JPS582209A - Manufacture of metallic nitrate - Google Patents

Manufacture of metallic nitrate

Info

Publication number
JPS582209A
JPS582209A JP9596381A JP9596381A JPS582209A JP S582209 A JPS582209 A JP S582209A JP 9596381 A JP9596381 A JP 9596381A JP 9596381 A JP9596381 A JP 9596381A JP S582209 A JPS582209 A JP S582209A
Authority
JP
Japan
Prior art keywords
nitric acid
hydrogen peroxide
metal
nitrogen oxide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9596381A
Other languages
Japanese (ja)
Inventor
Hiroshi Imazawa
今澤 博
Tsutomu Segawa
瀬川 力
Yoshiaki Manabe
善昭 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP9596381A priority Critical patent/JPS582209A/en
Publication of JPS582209A publication Critical patent/JPS582209A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently manufacture a high purity aqueous soln. of a metallic nitrate without generating gaseous nitrogen oxide by reacting a metal with nitric acid in the presence of hydrogen peroxide. CONSTITUTION:When a metallic nitrate is manufactured by a reacting a metal such as Ag, Cu or Bi with nitric acid, during, before or after adding nitric acid, hydrogen peroxide is added continuously or in several times. Nitrogen oxide generated during the progress of the reaction is converted into nitric acid radicals at once by oxidation with adjacent hydrogen peroxide, facilitating the dissolution of the metal. By this method an aqueous soln. of a metallic nitrate is efficiently obtd. in one stage without practically generating gaseous nitrogen oxide. Since the soln. contains no impurities, high purity metallic nitrate crystals can be obtd. from the soln.

Description

【発明の詳細な説明】 本発明は、金属と硝酸との反応によって金属の硝酸塩を
製造する方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the process for producing metal nitrates by reaction of metals with nitric acid.

金属の硝酸塩は、化学工業において金属それぞれに応じ
て例えば医薬、触媒、分析試薬、顔料、メッキ工業用原
料、その金属化合物の原料などとして極めて広い方面に
用いられている。
Metal nitrates are used in a wide range of fields in the chemical industry, depending on the metal, such as medicines, catalysts, analytical reagents, pigments, raw materials for the plating industry, and raw materials for metal compounds.

従来、金属の硝酸塩の製造法としては、金属、金属の酸
化物、金属の水酸化物、金属の炭酸塩等を希硝酸に溶解
し、硝酸酸性の金属の硝酸塩水溶液をつくり、次いでア
ルカリで中和するかt九はそのまま蒸発濃縮して結晶と
する方法が行なわれている。ヒのうち、金属を硝酸で溶
解する方法は、金属が粒状かピース状などの、表面積の
大きな状態で比較的手軽に入手できる場合とか、金属の
硝酸塩に高純11の品位が喪章される場合などに採用さ
れている。
Traditionally, metal nitrates are produced by dissolving metals, metal oxides, metal hydroxides, metal carbonates, etc. in dilute nitric acid to create a nitric acidic metal nitrate aqueous solution, and then neutralizing with an alkali. A method of evaporating and concentrating the sum or t9 as it is to form crystals is carried out. Among these methods, the method of dissolving metals with nitric acid is used when the metal is relatively easily obtained in a state with a large surface area, such as in the form of granules or pieces, or when the metal nitrate has a mourning band of high purity 11. It is adopted as such.

しかし倉から、例えば、銀、ビスマス、銅、水銀、コバ
ルト、ニッケル、鉛などの硝酸塩を製造する場合には、
これらO金属と硝酸の反応中に窒素酸化物の有害ガス0
**が避けられ′&い。このガスの発生は溶解速度を早
めるために硝酸0II1度や添加速度並びに処理温度を
上げるほど激しくなる。従って、工業的規模においては
脱硝処理設備が欠かせないという問題があつ九。
However, when producing nitrates of silver, bismuth, copper, mercury, cobalt, nickel, lead, etc. from warehouses,
During the reaction between these O metals and nitric acid, there is no harmful gas of nitrogen oxides.
** can be avoided. The generation of this gas becomes more intense as the nitric acid, addition rate, and treatment temperature are increased to accelerate the dissolution rate. Therefore, there is a problem that denitrification treatment equipment is indispensable on an industrial scale.

