JP2856010B2 - Recovery method of rhodium from non-reducible rhodium complex ion - Google Patents

Recovery method of rhodium from non-reducible rhodium complex ion

Info

Publication number
JP2856010B2
JP2856010B2 JP4350980A JP35098092A JP2856010B2 JP 2856010 B2 JP2856010 B2 JP 2856010B2 JP 4350980 A JP4350980 A JP 4350980A JP 35098092 A JP35098092 A JP 35098092A JP 2856010 B2 JP2856010 B2 JP 2856010B2
Authority
JP
Japan
Prior art keywords
rhodium
reducible
complex ion
ion
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4350980A
Other languages
Japanese (ja)
Other versions
JPH06171955A (en
Inventor
信夫 高橋
聡 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP4350980A priority Critical patent/JP2856010B2/en
Publication of JPH06171955A publication Critical patent/JPH06171955A/en
Application granted granted Critical
Publication of JP2856010B2 publication Critical patent/JP2856010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、銅精錬工程、あるいは
白金族元素含有物からロジウムを選択的に回収する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper refining process or a method for selectively recovering rhodium from a substance containing a platinum group element.

【0002】[0002]

【従来の技術】ロジウムイオンは錯塩を形成していない
場合、あるいは、錯安定度定数が小さいクロロ錯塩など
を形成している場合は、殆どの還元剤によって容易に金
属まで還元され、特に特公昭57−35251号公報及
び特開昭58−45125号公報に記載されているよう
に、一酸化炭素あるいは水素ガスによる還元により定量
的に還元することができる。
2. Description of the Related Art When a rhodium ion does not form a complex salt, or forms a chloro complex salt having a small complex stability constant, it is easily reduced to metal by most reducing agents. As described in JP-A-57-35251 and JP-A-58-45125, reduction can be performed quantitatively by reduction with carbon monoxide or hydrogen gas.

【0003】一方、錯イオンが安定であっても、核とな
る金属イオンが金のように還元され易く、かつ配位子が
シアン化物イオンのように分解し易い場合は、特開平2
−163327号公報に記載されているように、配位子
を分解しつつ還元することにより、金属を析出させるこ
とができる。
[0003] On the other hand, even if the complex ion is stable, if the core metal ion is easily reduced like gold and the ligand is easily decomposed like cyanide ion, see Japanese Unexamined Patent Publication No.
As described in JP-A-163327, a metal can be deposited by reducing a ligand while decomposing it.

【0004】しかしながら、ロジウムイオンが硫酸錯体
や燐酸錯体などの難還元性錯体を形成している場合は、
錯塩自体及び配位子が化学的に極めて安定な上に、錯体
の核となるロジウムイオン自体の酸化還元電位も貴金属
イオンの中では比較的低いため、従来の何れの方法によ
っても還元によりメタルとしてロジウムを回収すること
は極めて困難であった。
[0004] However, when rhodium ions form a non-reducible complex such as a sulfate complex or a phosphate complex,
The complex salt itself and the ligand are chemically extremely stable, and the redox potential of the rhodium ion itself, which is the core of the complex, is relatively low among the noble metal ions. Recovery of rhodium was extremely difficult.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来法では
還元によりロジウムの回収が困難であった難還元性ロジ
ウム錯塩から、高収率でロジウムをメタルとして選択的
に回収する方法を提供することにある。
DISCLOSURE OF THE INVENTION The present invention provides a method for selectively recovering rhodium as a metal in a high yield from a non-reducible rhodium complex salt, which had been difficult to recover by reduction by conventional methods. It is in.

