * 1973-01-15 1974-10-25 Государственный ордена Октябрьской Революции научно-исследовательский и проектный институт редкометаллической промышленности Method for producing hydroxides of scattered elements of the gallium subgroup
JPS582209A (en) * 1981-06-23 1983-01-07 Sumitomo Metal Mining Co Ltd Manufacture of metallic nitrate
JPS60110437U (en) * 1983-12-28 1985-07-26 住友金属鉱山株式会社 Continuous micro-feeding device for metal or alloy melt
JPS63183138A (en) * 1987-01-23 1988-07-28 Nippon Light Metal Co Ltd Refining method for metallic gallium
JPH06271922A (en) * 1993-03-18 1994-09-27 Sumitomo Metal Ind Ltd Production of high cleanliness metal by making molten metal drips
JPH07300301A (en) * 1994-05-10 1995-11-14 Hitachi Ltd Hydrogen gas-producing apparatus
JPH10338522A (en) * 1997-06-04 1998-12-22 Mitsui Mining & Smelting Co Ltd Production of gallium oxide powder
JPH11269569A (en) * 1998-03-24 1999-10-05 Furukawa Co Ltd Gallium refining
JP2002518356A (en) * 1998-06-12 2002-06-25 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing alkali metal alkoxide
JP2004505167A (en) * 2000-08-02 2004-02-19 サーノフ コーポレイション Preparation of alkaline earth metal thiogallate phosphor with high luminous efficiency
JP2002241860A (en) * 2001-02-09 2002-08-28 Furukawa Co Ltd Method of refining metal
CN1467157A (en) * 2002-07-12 2004-01-14 清华大学 Method for preparing gallium nitrate
US7604843B1 (en) * 2005-03-16 2009-10-20 Nanosolar, Inc. Metallic dispersion
CN1762825A (en) * 2005-09-07 2006-04-26 中国铝业股份有限公司 Gallium nitrate preparation method
JP2008031527A (en) * 2006-07-28 2008-02-14 Mitsubishi Materials Corp Method for dissolving metal
JP2009029694A (en) * 2007-06-29 2009-02-12 Sumitomo Chemical Co Ltd Gallium oxide, and method of manufacturing the same
RU2354611C1 (en) * 2007-08-03 2009-05-10 Георгий Георгиевич Кознов Method of gallium oxide production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016013521; 日本化学会,編: 新実験化学講座8 無機化合物の合成II , 1977, p.650, 丸善 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107973336A (en) * 2017-12-25 2018-05-01 清远先导材料有限公司 The preparation method of gallium nitrate solution
CN108046311A (en) * 2017-12-25 2018-05-18 清远先导材料有限公司 The preparation method of high-purity gallium oxide
WO2021079571A1 (en) * 2019-10-24 2021-04-29 信越化学工業株式会社 Method for producing gallium precursor, and method for producing layered product using same
JP2021066633A (en) * 2019-10-24 2021-04-30 信越化学工業株式会社 Method for producing gallium precursor, and method for producing layered product using the same
CN114555872A (en) * 2019-10-24 2022-05-27 信越化学工业株式会社 Method for producing gallium precursor and method for producing laminate using gallium precursor
JP7170617B2 (en) 2019-10-24 2022-11-14 信越化学工業株式会社 Method for producing gallium precursor and method for producing laminate using the same
EP4050133A4 (en) * 2019-10-24 2023-08-30 Shin-Etsu Chemical Co., Ltd. Method for producing gallium precursor, and method for producing layered product using same

Similar Documents

Publication Publication Date Title
Huang et al. Crystal facet tailoring arts in perovskite oxides
Sui et al. Low temperature synthesis of Cu2O crystals: shape evolution and growth mechanism
Wang et al. Room temperature synthesis of hollow CdMoO4 microspheres by a surfactant-free aqueous solution route
Li et al. Morphology control of electrodeposited Cu2O crystals in aqueous solutions using room temperature hydrophilic ionic liquids
Saito et al. Synthesis of copper/copper oxide nanoparticles by solution plasma
Ji et al. Synthesis, growth mechanism, and applications of zinc oxide nanomaterials
WO2017190712A1 (en) Preparation method using micro-nano bubbles as crystal seeds to induce silver powder production
JP2017508888A (en) Method for preparing metal powder
JP2014019590A (en) Method for manufacturing aqueous gallium nitrate solution
CN106449169A (en) Method for preparing graphene-based composite material
CN108714700A (en) A kind of preparation method of the highly crystalline type silver powder of monodisperse and its silver powder obtained
CN108247077B (en) Method for preparing copper powder by micro-reaction
JP2004169081A (en) Metal powder and its manufacturing method
Wang et al. Room temperature preparation of cuprous oxide hollow microspheres by a facile wet-chemical approach
CN108723385A (en) A kind of monocrystalline silver nanoparticle ball aqueous phase preparation method
CN103848456A (en) Preparation method of hollow stannic oxide micro-nano particles
Xia et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles
CN106809871B (en) A kind of preparation method of indium oxide nano powder
Yang et al. Shape-controlled of CaWO4 microcrystals by self-assembly of nanocrystals via a simple sonochemical method
JP2019508581A (en) Method of manufacturing copper nanometal powder having uniform oxygen passivation layer using thermal plasma and apparatus for manufacturing the same
CN102515147A (en) Method for preparing tri-metal tetra-oxide/graphene nanocomposite material
JP2004068072A (en) Manufacturing method of silver particulate colloid dispersion solution
JP6434237B2 (en) Method for producing hollow metal particles and hollow metal particles
Yoo et al. Solution-phase synthesis of Au fibers using rod-shaped micelles as shape directing agents
CN102180522B (en) Controllable preparation method of nano magnetic iron oxide with narrow particle size distribution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161026