本発明は上記のような問題点を解消して、これらの金属
を硝酸KII解する−に窒素酸化物ガスを実質的に発生
させることなく、シか4一つの工程で純度の高い金属硝
酸塩水Stを効率よく製造することを目的とする。
The present invention solves the above-mentioned problems and produces highly pure metal nitrate water in one step without substantially generating nitrogen oxide gas during the decomposition of these metals with nitric acid. The purpose is to efficiently produce St.

本発明によれば、上記のような硝酸との反応で窒素酸化
物ブスの発生を伴なう金属に硝酸を反応させる金属硝酸
塩の製造に当って、咳反応を過酸化水素の存在において
行なうことを特徴とする。
According to the present invention, in the production of metal nitrates in which nitric acid is reacted with metals, the reaction with nitric acid as described above is accompanied by the generation of nitrogen oxides, and the cough reaction is carried out in the presence of hydrogen peroxide. It is characterized by

過酸化水素の存在下で、金属と硝酸とを反応させると窒
素酸化物ガスが発生しなくなる理由は明らかではない。
It is not clear why nitrogen oxide gas is no longer generated when a metal is reacted with nitric acid in the presence of hydrogen peroxide.

推定範囲を出逢いが金属と硝酸との反応によって一旦は
発生し九窒素酸化物が直ちKその近傍の過酸化水素によ
って酸化され硝酸根とな抄金属を溶出させ易くするもの
とも考えられる。金属と硝酸との反応は一般に金属に対
して硝酸を多数回に分割して添加するか、連続添加して
逐次的に反応させる。金属の種類、形状或いは表面状態
により相違するが、通常、金属は直ちKは反応せず、あ
る時間経過して適当な硝酸濃度や表面状態などになると
比較的急激に反応し、(その際液温が上昇する)、それ
以後は定常的に溶解が進行する。このような反応の進行
中に、発生してくる窒素酸化物を上述の考案に従って全
量酸化させるためには、硝酸根とするに充分な過酸化水
素を存在させることが必要である。金属と硝酸との反応
の初期は、前述のように種々の条件により、特に反応速
度中液温が定常的でないので、反応液に対する過酸化水
素の添加は、適宜、硝酸の添加と同時または前後させて
行なえばよい。反応の初期を経過すれば、硝酸と過酸化
水素を同時に1混合溶液としてまたは別々に、連続的K
または多数1に分割して添加していけばよい。使用する
硝酸および過酸化水素は濃縮液でも希釈液でも何れでも
よい。また、このような反応を効率よく進める丸めに1
反応(生成)物を均一にする攪拌が必要であることおよ
び金属が全量硝酸塩となるに充分な溶液量が必要である
ことはいうまでもない。
It is also thought that the encounter in the estimated range is once generated by the reaction between the metal and nitric acid, and the nitrogen oxides are immediately oxidized by hydrogen peroxide in the vicinity of K, making it easier to elute the extracted metal as nitrate radicals. Generally, the reaction between a metal and nitric acid is carried out by adding nitric acid to the metal in many divided portions or by continuously adding the nitric acid to the metal and causing the reaction to occur sequentially. Although it varies depending on the type, shape, and surface condition of the metal, metals usually do not react with K immediately, but react relatively rapidly after a certain period of time when the nitric acid concentration and surface condition reach an appropriate level. (the liquid temperature rises), and thereafter the dissolution progresses steadily. In order to completely oxidize the nitrogen oxides generated during the progress of such a reaction according to the above-mentioned idea, it is necessary to have enough hydrogen peroxide present to convert them into nitrate radicals. At the beginning of the reaction between the metal and nitric acid, as mentioned above, due to various conditions, especially the liquid temperature is not constant during the reaction rate, hydrogen peroxide may be added to the reaction liquid at the same time or before or after the addition of nitric acid, as appropriate. Just let it happen. After the initial stage of the reaction, nitric acid and hydrogen peroxide can be added simultaneously as a mixed solution or separately in a continuous K.
Alternatively, it may be added in multiple parts. The nitric acid and hydrogen peroxide used may be either concentrated or diluted. In addition, 1 is used for rounding to efficiently proceed with such reactions.
It goes without saying that stirring is required to make the reaction (product) homogeneous and that the amount of solution is sufficient to convert all of the metal into nitrate.