【0006】[0006]

【課題を解決するための手段】本発明による課題を解決
するための手段は、3モル/l以上、好ましくは6モル
/l以上の塩素イオンを共存せしめた難還元性ロジウム
錯イオンを含む水溶液に、標準酸化還元電位が0.8V
以上、好ましくは1.0V以上となるように酸化剤とし
て硝酸を加え50℃以上沸点以下の温度に保持して反応
させ、次いで該水溶液の標準酸化還元電位を0.3〜0.
5Vの範囲に維持して還元剤を加えてロジウムを主とし
て選択的に析出せしめることにある。
Means for solving the problems according to the present invention is to provide an aqueous solution containing a non-reducible rhodium complex ion in which at least 3 mol / l, preferably at least 6 mol / l, of chloride ion coexists. The standard oxidation-reduction potential is 0.8 V
As described above, nitric acid is added as an oxidizing agent so that the voltage is preferably 1.0 V or more, and the reaction is carried out while maintaining the temperature at 50 ° C. or more and the boiling point or less.
The purpose of the present invention is to maintain rhodium in a range of 5 V and to selectively deposit rhodium mainly by adding a reducing agent.

【0007】[0007]

【作用】本発明では、ロジウムの硫酸錯体や燐酸錯体な
ど多くの安定な錯体は、ロジウムイオンに比べ標準酸化
還元電位が非常に低下しているため、還元によりメタル
を析出させることは極めて困難であるが、高濃度塩素イ
オン中で酸化することにより、生成する錯塩であるヘキ
サクロロロジウム(IV)酸イオン[RhCl62-及び、
それが分解して生成するヘキサクロロロジウム(III)酸
イオンは比較的容易に還元反応を受けるという性質と、
液の標準酸化還元電位を、ヘキサクロロロジウム(III)
酸イオンは還元されるが、共存する卑金属は還元されな
い値に維持すれば、ロジウムのみを選択的にメタルとし
て採取できるという反応を利用するものである。
According to the present invention, many stable complexes such as rhodium sulfate and phosphate complexes have a much lower standard oxidation-reduction potential than rhodium ions, so that it is extremely difficult to deposit metal by reduction. However, hexachlororhodate (IV) ion [RhCl 6 ] 2- , which is a complex salt formed by oxidation in high concentration chloride ion, and
The property that hexachlororhodate (III) ion generated by its decomposition undergoes a reduction reaction relatively easily,
The standard oxidation-reduction potential of the liquid is adjusted to hexachlororhodium (III)
If the acid ions are reduced but the coexisting base metal is maintained at a value that is not reduced, the reaction utilizes that rhodium alone can be selectively collected as a metal.

【0008】二燐酸錯体の場合について説明すると、 [Rh(P2739-+6Cl-→[RhCl62-+3P27 4-+e-・・ (1) [RhCl62-+e-→[RhCl63- ・・・(2) [Rh(P2739-+6Cl-→[RhCl63-+3P27 4- ・・・(3) [RhCl63-+3e-→3Rh+3Cl- ・・・(4) [CuCl3-+e-→[CuCl2-+Cl- ・・・(5)[0008] To describe the case of diphosphate complexes, [Rh (P 2 O 7 ) 3] 9- + 6Cl - → [RhCl 6] 2- + 3P 2 O 7 4- + e - ·· (1) [RhCl 6] 2- + e - → [RhCl 6 ] 3- ··· (2) [Rh (P 2 O 7) 3] 9- + 6Cl - → [RhCl 6] 3- + 3P 2 O 7 4- ··· (3) [RhCl 6] 3- + 3e - → 3Rh + 3Cl - ··· (4) [CuCl 3] - + e - → [CuCl 2] - + Cl - ··· (5)

【0009】まず、ロジウムの二燐酸錯体(トリス(ジ
フォスファト)ロジウム(III)酸イオンは過剰の塩素イ
オンの存在下で酸化されると、(1)式の反応が徐々に進
行し、ヘキサクロロロジウム(IV)酸イオンを生成する。
この反応は、塩素イオン濃度が高い程右辺側に平衡が傾
き、又、ロジウム錯体は活性化エネルギーが非常に高い
ので、液温が高い程反応は迅速に、更に反応時間が長い
程完全に平衡に達する。加えて、ヘキサクロロロジウム
(IV)酸イオンは強酸化雰囲気でないと生成出来ないの
で、反応中は継続して強い酸化雰囲気に維持される必要
がある。
First, when a rhodium diphosphate complex (tris (diphosphato) rhodium (III) ion is oxidized in the presence of an excess of chloride ion, the reaction of the formula (1) gradually proceeds, and hexachlororhodium ( IV) Generates acid ions.
In this reaction, the equilibrium tilts toward the right side as the chloride ion concentration increases, and the activation energy of the rhodium complex is very high. Therefore, the reaction is quicker as the liquid temperature is higher, and the equilibrium is more complete as the reaction time is longer. Reach In addition, hexachlororhodium
(IV) Since an acid ion cannot be generated unless it is in a strong oxidizing atmosphere, it must be maintained in a strong oxidizing atmosphere during the reaction.

【0010】塩素イオン濃度は3mol/l以上存在し
ないと、(2)式で生成するヘキサクロロロジウム(III)酸
イオンが50%以上生成せず、逆に、固体状あるいは気
泡状の塩化物が系内に存在しても反応に関与しないた
め、必要な塩素イオン濃度の範囲は3mol/l以上、
飽和濃度以下である必要があり、特に6mol/l以上
で(1)式の平衡がほぼ完全に右辺に傾く。
If the chloride ion concentration is not more than 3 mol / l, the hexachlororhodate (III) ion formed by the formula (2) will not be generated in an amount of 50% or more. Since it does not participate in the reaction even if it exists in the inside, the required range of chloride ion concentration is 3 mol / l or more,
It is necessary that the concentration is not more than the saturation concentration. In particular, when the concentration is 6 mol / l or more, the equilibrium of the equation (1) is almost completely inclined to the right side.

【0011】反応温度については、塩素イオン濃度が十
分に高くても、50℃未満では反応が平衡に達するのに
時間がかかり過ぎて実用的でなく、逆に沸点まで温度を
上げると、液の蒸発が激しいので、温度範囲は50℃以
上沸点以下であることが必要で、特に、1時間以下で反
応が完全に進行する90℃付近がよい。
Regarding the reaction temperature, even if the chloride ion concentration is sufficiently high, if it is lower than 50 ° C., it takes too much time for the reaction to reach equilibrium, which is not practical. Since evaporation is intense, it is necessary that the temperature range be 50 ° C. or higher and the boiling point or lower, particularly around 90 ° C. where the reaction proceeds completely in 1 hour or less.

【0012】反応時間は、温度にもよるが、沸点付近ま
で温度を上昇させても10分未満では反応が不完全であ
り、逆に、温度、塩素イオン濃度が適切であれば、3時
間以内には反応は終了する。
Although the reaction time depends on the temperature, even if the temperature is raised to near the boiling point, the reaction is incomplete if the temperature is less than 10 minutes. Conversely, if the temperature and the chloride ion concentration are appropriate, the reaction time is within 3 hours. At the end of the reaction.

【0013】酸化剤としては、あまり弱い酸化剤ではヘ
キサクロロロジウム(IV)酸イオンが生成しないので、標
準酸化還元電位が0.8V以上で、自己分解も少ないも
のが望ましい。この条件を満たす酸化剤の内、特に硝酸
は自己分解及び還元分解しにくいため最も適している。
反応中における標準酸化還元電位は1.0V以上(25
℃)、特に1.1Vに保たれていれば、反応は定量的に
進行する。
As the oxidizing agent, a hexaoxidic rhodate (IV) ion is not generated when the oxidizing agent is too weak, and therefore, a oxidizing agent having a standard oxidation-reduction potential of 0.8 V or more and little self-decomposition is desirable. Of the oxidizing agents satisfying this condition, nitric acid is the most suitable because it is hard to undergo self-decomposition and reductive decomposition.
The standard oxidation-reduction potential during the reaction is 1.0 V or more (25
° C), especially if the voltage is kept at 1.1 V, the reaction proceeds quantitatively.