次に、金属として%に銀、銅およびビスマスを例示して
更に具体的に説明する。金属に硝酸および過酸化水素を
添加して窒素酸化物ガスを発生させることなく、金属の
硝酸塩水溶液を得る本発明の目的達成のためKは、使用
する過酸化水素量と同時に添加する硝酸の相対比率につ
いて説明する必要がある。その際、例えば銀、銅または
ビスマスと硝酸および過酸化水素との反応に次の反応式
が成立すると考えるととにする。
Next, a more specific explanation will be given by illustrating silver, copper and bismuth as metals. To achieve the object of the present invention, which is to obtain a metal nitrate aqueous solution without generating nitrogen oxide gas by adding nitric acid and hydrogen peroxide to metal, K is the relative amount of nitric acid added at the same time as the amount of hydrogen peroxide used. I need to explain the ratio. At this time, it is assumed that the following reaction formula holds true for the reaction of silver, copper, or bismuth with nitric acid and hydrogen peroxide, for example.

2 )、y + 2HNO,+鳥O3→2ム、No、 
 + 2H,OCu + 2 HNO,+ H,O,→
Cu(No、)、 + 21!!02 Bi + 6H
N01+3HIO,−+ Bi(NO,1,+ sh。
2), y + 2HNO, + bird O3 → 2mu, No,
+ 2H, OCu + 2 HNO, + H, O, →
Cu(No,), +21! ! 02 Bi + 6H
N01+3HIO,-+Bi(NO,1,+sh.

すなわち、まず金属が銀の場合には、使用する過酸化水
素のモル数は化学量論的には銀のモル数の0.5倍であ
る。しかし、実際には0.7倍以上であることが望まし
い。また、同時的に添加する過酸化水素と硝酸の量的関
係は、上記反応式から過酸化水素の硝酸に対するモル比
は化学量論的には0.5であるが、実際には0.37以
上のモル比で添加する必要がある。反応に使用する硝酸
は銀の溶解反応が進行するOK必要な量で存在させるこ
とは当然である。そして、このようなモル比に相当する
硝酸および(または)過酸化水素の添加量の通算モル比
率は添加中、常時上記の範囲内になければならない。上
記条件で鋏を溶解させるときは、平均的な溶解速度は1
時間当り金銀量の15〜20重量X程度であシ、反応中
の液温上昇は40℃前後である。
That is, first, when the metal is silver, the number of moles of hydrogen peroxide used is stoichiometrically 0.5 times the number of moles of silver. However, in reality, it is desirable that it be 0.7 times or more. In addition, the quantitative relationship between hydrogen peroxide and nitric acid, which are added simultaneously, is that from the above reaction formula, the molar ratio of hydrogen peroxide to nitric acid is stoichiometrically 0.5, but in reality it is 0.37. It is necessary to add it in the above molar ratio. It is a matter of course that the nitric acid used in the reaction is present in an amount necessary for the silver dissolution reaction to proceed. The total molar ratio of the added amounts of nitric acid and/or hydrogen peroxide corresponding to such molar ratio must always be within the above range during addition. When dissolving scissors under the above conditions, the average dissolution rate is 1
The amount of gold and silver per hour is about 15 to 20 weight times, and the temperature of the liquid during the reaction rises to about 40°C.

次に1金属が銅の場合には、銅に対する過酸化水素のモ
ル倍数は・11倍以上、過酸化水素に対する硝酸のモル
比は銀の場合と同様の考慮で0.33以上が必要である
。この条件では銅は1時間当)、平均して全鋼量の10
−24重量に1111溶解し、液温上昇は6G’C前後
に止まる。更に1金属がビスマスの場合には、ビスマス
に対する過酸化水素のモル倍率は1.6以上、過酸化水
素の硝llK対するモル比0.33以上の範囲で添加す
ることが必要である。この条件ではビスマスは1時間当
り、平均して全ビスマス量OIs〜50重量に程度で溶
解するが、液温はSO℃前後になる。
Next, when one metal is copper, the molar multiple of hydrogen peroxide to copper needs to be at least 11 times, and the molar ratio of nitric acid to hydrogen peroxide needs to be at least 0.33 based on the same consideration as in the case of silver. . Under these conditions, copper is on average 10% of the total amount of steel (per hour)
1111 is dissolved in -24 weight, and the liquid temperature rise stops at around 6G'C. Furthermore, when one metal is bismuth, the molar ratio of hydrogen peroxide to bismuth must be 1.6 or more, and the molar ratio of hydrogen peroxide to nitrate must be 0.33 or more. Under these conditions, bismuth is dissolved in an average amount of about 50% of the total bismuth amount OIs per hour, but the liquid temperature is around SO°C.