【0014】酸化剤として硝酸を用いた場合は、自己分
解が少ないため、他に還元性物質が共存しなければ、ロ
ジウムに対して1酸化還元当量の計算量程度以上の量を
始めに1回添加するだけで十分であるが、自己分解し易
い酸化剤や高い標準酸化還元電位を示す酸化剤を用いる
と、大量に継続的に酸化剤を追加しなければならず、操
作が繁雑となる。
When nitric acid is used as the oxidizing agent, the amount of self-decomposition is small. If no other reducing substance coexists, an amount of about one redox equivalent or more of rhodium is calculated once. Although the addition is sufficient, the use of an oxidizing agent which easily decomposes or an oxidizing agent having a high standard redox potential requires the continuous addition of a large amount of the oxidizing agent, which complicates the operation.

【0015】(1)式によって生成したヘキサクロロロジ
ウム(IV)酸イオンは、過剰の酸化剤が共存すると(2)式
のように徐々に分解してヘキサクロロロジウム(III)酸
イオンとなる。このイオンとメタル間の標準酸化還元電
位は、0.5Vであり、Rh3+/Rh間の標準酸化還元
電位0.758Vに比べるとやや低いものの、かなり容
易に還元可能なイオンである。
The hexachlororhodate (IV) ion generated by the formula (1) is gradually decomposed into hexachlororhodium (III) ion as shown in the formula (2) when an excess oxidizing agent coexists. The standard oxidation-reduction potential between the ion and the metal is 0.5 V, which is slightly lower than the standard oxidation-reduction potential between Rh 3+ / Rh of 0.758 V, but is an ion which can be reduced quite easily.

【0016】ここで興味深いことは、いくら塩素イオン
濃度が高くても、又長時間高温に維持しても、(3)式の
ように燐酸錯体から直接ヘキサクロロロジウム(III)酸
イオンが生成進行しないという点で、これは、ヘキサク
ロロロジウム(IV)酸イオンの方がヘキサクロロロジウム
(III)酸イオンより価数が高い金属イオンが核となって
いるため、酸化還元的には不安定でも、錯安定度定数は
高く、強酸化雰囲気にさえ維持されていれば、燐酸錯体
が分解してヘキサクロロロジウム(III)酸イオンが生成
する反応よりもヘキサクロロロジウム(IV)酸イオンが生
成する反応の方が進行し易いからであると考えられる。
What is interesting here is that no matter how high the chloride ion concentration or even if the temperature is maintained at a high temperature for a long time, hexachlororhodate (III) ion does not directly progress from the phosphate complex as shown in the formula (3). In this regard, this is because hexachlororhodate (IV) ion
(III) Since the metal ion having a higher valence than the acid ion is the core, the complex stability constant is high even if it is unstable in redox, and the phosphate complex can be formed as long as it is maintained in a strong oxidizing atmosphere. It is considered that the reaction of generating hexachlororhodate (IV) ions is easier to proceed than the reaction of decomposing to generate hexachlororhodate (III) ions.

【0017】次ぎに、還元反応であるが、ヘキサクロロ
ロジウム(III)酸イオンが生成した後は、一般の貴金属
の還元法がそのまま適用でき、(4)式に従い金属として
ロジウムを採取することができる。しかしながら、先に
示したように、一般の貴金属イオンに比べると、標準酸
化還元電位が低いため、ロジウムを完全に還元しようと
すると、ロジウムと共存し易い銅イオン(Cu2+/C
u:標準酸化還元電位0.337V)がかなり共に還元
されてしまう。
Next, in the reduction reaction, after hexachlororhodate (III) ion is generated, a general noble metal reduction method can be applied as it is, and rhodium can be collected as a metal according to the formula (4). . However, as described above, since the standard oxidation-reduction potential is lower than that of general noble metal ions, when rhodium is to be completely reduced, copper ions (Cu 2+ / C
u: standard oxidation-reduction potential of 0.337 V) is considerably reduced together.

【0018】そこで、この還元工程においては、銅は還
元されないが、ロジウムは還元される標準酸化還元電位
である0.3以上0.5V以下となるように還元剤を添加
することが必要である。還元剤としては、この電位が維
持できれば、あらゆる物質が使用可能であるが、特にビ
スマスを用いると、機械的に酸化還元電位を制御しなく
ても、自動的に液の標準酸化還元電位が0.4V付近に
維持される上に、塩酸にも溶解しにくいため無駄な消費
がない。塩素イオン濃度が高いほど(5)式の反応により
難還元性のジクロロ銅(I)酸が生成し、銅メタルが析出
しにくくなるため、還元時の希釈は行わない方が好まし
い。
Therefore, in this reduction step, it is necessary to add a reducing agent so that copper is not reduced, but rhodium is reduced to a standard oxidation-reduction potential of 0.3 to 0.5 V, which is reduced. . As the reducing agent, any substance can be used as long as this potential can be maintained. In particular, when bismuth is used, the standard redox potential of the liquid is automatically reduced to 0 without mechanically controlling the redox potential. Since it is maintained at around 0.4 V and hardly dissolved in hydrochloric acid, there is no wasteful consumption. The higher the chloride ion concentration, the more difficultly reducible dichlorocuprate (I) acid is generated by the reaction of the formula (5), and the more difficult it is to deposit copper metal. Therefore, it is preferable not to perform dilution during reduction.

【0019】以上の反応によって得られるロジウムメタ
ルは、王水あるいは硫酸と加熱することにより完全に溶
解することができ、従来法に従い精製することができ
る。
The rhodium metal obtained by the above reaction can be completely dissolved by heating with aqua regia or sulfuric acid, and can be purified according to a conventional method.

【0020】[0020]

【実施例】【Example】

実施例1 Rh:0.058,Cu:1.51,Fe:4.68,C
r:0.4,Ni:1.30各重量%と結合している燐
酸基,硫酸基及び硫酸ナトリウムを含む粉状原料1kg
を、36%HCl:0.6lに溶解した。塩素イオン濃
度は6.3モル/l、この水溶液の標準酸化還元電位は
709mVであった。次いで61%HNO3:50ml
を加えて90℃まで昇温し、その温度で1時間撹拌して
酸化を完了させた。酸化後の標準酸化還元電位は110
2mVであった。
Example 1 Rh: 0.058, Cu: 1.51, Fe: 4.68, C
r: 0.4, Ni: 1.30 kg of powdery raw material containing phosphoric acid groups, sulfate groups and sodium sulfate bound to each weight%
Was dissolved in 0.6 l of 36% HCl. The chloride ion concentration was 6.3 mol / l, and the standard oxidation-reduction potential of this aqueous solution was 709 mV. Then 61% HNO 3 : 50 ml
Was added and the temperature was raised to 90 ° C., and the mixture was stirred at that temperature for 1 hour to complete the oxidation. The standard oxidation-reduction potential after oxidation is 110
It was 2 mV.

【0021】液温をその温度に保ち、液の標準酸化還元
電位が400mVに維持されるようにFe粉を添加し、
更にその標準酸化還元電位が維持されるようにFe粉を
添加しつつ30分間撹拌して還元を行った。
The liquid temperature is maintained at that temperature, and Fe powder is added so that the standard redox potential of the liquid is maintained at 400 mV.
Further, the mixture was stirred for 30 minutes while adding Fe powder so as to maintain the standard oxidation-reduction potential, and then reduced.