その他硝酸との反応で窒素酸化物ガスを発生する他の金
属に対するこれらの量的関係は、それぞれ上記基準で適
当に選択することができる。
These quantitative relationships for other metals that generate nitrogen oxide gas upon reaction with nitric acid can be appropriately selected based on the above criteria.

以下実施例について説明する。Examples will be described below.

実施例1 蓋付きガラス容器に鋼板片(20−角、l■厚)Sof
を採取しこれに水100−を入れ、攪拌しなから62X
(重量)濃硝酸(以下、硝酸という)2o−と3!Iに
(重量)過酸化水素水(以下、過酸化水素という)l〇
−を添加した。その後硝酸と過酸化水嵩とを同時に別個
の定量ポンプによって連続的にそれぞれ0.63 m/
sk とozews/―の割合で4時間添加した。試験
中窒素酸化物ガスの発生は全く検知されず(その濃度分
析器がゼロを示す)供試銅板片は5時間で完全に溶解し
九。なお、発生するガスは上記反応容器に導入し九2 
t/−の空気で稀釈排出させ、更にそのo、 s t7
−をlOt/―の空気で稀釈し友ものを分析用ガスとし
て採取し、それを窒素酸化物分析器で分析し連続的に自
動記録した。液温も連続自動記録を行なつ九が、その結
果、硝酸および過酸化水素を連続添加し始める時液温は
20℃であったが、その後徐々に上昇し1時間ls分経
過後最高O54℃に達した。以後は2時間48分経過後
に極大の48℃を示してから徐々に下降した。
Example 1 A piece of steel plate (20 square, l thick) Sof in a glass container with a lid
Collect it, add 100% water to it, and add 62X without stirring.
(Weight) Concentrated nitric acid (hereinafter referred to as nitric acid) 2o- and 3! To I was added (by weight) 10-hydrogen peroxide solution (hereinafter referred to as hydrogen peroxide). Thereafter, nitric acid and peroxide water were simultaneously pumped continuously at a volume of 0.63 m/h using separate metering pumps.
It was added for 4 hours at a ratio of sk and ozews/-. During the test, no nitrogen oxide gas was detected (the concentration analyzer showed zero), and the copper plate sample was completely dissolved in 5 hours. Note that the gas generated is introduced into the above reaction vessel.
Dilute and discharge with t/- air, and then o, s t7
- was diluted with 10t/- of air, the sample was collected as an analytical gas, analyzed with a nitrogen oxide analyzer, and continuously and automatically recorded. The liquid temperature was also continuously recorded automatically, and as a result, the liquid temperature was 20°C when the continuous addition of nitric acid and hydrogen peroxide started, but it gradually rose after that and reached a maximum of 54°C after 1 hour ls had passed. reached. Thereafter, after 2 hours and 48 minutes, the temperature reached a maximum of 48°C, and then gradually decreased.

実施例2 蓋付きガラス容器に銀粉100Fを採取し、これに水1
00−を入れ、更に攪拌しな−がら過酸化水素水5−を
添加した。その後硝酸と過酸化水素とを同時に別個の定
量ポンプによって連続的にそれぞれ0.39 ml/―
とO* a−/―の割合で6時間添加した。試験中窒素
酸化物ガスの発生は、その濃度分析器がゼロを示して全
く検知されず、供試鋼粉は6.5時間で完全に溶解した
。なお、発生するガスの分析および液温の測定は、実施
例1と同様連続自動記録したが、液温は硝酸および過酸
化水素を連続添加し始める時19℃であシ、その後徐々
に上昇し2時間経過後最高の31℃に達し丸。
Example 2 100F of silver powder was collected in a glass container with a lid, and 1 part of water was added to it.
00- was added thereto, and hydrogen peroxide solution 5- was further added while stirring. Thereafter, nitric acid and hydrogen peroxide were added simultaneously at 0.39 ml/- each continuously using separate metering pumps.
and O* a-/- for 6 hours. During the test, no nitrogen oxide gas was detected as the concentration analyzer showed zero, and the sample steel powder was completely dissolved in 6.5 hours. The analysis of the generated gas and the measurement of the liquid temperature were continuously and automatically recorded as in Example 1, but the liquid temperature was 19°C when the continuous addition of nitric acid and hydrogen peroxide started, and then gradually increased. After 2 hours, it reached the highest temperature of 31℃.

以後は徐々に下降した。After that, it gradually declined.

実施例3 蓋付きガラス容器に粒状のビスマス100fを採取し、
これに水1oo−を入れ、更に攪拌しながら硝酸50−
と過酸化水素20−を添加し丸。
Example 3 Collect granular bismuth 100f in a glass container with a lid,
Add 10 - of water to this and add 50 - of nitric acid while stirring.
Add 20- of hydrogen peroxide and form a circle.

その後硝酸と過酸化水素とを同時に別個の定量ポンプに
よって連続的にそれぞれ042d/−と0、21 ml
/m ()割合で4時間添加した。試験中窒素酸化物ガ
スの発生は、その濃度分析器がゼロを示して全く検知さ
れず、供試ビスマス粒は5時間で完全に溶解し九。なお
、発生するガスの分析および液温の測定は、実施例1と
同様連続自動記録し九が、液温は硝酸および過酸化水素
を連続添加し始める時22℃であり、その後比較的急激
に上昇し5分後に最高の68℃となったが、以後下降し
1時間後48.5℃となり、その後はほとんど横ばい或
いは若干下降した。
Thereafter, nitric acid and hydrogen peroxide were simultaneously added continuously by separate metering pumps to 042 d/- and 0,21 ml, respectively.
/m () for 4 hours. During the test, no nitrogen oxide gas was generated as the concentration analyzer showed zero, and the sample bismuth grains were completely dissolved in 5 hours. The analysis of the generated gas and the measurement of the liquid temperature were continuously and automatically recorded in the same way as in Example 1.The liquid temperature was 22°C when the continuous addition of nitric acid and hydrogen peroxide started, and after that, the temperature rose relatively rapidly. The temperature rose to a maximum of 68°C 5 minutes later, but then decreased to 48.5°C after 1 hour, and then remained almost flat or slightly decreased.

比較例1 過酸化水素を使用せず、また硝酸を連続的にo、 s 
o d/―の割合でS時間添加し九以外は全〈実施例1
と同様にして、銅板片を溶解させ丸。硝酸の連続添加開
始(液温23℃)後、1時間10分経過して窒素酸化物
ガスの発生がみられ、1時間40分経過俵、最高の30
,0OOppHmを記録し九。
Comparative Example 1 Hydrogen peroxide was not used, and nitric acid was continuously used at o, s.
Added for S time at a ratio of o d/-, all except 9 <Example 1
In the same manner as above, melt the copper plate piece and make a circle. After 1 hour and 10 minutes had passed after the start of continuous addition of nitric acid (liquid temperature 23°C), nitrogen oxide gas was observed to be generated.
,0OOppHm was recorded.9.

その後も13,500〜16.5009pm@度のガス
発生がみられ、硝酸添加を停止してからその貴社急速に
減少していった。液温も、上述し九ガス発生量O変化と
大体同様の挙動を示し、1時間45分経過後、厳島47
℃を示したが、その後は徐々に下降していった。供試銅
板片は6時間で完全に溶解した。
After that, gas generation of 13,500 to 16.5009 pm@degrees was observed, and after the addition of nitric acid was stopped, the rate rapidly decreased. The liquid temperature also showed roughly the same behavior as the above-mentioned change in the amount of gas generated, and after 1 hour and 45 minutes, Itsukushima 47
℃, but after that it gradually decreased. The test piece of copper plate was completely dissolved in 6 hours.

比較例2 硝酸と過酸化水素とを同時に別個の定食ポンプによって
連続的にそれヤれo、s4−/―の割合で4時間、0.
20d/amO割合で4時間24)分添加し九以外は全
〈実施例1と同様にして鋼板片を溶解させ九。硝酸およ
び過酸化水素の連続添加開始後2時間経過後窒素酸化物
ガスの発生が検出され始めその後2時間は数1100p
p@変の発生で推移し九が、その後頁にガスの発生が増
大し、4時間20分俵28401)pmを記録したので
、そこで過酸化水素を10−追加添加した(以後添加せ
ず)。
Comparative Example 2 Nitric acid and hydrogen peroxide were simultaneously added continuously using a separate fixed pump at a rate of 0.0, s4-/- for 4 hours.
The steel plate pieces were melted in the same manner as in Example 1 except for 9. Two hours after the start of continuous addition of nitric acid and hydrogen peroxide, the generation of nitrogen oxide gas started to be detected, and for the next two hours, the number of nitrogen oxide gas was several 1100p.
The situation continued with the occurrence of p@ change, but after that the generation of gas increased and the temperature was recorded at 28401) pm for 4 hours and 20 minutes, so an additional 10% of hydrogen peroxide was added (no further addition was made). .

するとガスの発生は急激に減少していつ九。液温添加時
にそれぞれ4@、8℃、@LO℃と極大を示した。供試
銅尿岸はS時間で完全に溶解した。
Then, the gas production decreased rapidly until 9. When the liquid temperature was added, maximum values were shown at 4@, 8°C, and @LO°C, respectively. The copper urethane sample was completely dissolved in S time.

比較例3 蓋付きガラス容器を1oto恒温槽に浸漬したこと、硝
酸と過酸化水素とを連続的に添加する前に過酸化水素を
添加しないことおよび連続添加の際、硝酸を0.41 
wt/m 、過酸化水素を0.17sd/−の割合で両
者共5時間5分添加し九以外は全〈実施例2と同様にし
て銀粉を溶解させ九。試験中、硝酸および過酸化水素の
連続添加開始後2時間36分から52分までの、16分
間最高150ppmの窒素酸化物ガスの発生が認められ
た以外は、同ガスの発生が検知されなかった。供試銀粉
は6時間5分後949が溶解し友。
Comparative Example 3 A glass container with a lid was immersed in a constant temperature bath, hydrogen peroxide was not added before continuously adding nitric acid and hydrogen peroxide, and during continuous addition, nitric acid was added at 0.41°C.
wt/m2 and hydrogen peroxide at a rate of 0.17 sd/- for 5 hours and 5 minutes for both. During the test, no generation of nitrogen oxide gas was detected, except for the 16 minute period from 2 hours 36 minutes to 52 minutes after the start of continuous addition of nitric acid and hydrogen peroxide, at a maximum concentration of 150 ppm. The sample silver powder dissolved 949 after 6 hours and 5 minutes.

比較例4 硝酸と過酸化水素とを連続的に添加する前に過酸化水素
をl〇−添加したこと及び連続添加の際、過酸化水素を
0.15 d/−の割合で添加した以外は全〈実施例3
と同様にしてビス1ス粒を溶解させた。硝酸および過酸
化水素の連続添加開始直後より窒素酸化物ガスが発生し
始め2分後に最高s o o ppmを記録し、以後減
少し30分経過後からはガスの発生は検知されなかつ九
。液温は連続添加開始後5分で5s℃を示し、以後漸減
した。
Comparative Example 4 Except that l〇- of hydrogen peroxide was added before continuously adding nitric acid and hydrogen peroxide, and during continuous addition, hydrogen peroxide was added at a ratio of 0.15 d/-. All Example 3
The bis 1st grains were dissolved in the same manner as above. Immediately after the start of continuous addition of nitric acid and hydrogen peroxide, nitrogen oxide gas began to be generated, reaching a maximum so ppm 2 minutes later, decreasing thereafter, and no gas generation was detected after 30 minutes. The liquid temperature showed 5 s°C 5 minutes after the start of continuous addition, and then gradually decreased.

供試ビスマス粒は4時間で70を溶解し九。The sample bismuth grains dissolved 70% in 4 hours.

以上から明らか麦ように、本発明方法によれば、窒素酸
化物ガスを発生させることなく、一工程で効率よく金属
の硝酸塩水溶液を得ることができるので、脱硝処理設備
が不要となる。更にこの方法で得られ九硝酸塩水溶液は
特別に混入するような不純物を含んでいないのて、それ
から高純度の金属硝酸塩の結晶が得られる。
As is clear from the above, according to the method of the present invention, a metal nitrate aqueous solution can be efficiently obtained in one step without generating nitrogen oxide gas, so that denitrification treatment equipment is not required. Furthermore, since the nine-nitrate aqueous solution obtained by this method does not contain any particular impurities, highly pure metal nitrate crystals can be obtained from it.

特許出願人:住友金属鉱山株式会社 代理人:弁理士海津保三 同   : 弁理士 平 山 −串Patent applicant: Sumitomo Metal Mining Co., Ltd. Agent: Patent attorney Yasuzo Kaizu Same as: Patent attorney Hirayama - Kushi

Claims (1)

【特許請求の範囲】[Claims] 硝酸との反応で窒素酸化物ガスの発生を伴なう金属に硝
酸を反応させる金属硝酸塩の製造法において、前記反応
を過酸化水嵩め存在で行なうことを特像とする金属の硝
酸塩の製造法。
A method for producing metal nitrates in which a metal is reacted with nitric acid, the reaction with nitric acid being accompanied by the generation of nitrogen oxide gas, characterized in that the reaction is carried out in the presence of a large amount of peroxide .
JP9596381A 1981-06-23 1981-06-23 Manufacture of metallic nitrate Pending JPS582209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9596381A JPS582209A (en) 1981-06-23 1981-06-23 Manufacture of metallic nitrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9596381A JPS582209A (en) 1981-06-23 1981-06-23 Manufacture of metallic nitrate

Publications (1)

Publication Number Publication Date
JPS582209A true JPS582209A (en) 1983-01-07

Family

ID=14151861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9596381A Pending JPS582209A (en) 1981-06-23 1981-06-23 Manufacture of metallic nitrate

Country Status (1)

Country Link
JP (1) JPS582209A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808393A (en) * 1987-09-18 1989-02-28 Mineral Research And Development Corp. Process for manufacture of ferric nitrate
US4983372A (en) * 1990-07-20 1991-01-08 Brienza Walter C Process for preparing halide-free rhodium nitrate
US5000928A (en) * 1986-03-17 1991-03-19 Eastman Kodak Company Preparation of ultra-pure silver nitrate
JP2014019590A (en) * 2012-07-13 2014-02-03 Dowa Electronics Materials Co Ltd Method for manufacturing aqueous gallium nitrate solution
CN104118897A (en) * 2014-08-09 2014-10-29 江西龙天勇有色金属有限公司 Pollution-free method for controlling electric potential and oxidizing and dissolving silver
RU2744006C1 (en) * 2020-02-11 2021-03-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Method of producing tin nitrate (ii) during metal oxidation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000928A (en) * 1986-03-17 1991-03-19 Eastman Kodak Company Preparation of ultra-pure silver nitrate
US4808393A (en) * 1987-09-18 1989-02-28 Mineral Research And Development Corp. Process for manufacture of ferric nitrate
US4983372A (en) * 1990-07-20 1991-01-08 Brienza Walter C Process for preparing halide-free rhodium nitrate
JP2014019590A (en) * 2012-07-13 2014-02-03 Dowa Electronics Materials Co Ltd Method for manufacturing aqueous gallium nitrate solution
CN104118897A (en) * 2014-08-09 2014-10-29 江西龙天勇有色金属有限公司 Pollution-free method for controlling electric potential and oxidizing and dissolving silver
RU2744006C1 (en) * 2020-02-11 2021-03-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Method of producing tin nitrate (ii) during metal oxidation

Similar Documents

Publication Publication Date Title
House Kinetics and mechanism of oxidations by peroxydisulfate.
EP0155837B1 (en) Process for producing alkali metal ferrates utilizing hematite and magnetite
EP1350765B1 (en) Method for preparing iron oxides
US5137700A (en) Processes employing iodine-iodide etching solutions
EP1901994B1 (en) Process for the continuous production of hydroxylammonium
JPS582209A (en) Manufacture of metallic nitrate
DE1300914B (en) Process for the oxidation of monovalent thallium compounds into trivalent thallium compounds
US2104754A (en) Processes for the manufacture of complex metallic salt
US3494734A (en) Preparation of cyanogen
DE3135004C2 (en)
US4808393A (en) Process for manufacture of ferric nitrate
Baer et al. 633. The decomposition of hydrgen peroxide by ceric salts. Part I. The action of ceric sulphate
Higginson et al. 287. The oxidation of hydrazine in aqueous solution. Part II. The use of 15 N as a tracer in the oxidation of hydrazine
Byerley et al. Oxidation of formaldehyde by copper (II) in aqueous solution
EP0054371A1 (en) Process for detoxification
US3764663A (en) Chlorine dioxide production
AU706534B2 (en) Method of purifying gold
EP0568259A1 (en) Process for making a silver nitrate solution
CA1224008A (en) Process for preparing selenium salts
EP0381839B1 (en) Method for preparing catalyst precursor for methanol synthesis
JP2698429B2 (en) Method for producing secondary gold cyanide salt
US20220136080A1 (en) Method for recovering gold and copper from electronic components
US3754007A (en) Process for the production of cyclohexanedione-(1,2)-hemihydrate
JP2856010B2 (en) Recovery method of rhodium from non-reducible rhodium complex ion
US2910415A (en) Method for the simultaneous production of hydrogen peroxide and carbonyl compounds