【0022】析出した黒色の粉末を濾過し、水洗した
後、沈澱及び母液を分析し、沈澱への主な元素の分配率
を求めたところ、Rh:97.0,Cu:1.0重量%で
あった。このように、高い塩素イオン濃度のもとで、硝
酸酸化の後に還元を行えば、原料中のロジウムが燐酸錯
塩として存在している場合でも、ほぼ定量的にロジウム
イオンをメタルにまで還元することができる。但し、F
e粉のような強還元剤(標準酸化還元電位−0.44
V)を用いると、標準酸化還元電位を適切な値に維持し
ても、銅イオンが若干還元することが分かる。
After the precipitated black powder was filtered and washed with water, the precipitate and the mother liquor were analyzed to determine the distribution of the main elements in the precipitate. Rh: 97.0, Cu: 1.0% by weight. Met. Thus, if reduction is performed after nitric acid oxidation under high chloride ion concentration, rhodium ions can be reduced almost quantitatively to metal even if rhodium in the raw material exists as a phosphate complex. Can be. Where F
e strong reducing agent such as powder (standard redox potential-0.44
It can be seen that when V) is used, the copper ions are slightly reduced even when the standard oxidation-reduction potential is maintained at an appropriate value.

【0023】実施例2 還元剤としてビスマス粒100gを用い、還元反応の撹
拌時間を2時間とした以外は実施例1と同様に実施し
た。還元終了後の液の標準酸化還元電位は424mVで
あった。析出した黒色の粉末を濾過し、水洗した後、沈
澱及び母液を分析し、沈澱への分配率を求めたところ、
Rh:97.4,Cu:0.007,Fe:0.000
6,Ni:<0.002,Cr:<0.004各重量%で
あった。
Example 2 The procedure of Example 1 was repeated, except that 100 g of bismuth particles were used as the reducing agent, and the stirring time for the reduction reaction was changed to 2 hours. The standard oxidation-reduction potential of the solution after completion of the reduction was 424 mV. After filtering the precipitated black powder and washing with water, the precipitate and the mother liquor were analyzed, and the partition ratio to the precipitate was determined.
Rh: 97.4, Cu: 0.007, Fe: 0.000
6, Ni: <0.002, Cr: <0.004, respectively.

【0024】還元剤としてビスマス(標準酸化還元電位
0.23V)を用いると、還元剤自体がジクロロ銅(I)酸
の標準酸化還元電位(約−0.1V)よりも高いので、
繁雑な酸化還元電位の操作を行わなくても、銅の析出を
押え、選択的にロジウムメタルを得ることができる。勿
論、ジクロロ銅(I)酸よりも還元されにくい鉄、ニッケ
ル、クロムは還元されない。
When bismuth (standard redox potential 0.23 V) is used as the reducing agent, the reducing agent itself is higher than the standard redox potential (about -0.1 V) of dichlorocuprate (I) acid.
Rhodium metal can be selectively obtained by suppressing the deposition of copper without performing complicated operations for controlling the oxidation-reduction potential. Of course, iron, nickel and chromium which are harder to reduce than dichlorocuprate (I) acid are not reduced.

【0025】比較例1 硝酸による酸化処理を行わない外は、実施例2と同様に
実施したところ、ロジウムメタルは全く析出しなかっ
た。このことから、ロジウムの燐酸錯塩が還元されるた
めには、塩素イオンだけでなく、標準酸化還元電位を8
00mV以上に維持して酸化することが不可欠であるこ
とが分かる。
Comparative Example 1 The same operation as in Example 2 was performed except that the oxidation treatment with nitric acid was not performed, and no rhodium metal was deposited. Therefore, in order to reduce the rhodium phosphate complex, not only the chloride ion but also the standard oxidation-reduction potential must be 8
It can be seen that it is essential to oxidize while maintaining at or above 00 mV.

【0026】比較例2 酸化剤を硝酸に代え、NaClO(標準酸化還元電位
1.63V)を用い、液の標準酸化還元電位が1200
mV以上になるまで添加した以外は実施例2と同様に実
施した。析出物と液の分析により、ロジウムの還元率を
求めたところ、24重量%であった。酸化剤としてNa
ClOの代わりに、Ce(NO34(標準酸化還元電位
1.74V)を用いて同様に実施したが、ロジウムの還
元率は25.6重量%であった。このように、塩酸によ
って容易に還元分解され易い強酸化剤を用いると、ロジ
ウムが還元され易い形態に充分に分解することができな
いことが分かる。
Comparative Example 2 The oxidizing agent was changed to nitric acid, NaClO (standard redox potential 1.63 V) was used, and the standard redox potential of the solution was 1200.
The same operation as in Example 2 was carried out except that the addition was continued until the voltage reached mV or more. The rhodium reduction rate was determined by analyzing the precipitate and the liquid, and was found to be 24% by weight. Na as oxidizing agent
The same operation was performed using Ce (NO 3 ) 4 (standard oxidation-reduction potential 1.74 V) instead of ClO, but the reduction ratio of rhodium was 25.6% by weight. Thus, it can be seen that when a strong oxidizing agent that is easily reduced and decomposed by hydrochloric acid is used, rhodium cannot be sufficiently decomposed into a form that is easily reduced.

【0027】比較例3 比較例2において、NaClOを添加した後、90℃に
加熱せず、常温で一昼夜放置し、その後ビスマス粒10
0gを添加して2時間撹拌して還元を行ったがロジウム
は析出しなかった。このように、難還元性ロジウム錯イ
オンを分解するためには、液温を50℃以上に維持する
必要があることが分かる。
Comparative Example 3 In Comparative Example 2, after adding NaClO, the mixture was left at room temperature for 24 hours without heating to 90 ° C.
0 g was added and the mixture was stirred for 2 hours to perform reduction, but no rhodium was precipitated. Thus, it can be seen that it is necessary to maintain the liquid temperature at 50 ° C. or higher in order to decompose the non-reducible rhodium complex ion.

【0028】[0028]

【発明の効果】本発明によれば、従来法では還元により
ロジウムを回収することが極めて困難であったロジウム
錯体溶液から、選択的に、かつ高収率でロジウムをメタ
ルとして回収できる。
According to the present invention, rhodium can be selectively recovered as a metal in a high yield from a rhodium complex solution in which it has been extremely difficult to recover rhodium by reduction in the conventional method.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 3モル/l以上の塩素イオンを共存せし
めた難還元性ロジウム錯イオンを含む水溶液に、標準酸
化還元電位が0.8V以上となるように酸化剤として硝
酸を加え50℃以上沸点以下の温度に保持して反応さ
せ、次いで該水溶液の標準酸化還元電位を0.3〜0.5
Vの範囲に維持して還元剤を加えロジウムを主として選
択的に析出せしめることを特徴とする難還元性ロジウム
錯イオンからのロジウムの回収方法。
A nitric acid is added as an oxidizing agent to an aqueous solution containing a non-reducible rhodium complex ion in which 3 mol / l or more of chloride ions are coexisted so that the standard oxidation-reduction potential is 0.8 V or more. The reaction is carried out while maintaining the temperature below the boiling point, and then the standard oxidation-reduction potential of the aqueous solution is set to 0.3 to 0.5.
A method for recovering rhodium from a non-reducible rhodium complex ion, wherein rhodium is mainly selectively precipitated by adding a reducing agent while maintaining the range of V.
【請求項2】 6モル/l以上の塩素イオンを共存せし
めた難還元性ロジウム錯イオンを含む水溶液に、標準酸
化還元電位が1.0V以上となるように酸化剤として硝
酸を加える請求項1に記載の難還元性ロジウム錯イオン
からのロジウムの回収方法。
2. An nitric acid as an oxidizing agent is added to an aqueous solution containing a non-reducible rhodium complex ion in which 6 mol / l or more of chloride ions coexist so that a standard oxidation-reduction potential becomes 1.0 V or more. 2. The method for recovering rhodium from a non-reducible rhodium complex ion according to item 1.
【請求項3】 難還元性ロジウム錯イオンが硫酸錯体又
は燐酸錯体である請求項1又は2に記載の難還元性ロジ
ウム錯イオンからのロジウムの回収方法。
3. The method for recovering rhodium from a non-reducible rhodium complex ion according to claim 1, wherein the non-reducible rhodium complex ion is a sulfate complex or a phosphate complex.
【請求項4】 還元剤がビスマスである請求項1、2、
3の何れか一つにに記載の難還元性ロジウム錯イオンか
らのロジウムの回収方法。
4. The method according to claim 1, wherein the reducing agent is bismuth.
3. The method for recovering rhodium from a non-reducible rhodium complex ion according to any one of 3.
JP4350980A 1992-12-04 1992-12-04 Recovery method of rhodium from non-reducible rhodium complex ion Expired - Fee Related JP2856010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4350980A JP2856010B2 (en) 1992-12-04 1992-12-04 Recovery method of rhodium from non-reducible rhodium complex ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4350980A JP2856010B2 (en) 1992-12-04 1992-12-04 Recovery method of rhodium from non-reducible rhodium complex ion

Publications (2)

Publication Number Publication Date
JPH06171955A JPH06171955A (en) 1994-06-21
JP2856010B2 true JP2856010B2 (en) 1999-02-10

Family

ID=18414224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4350980A Expired - Fee Related JP2856010B2 (en) 1992-12-04 1992-12-04 Recovery method of rhodium from non-reducible rhodium complex ion

Country Status (1)

Country Link
JP (1) JP2856010B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5539775B2 (en) * 2010-03-31 2014-07-02 Jx日鉱日石金属株式会社 Method for purifying solution containing rhodium
EP3064602A1 (en) * 2015-03-05 2016-09-07 Heraeus Deutschland GmbH & Co. KG Method for the production of elemental rhodium

Also Published As

Publication number Publication date
JPH06171955A (en) 1994-06-21

Similar Documents

Publication Publication Date Title
JP4144311B2 (en) Methods for separating and recovering platinum group elements
JP3741117B2 (en) Mutual separation of platinum group elements
CA1068487A (en) Method of recovering the constituents of catalysts comprising an aluminous carrier, platinum and iridium
US4734171A (en) Electrolytic process for the simultaneous deposition of gold and replenishment of elemental iodine
US4497737A (en) Metal cage complexes and production thereof
JP2023545603A (en) Method for leaching and recovering platinum group metals in organic solvents
JPWO2005023716A1 (en) Method for separating and purifying high-purity silver chloride and method for producing high-purity silver using the same
JP2856010B2 (en) Recovery method of rhodium from non-reducible rhodium complex ion
GB2293372A (en) Separating rhodium and/or iridium from a solution containing ruthenium
JP7487499B2 (en) Method for separating platinum group elements from each other
KR20090106067A (en) Precious metal collection method from scrap metals by dental technician
US3725047A (en) Recovery of noble metals
CN110923446B (en) Compound ionic liquid gold leaching agent and gold leaching method
DE2246413C2 (en) Process for the processing of oxidic, nickel- and copper-containing ores
JP7400443B2 (en) Mutual separation method of platinum group elements
JP2005144374A (en) Method for removing chlorine ion in nonferrous metal sulfate solution
JPS5952696B2 (en) Method for recovering copper and selenium from copper electrolysis anode slime
JPH0725613A (en) Production of cuprous chloride
EP3749792B1 (en) Noble metal tin alloys and their hydrometallurgical processing
JPH11293357A (en) Selective recovery of cobalt compound
WO1987003623A1 (en) An electrolytic process for the simultaneous deposition of gold and replenishment of elemental iodine
Inoue et al. Solvent extraction of indium with trialkylphosphine oxide from sulfuric acid solutions containing chloride ion
JP2019127627A (en) Method for recovering noble metal
JP2937184B1 (en) How to remove platinum and palladium
JP3341389B2 (en) Separation method of rhenium and impurities

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071127

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111127

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees