JP5539775B2 - Method for purifying solution containing rhodium - Google Patents

Method for purifying solution containing rhodium Download PDF

Info

Publication number
JP5539775B2
JP5539775B2 JP2010083497A JP2010083497A JP5539775B2 JP 5539775 B2 JP5539775 B2 JP 5539775B2 JP 2010083497 A JP2010083497 A JP 2010083497A JP 2010083497 A JP2010083497 A JP 2010083497A JP 5539775 B2 JP5539775 B2 JP 5539775B2
Authority
JP
Japan
Prior art keywords
solution
solution containing
hydrochloric acid
extraction
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010083497A
Other languages
Japanese (ja)
Other versions
JP2011214077A (en
Inventor
伸明 岡島
薫 増田
大輔 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010083497A priority Critical patent/JP5539775B2/en
Publication of JP2011214077A publication Critical patent/JP2011214077A/en
Application granted granted Critical
Publication of JP5539775B2 publication Critical patent/JP5539775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、ロジウム(Rh)を含有する溶液、例えば、銅電解スライムからの貴金属回収プロセスの中間品残渣を処理して得られる重金属、アルカリ金属、銀等の不純物とRhを含む溶液の精製方法に関する。   The present invention relates to a method for purifying a solution containing rhodium (Rh), for example, a solution containing Rh and impurities such as heavy metals, alkali metals, and silver obtained by treating an intermediate product residue of a noble metal recovery process from copper electrolytic slime. About.

ロジウム(Rh)等の貴金属を含む溶液からRhを効率よく回収する方法はあまり多くは開示されていないが、例えば、以下に示すような工程を経て処理することができる。まず、Rhと不純物(Pb、Fe、Cu、Pt、Pd、Ir等)を含む塩酸性溶液を中和し、中和滓を得る(中和工程)。次いで、得られた中和滓を再度塩酸に溶解させ、再溶解液を得る(酸溶解工程)。そして、得られた再溶解液をジエチルヘキシルリン酸(DEHPA)等の有機抽出試薬と撹拌混合しながら、水酸化ナトリウム溶液によってpHを調整し、Pb、Fe、Cu等の不純物の陽イオンを溶媒抽出させる(抽出工程)。   Although many methods for efficiently recovering Rh from a solution containing a noble metal such as rhodium (Rh) are not disclosed, for example, it can be processed through the following steps. First, a hydrochloric acid solution containing Rh and impurities (Pb, Fe, Cu, Pt, Pd, Ir, etc.) is neutralized to obtain a neutralized soot (neutralization step). Next, the obtained neutralized soot is dissolved again in hydrochloric acid to obtain a redissolved solution (acid dissolving step). Then, while stirring and mixing the obtained redissolved solution with an organic extraction reagent such as diethyl hexyl phosphate (DEHPA), the pH is adjusted with a sodium hydroxide solution, and cations of impurities such as Pb, Fe, and Cu are removed as solvents. Extract (extraction process).

上記の工程では、1回の抽出工程によりPb等の不純物を十分に除去することができない。このため、従来は、抽出工程を回分操作で4回以上繰り返す対策がとられてきた。しかしながら、抽出工程の回数が増えることにより、作業負担が増加し、作業に必要な日数も増加するため、作業効率的には好ましくない。また、抽出操作を繰り返すことにより回収対象であるRhも有機抽出試薬により抽出されるため、Rhの回収率が低下する。   In the above process, impurities such as Pb cannot be sufficiently removed by one extraction process. For this reason, conventionally, measures have been taken to repeat the extraction process four or more times by batch operation. However, since the number of extraction steps increases, the work load increases and the number of days required for the work also increases, which is not preferable in terms of work efficiency. In addition, by repeating the extraction operation, Rh, which is a collection target, is also extracted by the organic extraction reagent, so that the Rh collection rate is reduced.

Rhの回収率を向上させる方法として、例えば特開2007−291493号では、Rhを含む塩酸溶液にアルカリを添加して中和させ、中和沈殿物を濾過後、塩酸で再溶解する際に、Rhに対する塩素のモル比をCl/Rh=3〜4に調整する方法が開示されている。これによれば、Rhと塩素のモル比を適正な範囲に調整することにより、DEHPA抽出におけるRhロスを低減でき、Rh回収率を高くできることが記載されている。   As a method for improving the recovery rate of Rh, for example, in Japanese Patent Application Laid-Open No. 2007-291493, an alkali is added to a hydrochloric acid solution containing Rh for neutralization, and the neutralized precipitate is filtered and then redissolved with hydrochloric acid. A method for adjusting the molar ratio of chlorine to Rh to Cl / Rh = 3 to 4 is disclosed. According to this, it is described that the Rh loss in DEHPA extraction can be reduced and the Rh recovery rate can be increased by adjusting the molar ratio of Rh and chlorine to an appropriate range.

特開2007−291493号公報JP 2007-291493 A

しかしながら、特許文献1に記載された発明では、塩酸による再溶解工程の条件を適正化するために、予め中和物中に含まれるRhのモル濃度をある程度正確に把握しておくことが必要となる。このため中和物中のRhのモル濃度が未知の場合には、添加する塩素量の調整が難しくなる場合があり、Rhの回収率を十分高くすることができない場合がある。   However, in the invention described in Patent Document 1, it is necessary to accurately grasp the molar concentration of Rh contained in the neutralized product in advance in order to optimize the conditions of the redissolution step with hydrochloric acid. Become. For this reason, when the molar concentration of Rh in the neutralized product is unknown, it may be difficult to adjust the amount of chlorine to be added, and the recovery rate of Rh may not be sufficiently high.

また、特許文献1に記載された発明では、Agを多く含む溶液からRhを回収するために中和沈殿物を塩酸で再溶解した後にろ過を行っている。そのため、ろ過作業に時間を要する上、ろ過残渣中へのRhロスが発生する。   In the invention described in Patent Document 1, filtration is performed after redissolving the neutralized precipitate with hydrochloric acid in order to recover Rh from a solution containing a large amount of Ag. Therefore, it takes time for the filtration operation and Rh loss occurs in the filtration residue.

そこで、本発明は、精製途中におけるRhロスを極力少なくでき、短時間で容易にRhを回収することが可能なRhを含む溶液の精製方法を提供する。   Therefore, the present invention provides a method for purifying a solution containing Rh that can reduce Rh loss during purification as much as possible and can easily recover Rh in a short time.

本発明者は、鋭意検討の結果、Rhを含む溶液を中和させた中和滓を再び酸性溶液で再溶解させた後、得られた再溶解液に対して更に酸化剤を添加し、酸化剤添加時の酸化還元電位を所定の値に制御した後に、溶媒抽出を実施することで、Rhを短時間で効率良く回収できることを見出した。   As a result of intensive studies, the present inventor re-dissolved the neutralized soot obtained by neutralizing the solution containing Rh with an acidic solution, and then added an oxidizing agent to the obtained re-dissolved solution to oxidize. It was found that Rh can be efficiently recovered in a short time by performing solvent extraction after controlling the oxidation-reduction potential at the time of addition of the agent to a predetermined value.

以上の知見を基礎として完成した本発明は一側面において、ロジウムを含む塩酸性溶液にアルカリを添加し、中和滓を生成させる工程と、中和滓を酸性溶液で溶解して、再溶解液を生成させる工程と、再溶解液に酸化剤を添加し、再溶解液の酸化還元電位を1000mV以上に制御して、Rh溶解液を生成させる工程と、Rh溶解液を、陽イオン交換型の強酸性抽出剤により溶媒抽出する工程とを有するロジウムを含む溶液の精製方法である。   The present invention completed on the basis of the above knowledge is, in one aspect, a step of adding an alkali to a hydrochloric acid solution containing rhodium to produce neutralized soot, and dissolving the neutralized soot in an acidic solution, And a step of adding an oxidant to the redissolved solution and controlling the redox potential of the redissolved solution to 1000 mV or higher to produce an Rh solution, And a method of purifying a solution containing rhodium having a step of solvent extraction with a strong acidic extractant.

本発明のロジウムを含む溶液の精製方法は一実施態様において、酸化剤が次亜塩素酸ナトリウムである。   In one embodiment of the method for purifying a solution containing rhodium of the present invention, the oxidizing agent is sodium hypochlorite.

本発明のロジウムを含む溶液の精製方法は一実施態様において、酸化剤として、12mass%次亜塩素酸ナトリウムを、再溶解液に対して1〜5vol%添加する。   In one embodiment of the method for purifying a solution containing rhodium of the present invention, 1 to 5 vol% of 12 mass% sodium hypochlorite is added as an oxidizing agent to the re-dissolved solution.

本発明のロジウムを含む溶液の精製方法は一実施態様において、陽イオン交換型の強酸性抽出剤が、リン酸ジ−2−エチルヘキシルを含む。   In one embodiment of the method for purifying a solution containing rhodium of the present invention, the cation exchange type strongly acidic extractant contains di-2-ethylhexyl phosphate.

本発明によれば、Rhを含む溶液中のRh濃度が未知の場合であってもRhの回収率を高く保つことが可能なRhを含む溶液の精製方法が提供できる。また、再溶解液に対して酸化剤を添加し、その酸化還元電位を所定の値に制御することにより、Rhを短時間で効率良く回収でき、不純物、特にPbの除去率を高くできるため、抽出工程の繰り返し数を少なくでき、作業時間が短縮化される。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where the Rh density | concentration in the solution containing Rh is unknown, the purification method of the solution containing Rh which can keep the recovery rate of Rh high can be provided. In addition, by adding an oxidizing agent to the redissolved solution and controlling its oxidation-reduction potential to a predetermined value, Rh can be efficiently recovered in a short time, and the removal rate of impurities, particularly Pb, can be increased. The number of repetitions of the extraction process can be reduced and the working time is shortened.

本発明の比較例3に係る方法において、D2EHPAを用いて溶媒抽出を4回繰り返した場合のPb量及びPb除去率の関係を表すグラフである。In the method which concerns on the comparative example 3 of this invention, it is a graph showing the relationship between the amount of Pb and the Pb removal rate at the time of repeating solvent extraction 4 times using D2EHPA. 本発明の実施例に係る方法において、D2EHPAを用いて溶媒抽出を3回繰り返した場合のRh量及びPb除去率の関係を表すグラフである。In the method which concerns on the Example of this invention, it is a graph showing the relationship between Rh amount and Pb removal rate at the time of repeating solvent extraction 3 times using D2EHPA.

以下に図面を参照して、本発明の実施の形態を説明する。以下に示す実施の形態はこの発明の技術的思想を説明するために示すものであり、本発明が以下に限定されることを意図するものではない。   Embodiments of the present invention will be described below with reference to the drawings. The following embodiments are shown to explain the technical idea of the present invention, and the present invention is not intended to be limited to the following.

(Rhを含む溶液)
本発明の実施の形態に係るRhを含む溶液の精製方法が処理対象とする、Rhを含む溶液は、銅電解スライムから貴金属を回収する際に発生する溶液又は廃触媒中から貴金属を回収する際等に発生する溶液である。
(Solution containing Rh)
The Rh-containing solution to be treated by the method for purifying a solution containing Rh according to the embodiment of the present invention is a solution generated when recovering noble metal from copper electrolytic slime or when recovering noble metal from waste catalyst. Etc.

このような溶液としては、例えば、銅(Cu)を300mg/L〜700mg/L、鉛(Pb)を30mg/L〜110mg/L、鉄(Fe)を100mg/L〜200mg/Lを不純物として含み、ロジウム(Rh)を40000mg/L〜70000mg/L含む液が利用される。その他不純物として、パラジウム(Pd)を700mg/L〜1500mg/L、ルテニウム(Ru)を0mg/L〜5mg/L、イリジウム(Ir)を900mg/L〜1200mg/L、銀(Ag)を20mg/L〜100mg/L含んでいてもよい。   As such a solution, for example, copper (Cu) is 300 mg / L to 700 mg / L, lead (Pb) is 30 mg / L to 110 mg / L, and iron (Fe) is 100 mg / L to 200 mg / L as impurities. A liquid containing 40000 mg / L to 70000 mg / L of rhodium (Rh) is used. As other impurities, palladium (Pd) is 700 mg / L to 1500 mg / L, ruthenium (Ru) is 0 mg / L to 5 mg / L, iridium (Ir) is 900 mg / L to 1200 mg / L, and silver (Ag) is 20 mg / L. L to 100 mg / L may be contained.

実施の形態に係るRhを含む溶液は、塩酸酸性の塩酸性溶液とされる。塩酸の濃度は限定的ではないが、例えば、0.1〜8.0mol/Lである。   The solution containing Rh according to the embodiment is a hydrochloric acid solution that is acidic with hydrochloric acid. Although the density | concentration of hydrochloric acid is not limited, For example, it is 0.1-8.0 mol / L.

(1)中和
工程(1)では、Rhを含む塩酸性溶液にアルカリ剤を添加し、中和滓を生成させる。アルカリ剤に特に制限はないが、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム等を用いることができる。アルカリ剤の添加は、Rhその他の成分を中和物として回収する際のpHを7〜12、好ましくは7程度とする。これにより、中和工程におけるRhロスを少なくできる。工程(1)の液温は、80〜95℃とするのが好ましく、85〜95℃がより好ましい。中和処理時間は7〜8時間とすることができる。
(1) Neutralization In the step (1), an alkaline agent is added to a hydrochloric acid solution containing Rh to produce neutralized soot. Although there is no restriction | limiting in particular in an alkali agent, Sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, etc. can be used. The addition of the alkali agent is adjusted to a pH of 7 to 12, preferably about 7, when recovering Rh and other components as a neutralized product. Thereby, Rh loss in a neutralization process can be decreased. The liquid temperature in the step (1) is preferably 80 to 95 ° C, and more preferably 85 to 95 ° C. The neutralization treatment time can be 7 to 8 hours.

(2)再溶液生成
工程(2)では、工程(1)で得られた中和滓を、塩酸等の酸性溶液で溶解させ、再溶解液を生成させる。Rh及びその他の不純物を含む中和滓を塩酸で再溶解する場合の温度と加熱時間は、90℃以上で2時間以上であるのが好ましい。中和滓を再溶解させる際の塩酸の量に制限はないが、例えば、Rhロスを抑えるために、塩酸濃度1.7〜0.8mol/L、スラリー濃度が50〜60g/Lとなるように塩酸を加えることができる。また、例えば、中和滓中のRh濃度が既知である場合には、Rhに対するClのモル比(Cl/Rh)が3〜4程度になるように塩酸添加量を調整してもよい。
(2) Resolution generation In step (2), the neutralized soot obtained in step (1) is dissolved in an acidic solution such as hydrochloric acid to generate a resolution solution. The temperature and heating time when redissolving the neutralized soot containing Rh and other impurities with hydrochloric acid are preferably 90 ° C. or more and 2 hours or more. Although there is no restriction | limiting in the quantity of hydrochloric acid at the time of re-dissolving neutralization soot, For example, in order to suppress Rh loss, so that hydrochloric acid concentration may be 1.7-0.8 mol / L and slurry concentration may be 50-60 g / L Hydrochloric acid can be added. For example, when the Rh concentration in the neutralized soot is known, the amount of hydrochloric acid added may be adjusted so that the molar ratio of Cl to Rh (Cl / Rh) is about 3-4.

(3)酸化剤添加
工程(3)では、工程(2)で得られる塩酸性のRhを含む再溶解液に対し、更に酸化剤を添加し、酸化還元電位を制御してRh溶液(錯化後液)を生成させる。なお、工程(2)においてRhを塩素と結合(塩素錯体化)させることで、陽イオン交換型の強酸性抽出剤によりRhを抽出しやすい状態とすることができる。しかしながら、単に塩酸モル濃度を制御しながら、Rhと塩化物イオンを混合させるのみでは、十分に錯体化が進まず、不十分な場合があり、Rhロス率を小さくすることが難しい場合がある。本実施形態では、工程(2)に加えて、更に酸化剤を加えて酸化還元電位を上げることで、Rhと塩素の結合をより促進させる。酸化剤としては、例えば、過酸化水素(H22)、次亜塩素酸ナトリウム(NaClO)、過マンガン酸カリウム(KMnO4)などが上げられる。但し、H22を酸化剤として用いる場合は、再溶解液を酸化させて所定の酸化還元電位を得るために、H22が大量に必要となるため、液量バランスが悪くなる場合がある。また、過マンガン酸カリウムを用いる場合は、Cu,Fe等の不純物の回収率は高くなるが、酸化還元電位を制御することが難しく、Pb等の重金属の回収率が低くなる場合がある。最低限の添加量により、溶媒抽出によるRhロスを小さくするとともに、Pb等の不純物の除去率を高くするためには、酸化剤として、次亜塩素酸ナトリウムを用いることが好ましい。
(3) Addition of oxidizing agent In the step (3), an oxidizing agent is further added to the redissolved solution containing hydrochloric acid Rh obtained in the step (2), and the redox potential is controlled to control the Rh solution (complexation). A post-solution) is produced. In addition, by combining Rh with chlorine (chlorine complexation) in the step (2), the Rh can be easily extracted with a cation exchange type strongly acidic extractant. However, simply mixing Rh and chloride ions while simply controlling the molar concentration of hydrochloric acid may not be sufficiently complexed and may be insufficient, and it may be difficult to reduce the Rh loss rate. In the present embodiment, in addition to step (2), an oxidizing agent is further added to raise the oxidation-reduction potential, thereby further promoting the bonding between Rh and chlorine. Examples of the oxidizing agent include hydrogen peroxide (H 2 O 2 ), sodium hypochlorite (NaClO), potassium permanganate (KMnO 4 ), and the like. However, when H 2 O 2 is used as an oxidant, a large amount of H 2 O 2 is required to oxidize the redissolved liquid to obtain a predetermined redox potential, resulting in poor liquid volume balance. There is. When potassium permanganate is used, the recovery rate of impurities such as Cu and Fe is high, but it is difficult to control the redox potential, and the recovery rate of heavy metals such as Pb may be low. In order to reduce Rh loss due to solvent extraction and increase the removal rate of impurities such as Pb with a minimum addition amount, it is preferable to use sodium hypochlorite as an oxidizing agent.

酸化剤の添加量は、限定的ではないが、例えば、次亜塩素酸ナトリウムを酸化剤として用いる場合には、再溶解液に対して濃度12mass%の次亜塩素酸ナトリウムを1〜5vol%添加するのが好ましく、より好ましくは2〜4vol%である。このように、再溶解液に対して更に酸化剤を添加しながら酸化還元電位を制御することにより、不純物の除去に用いられるべき抽出剤分子がRhによって消費されにくくなる状態とすることができる。その結果、後述する溶媒抽出工程の不純物の抽出効率が向上するため、抽出工程の繰り返し数を従来よりも少なくすることができる。その結果、作業効率も高くなり、短時間でより多くのRhを回収できる。   The amount of oxidant added is not limited. For example, when sodium hypochlorite is used as the oxidant, 1 to 5 vol% of sodium hypochlorite having a concentration of 12 mass% is added to the redissolved solution. Preferably, it is 2 to 4 vol%. Thus, by controlling the oxidation-reduction potential while adding an oxidizing agent to the re-dissolved solution, it is possible to make it difficult for the extractant molecules to be used for removing impurities to be consumed by Rh. As a result, since the extraction efficiency of impurities in the solvent extraction step described later is improved, the number of repetitions of the extraction step can be reduced as compared with the conventional case. As a result, the work efficiency is increased and more Rh can be collected in a short time.

酸化剤を添加してRh溶液を生成する際の酸化還元電位は1000mV以上(基準電極:銀―塩化銀電極の場合)、より好ましくは1030mV以上、より好ましくは1100mV以上に制御するのが好ましい。酸化還元電位を制御することにより、Rhのクロロ錯体化の進行状況を容易に判別でき、後述する溶媒抽出においてRhのロスを少なくし且つ不純物をより多く抽出させ易い状態とすることができる。酸化還元電位の測定は、例えば東亜ディーケーケー株式会社製pHメーター:HM−25RにORP電極P:TS−2019Cを接続して用いて行うことができる。   It is preferable to control the oxidation-reduction potential when an oxidizing agent is added to produce the Rh solution to 1000 mV or more (reference electrode: silver-silver chloride electrode), more preferably 1030 mV or more, and more preferably 1100 mV or more. By controlling the oxidation-reduction potential, it is possible to easily determine the progress of chloro complexation of Rh, and it is possible to reduce the loss of Rh and to extract more impurities in solvent extraction described later. The oxidation-reduction potential can be measured, for example, by connecting an ORP electrode P: TS-2019C to a pH meter: HM-25R manufactured by Toa DKK Corporation.

Rh溶液を生成する際の液温は、Rhのクロロ錯体化を促進するために、80℃以上とすることができ、より好ましくは85〜90℃である。   The liquid temperature at the time of producing the Rh solution can be set to 80 ° C. or more, more preferably 85 to 90 ° C. in order to promote the chloro complexation of Rh.

(4)溶媒抽出
工程(4)では、工程(3)で得られたRh溶液に対して、陽イオン交換型の強酸性抽出剤を用いて溶媒抽出を行うことにより、Cu、Pb、Fe、Mn等の不純物の除去を行う。Rhは、Rh溶液中においてクロロ錯体などの陰イオンを形成しているため、陽イオン交換型の酸性抽出剤では抽出されない。これにより、Cu、Pb、Fe、Mn等の陽イオンをRh溶液中から除去することができる。
(4) Solvent extraction In the step (4), the Rh solution obtained in the step (3) is subjected to solvent extraction using a cation exchange type strongly acidic extractant, whereby Cu, Pb, Fe, Impurities such as Mn are removed. Since Rh forms an anion such as a chloro complex in the Rh solution, Rh is not extracted by a cation exchange type acidic extractant. Thereby, cations such as Cu, Pb, Fe, and Mn can be removed from the Rh solution.

陽イオン交換型の強酸性抽出剤としては、リン酸ジ−2−エチルヘキシル(D2EHPA)、ジエチルヘキシルリン酸(DEHPA)、リン酸ジイソデシル、リン酸ビス(5−メチル−2−(1−メチルネオヘキシル)ネオデカノイル)、2−エチルヘキシルホスホン酸2−エチルへキシル、2,4,4−トリメチルペンチルフォスフィン酸、2−エチルヘキシルリン酸・モノ2−エチルヘキシルエステル(EFPA・EHE)、モノアルキルリン酸、ジアルキルリン酸及びアルキルピロリン酸などの有機リン酸化合物が挙げられる。これらの中でも、リン酸ジ−2−エチルヘキシル(D2EHPA)が特に好ましい。抽出剤には、窒素や硫黄など白金族元素とキレートを形成する恐れがある官能基を含まないことが望ましい。これらの抽出剤は、直鎖系炭化水素が主成分の有機溶媒で希釈し、使用することができる。   Examples of the cation exchange type strongly acidic extractant include di-2-ethylhexyl phosphate (D2EHPA), diethylhexyl phosphate (DEHPA), diisodecyl phosphate, and bis (5-methyl-2- (1-methylneo) phosphate. Hexyl) neodecanoyl), 2-ethylhexyl 2-ethylhexylphosphonate, 2,4,4-trimethylpentylphosphinic acid, 2-ethylhexyl phosphate / mono 2-ethylhexyl ester (EFPA / EHE), monoalkyl phosphate, And organic phosphoric acid compounds such as dialkyl phosphoric acid and alkyl pyrophosphoric acid. Among these, di-2-ethylhexyl phosphate (D2EHPA) is particularly preferable. It is desirable that the extractant does not contain a functional group that may form a chelate with a platinum group element such as nitrogen or sulfur. These extractants can be used after diluted with an organic solvent containing a linear hydrocarbon as a main component.

溶媒抽出は、撹拌混合しながらRh溶液のpHを4以下、更に好ましくは、pHを3.8±0.1に調整するのが好ましい。これにより溶媒抽出による不純物、特にPb、Fe、Cuの除去効率が向上する。Rh溶液のpHを調整するためには、Rh溶液中をNaOH溶液によって調製することにより行われる。   In the solvent extraction, it is preferable to adjust the pH of the Rh solution to 4 or less, more preferably to 3.8 ± 0.1 with stirring and mixing. This improves the removal efficiency of impurities, particularly Pb, Fe, and Cu, by solvent extraction. The pH of the Rh solution is adjusted by preparing the Rh solution with a NaOH solution.

溶媒抽出の手順としては、例えば、Rh溶液(水相)と抽出剤(有機相)を接触させ、ミキサーでこれらを攪拌混合し、Cu、Pb、Fe、Mnなど金属の陽イオンを抽出剤と反応させる。溶媒抽出は、常温(例:15〜25℃)〜60℃以下や大気圧下の条件で実施するのが、抽出剤の劣化防止の上で好ましい。その後、セトラーにより、混合した有機相と水相を比重差により分離する。不純物を十分に除去するために、溶媒抽出は複数回繰り返されるのが好ましい。   As a procedure for solvent extraction, for example, an Rh solution (aqueous phase) and an extractant (organic phase) are brought into contact, and these are stirred and mixed with a mixer, and a metal cation such as Cu, Pb, Fe, Mn is used as an extractant. React. Solvent extraction is preferably performed under normal temperature conditions (eg, 15 to 25 ° C.) to 60 ° C. or less or under atmospheric pressure in order to prevent deterioration of the extractant. Thereafter, the mixed organic phase and aqueous phase are separated by a difference in specific gravity with a settler. In order to sufficiently remove impurities, the solvent extraction is preferably repeated a plurality of times.

本発明を更に詳しく説明するために以下に実施例を挙げるが、本発明はこれらの実施例のみに限定されるものではない。   In order to describe the present invention in more detail, examples will be given below, but the present invention is not limited to these examples.

[例1:酸化剤添加の有無による不純物除去率の影響]
(実施例)
Rh及び不純物を含む塩酸性溶液として、Cuを300mg/L〜700mg/L、Pbを30mg/L〜110mg/L、Feを100mg/L〜200mg/Lを不純物として含み、Rhを40000mg/L〜70000mg/L、Pdを700mg/L〜1500mg/L、Ruを0mg/L〜5mg/L、Irを900mg/L〜1200mg/L、Agを20mg/L〜100mg/L含む溶液を使用した。このRh及び不純物を含む塩酸性溶液にアルカリ剤としてNaOHを添加し、pH7に調製した後、一晩放冷した。次いで、中和滓に塩酸を添加し、80℃で1時間加熱して再溶解液を得た。得られた再溶解液に対し、酸化剤としてNaClOを添加し、再溶解液を95℃に加熱するとともに、東亜ディーケーケー社製、ORP電極:TS−2019Cを用いて酸化還元電位を確認しながら酸化剤の供給を行った。酸化還元電位が1100mVに達した時点で酸化剤の添加を止め、Rh溶液(錯化後液)とした。酸化剤は12mass%のNaClOを、再溶解液に対して4vol%添加した。得られたRh溶液に対し、溶媒抽出剤としてD2EHPAを用いて溶媒抽出を行うことにより、Cu、Pb、Fe、Mn等の不純物の除去を行った。溶媒抽出剤はD2EHPAとケロシンとを体積比で2:8に混合させたものを使用した。そして、溶媒抽出剤とRh溶液とを体積比1:1で撹拌混合しながらNaOHを添加し、pHを3.8に調製した。60分間撹拌後、分液ロートに移し静置し、有機相と水相とを分離した。
[Example 1: Influence of impurity removal rate with and without addition of oxidizing agent]
(Example)
As a hydrochloric acid solution containing Rh and impurities, Cu contains 300 mg / L to 700 mg / L, Pb contains 30 mg / L to 110 mg / L, Fe contains 100 mg / L to 200 mg / L as impurities, and Rh contains 40000 mg / L to A solution containing 70000 mg / L, 700 mg / L to 1500 mg / L of Pd, 0 mg / L to 5 mg / L of Ru, 900 mg / L to 1200 mg / L of Ir, and 20 mg / L to 100 mg / L of Ag was used. To this hydrochloric acid solution containing Rh and impurities, NaOH was added as an alkaline agent to adjust to pH 7, and then allowed to cool overnight. Next, hydrochloric acid was added to the neutralized soot and heated at 80 ° C. for 1 hour to obtain a redissolved solution. To the obtained redissolved solution, NaClO was added as an oxidant, and the redissolved solution was heated to 95 ° C., and oxidized while confirming the redox potential using an ORP electrode: TS-2019C manufactured by Toa DKK Corporation. The agent was supplied. When the oxidation-reduction potential reached 1100 mV, the addition of the oxidizing agent was stopped to obtain an Rh solution (complexed solution). As the oxidizing agent, 12 vol% NaClO was added at 4 vol% with respect to the redissolved solution. The obtained Rh solution was subjected to solvent extraction using D2EHPA as a solvent extractant to remove impurities such as Cu, Pb, Fe, and Mn. The solvent extractant used was a mixture of D2EHPA and kerosene in a volume ratio of 2: 8. Then, NaOH was added while stirring and mixing the solvent extractant and the Rh solution at a volume ratio of 1: 1 to adjust the pH to 3.8. After stirring for 60 minutes, the mixture was transferred to a separatory funnel and allowed to stand to separate an organic phase and an aqueous phase.

(比較例1)
再溶解液に対し、酸化剤としてH22を添加し、再溶解液を95℃に加熱するとともに、実施例と同様に酸化還元電位を確認しながら酸化剤の供給を行った。酸化還元電位が800mVに達した時点で酸化剤の添加を止め、Rh溶液とした。この場合のH22の添加量は元液量の95%であった。
(Comparative Example 1)
To the redissolved solution, H 2 O 2 was added as an oxidizing agent, the redissolved solution was heated to 95 ° C., and the oxidizing agent was supplied while confirming the redox potential in the same manner as in the examples. When the oxidation-reduction potential reached 800 mV, the addition of the oxidizing agent was stopped to obtain an Rh solution. In this case, the amount of H 2 O 2 added was 95% of the amount of the original solution.

(比較例2)
再溶解液に対し、酸化剤としてKMnO4を添加し、再溶解液を95℃に加熱するとともに、実施例と同様に、酸化還元電位を確認しながら酸化剤の供給を行った。酸化還元電位が960mVに達した時点で酸化剤の添加を止め、Rh溶液とした。酸化剤は、0.1mol/LのKMnO4を再溶解液に対して9vol%添加した。他の工程は実施例と同様とした。
(Comparative Example 2)
To the redissolved solution, KMnO 4 was added as an oxidizing agent, and the redissolved solution was heated to 95 ° C., and the oxidizing agent was supplied while confirming the redox potential as in the example. When the oxidation-reduction potential reached 960 mV, the addition of the oxidizing agent was stopped to obtain an Rh solution. As the oxidizing agent, 9 vol% of 0.1 mol / L KMnO 4 was added to the redissolved solution. Other steps were the same as in the example.

(比較例3)
再溶解液に対して更に酸化剤を添加せずに酸化還元電位を制御しなかった以外は、実施例と同様の処理を行った。比較例の酸化還元電位は788mVであった。
(Comparative Example 3)
The same treatment as in the example was performed except that the redox potential was not controlled without adding an oxidizing agent to the re-dissolved solution. The oxidation-reduction potential of the comparative example was 788 mV.

(結果)
実施例及び比較例1〜3に関し、D2EHPAによる抽出前及び抽出後のRh回収率及び不純物としてPbの除去率(%)を計算した結果を表1に示す。表1中、回収率(%)は、抽出後液中Rh量[g]÷抽出前液中Rh量[g]の百分率として計算した。除去率(%)は、抽出後液中Pb量[g]÷抽出前液中Pb量[g]の百分率として計算した。
(result)
Table 1 shows the results of calculating the Rh recovery rate and the Pb removal rate (%) as impurities before and after extraction with D2EHPA for Examples and Comparative Examples 1 to 3. In Table 1, the recovery rate (%) was calculated as the percentage of Rh amount [g] in the solution after extraction ÷ Rh amount [g] in the solution before extraction. The removal rate (%) was calculated as a percentage of the amount of Pb in the solution after extraction [g] / the amount of Pb in the solution before extraction [g].

Figure 0005539775
Figure 0005539775

実施例及び比較例1〜3のいずれも9割以上の高いRh回収率が得られた。一方、酸化還元電位を制御しない比較例3ではPbの除去率が4割程度しか得られなかったが、酸化剤を添加した実施例及び比較例1及び2では、いずれも1段階でのD2EHPA抽出によるPbの除去率が比較例3に比べて高くなった。比較例1では、Pbの除去率は最も高いが、再溶解液の95%(体積比)のH22液量を必要としたため、酸化剤の液量が多くなった。比較例2では、Pbの抽出率が比較例3に比べてわずかに向上したが、Rhロスが発生した。 In all of Examples and Comparative Examples 1 to 3, a high Rh recovery rate of 90% or more was obtained. On the other hand, in Comparative Example 3 in which the oxidation-reduction potential was not controlled, the Pb removal rate was only about 40%, but in both the Example in which the oxidizing agent was added and Comparative Examples 1 and 2, D2EHPA extraction was performed in one stage. The Pb removal rate due to was higher than in Comparative Example 3. In Comparative Example 1, the removal rate of Pb was the highest, but 95% (volume ratio) of the H 2 O 2 liquid volume of the re-dissolved liquid was required, so that the liquid volume of the oxidizing agent increased. In Comparative Example 2, the Pb extraction rate was slightly improved as compared to Comparative Example 3, but Rh loss occurred.

[例2:抽出処理の繰り返し工程数と不純物の除去率との関係]
実施例及び比較例3に対して、D2EHPAによる抽出処理を繰り返した場合の積算Pb除去率、Pb量を評価した。除去率の計算方法は上記と同様である。比較例に対する評価結果を図1に、実施例に対する評価結果を図2に示す。
[Example 2: Relationship between the number of repeated extraction processes and the removal rate of impurities]
For Example and Comparative Example 3, the integrated Pb removal rate and the Pb amount when the extraction process using D2EHPA was repeated were evaluated. The method for calculating the removal rate is the same as described above. The evaluation result for the comparative example is shown in FIG. 1, and the evaluation result for the example is shown in FIG.

図2に示すように、実施例では、抽出処理1回のみで約61%のPbの除去率を達成することができ、抽出処理3回目では、既に目標濃度である10mg/L以下を達成できた。また、抽出処理を3回繰り返した場合のRhロスは0.5%程度であった。一方、図1に示すように、比較例3では、抽出処理を4回以上繰り返してもPbを目標濃度(10mg/L)にすることができず、抽出処理の回数が多くなった。更に、抽出処理を4回繰り返すことにより、Rh量が6%程度減少した。   As shown in FIG. 2, in the example, a Pb removal rate of about 61% can be achieved by only one extraction process, and the target concentration of 10 mg / L or less can already be achieved by the third extraction process. It was. The Rh loss when the extraction process was repeated three times was about 0.5%. On the other hand, as shown in FIG. 1, in Comparative Example 3, Pb could not be set to the target concentration (10 mg / L) even if the extraction process was repeated four times or more, and the number of extraction processes increased. Furthermore, by repeating the extraction process four times, the amount of Rh was reduced by about 6%.

Claims (4)

ロジウムと鉛とを含む塩酸性溶液にアルカリを添加し、中和滓を生成させる工程と、
前記中和滓を塩酸で溶解して、再溶解液を生成させる工程と、
前記再溶解液に酸化剤を添加し、前記再溶解液の酸化還元電位を1000mV以上に制御して、Rh溶解液を生成させる工程と、
前記Rh溶解液を、陽イオン交換型の強酸性抽出剤により溶媒抽出し、前記鉛を抽出させる工程と
を有することを特徴とするロジウムを含む溶液の精製方法。
Adding alkali to a hydrochloric acid solution containing rhodium and lead to produce neutralized soot;
Dissolving the neutralized soot with hydrochloric acid to produce a re-dissolved solution;
Adding an oxidant to the redissolved solution, and controlling the redox potential of the redissolved solution to 1000 mV or higher to generate an Rh dissolved solution;
A method for purifying a solution containing rhodium, comprising: subjecting the Rh solution to solvent extraction with a cation exchange type strongly acidic extractant and extracting the lead .
前記酸化剤が次亜塩素酸ナトリウムである請求項1に記載のロジウムを含む溶液の精製方法。   The method for purifying a solution containing rhodium according to claim 1, wherein the oxidizing agent is sodium hypochlorite. 前記酸化剤として、12mass%次亜塩素酸ナトリウムを、前記再溶解液に対して1〜5vol%添加する請求項1に記載のロジウムを含む溶液の精製方法。   The method for purifying a solution containing rhodium according to claim 1, wherein 1 to 5 vol% of 12 mass% sodium hypochlorite is added as the oxidant to the re-dissolved solution. 前記陽イオン交換型の強酸性抽出剤が、リン酸ジ−2−エチルヘキシルを含む請求項1〜3のいずれか1項に記載のロジウムを含む溶液の精製方法。   The method for purifying a solution containing rhodium according to any one of claims 1 to 3, wherein the cation exchange type strongly acidic extractant contains di-2-ethylhexyl phosphate.
JP2010083497A 2010-03-31 2010-03-31 Method for purifying solution containing rhodium Active JP5539775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010083497A JP5539775B2 (en) 2010-03-31 2010-03-31 Method for purifying solution containing rhodium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010083497A JP5539775B2 (en) 2010-03-31 2010-03-31 Method for purifying solution containing rhodium

Publications (2)

Publication Number Publication Date
JP2011214077A JP2011214077A (en) 2011-10-27
JP5539775B2 true JP5539775B2 (en) 2014-07-02

Family

ID=44944126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010083497A Active JP5539775B2 (en) 2010-03-31 2010-03-31 Method for purifying solution containing rhodium

Country Status (1)

Country Link
JP (1) JP5539775B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569415B2 (en) * 2011-01-28 2014-08-13 住友金属鉱山株式会社 Process for separating copper and rhodium from a raw material containing copper and rhodium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277731A (en) * 1990-03-27 1991-12-09 Tanaka Kikinzoku Kogyo Kk Method for refining rhodium
JP2856010B2 (en) * 1992-12-04 1999-02-10 住友金属鉱山株式会社 Recovery method of rhodium from non-reducible rhodium complex ion
JPH08209260A (en) * 1995-01-31 1996-08-13 Sumitomo Metal Mining Co Ltd Purifying method of phodium
JP3496319B2 (en) * 1995-02-21 2004-02-09 住友金属鉱山株式会社 Separation and recovery of platinum group elements
JP3741117B2 (en) * 2003-09-26 2006-02-01 住友金属鉱山株式会社 Mutual separation of platinum group elements
JP4369402B2 (en) * 2005-07-04 2009-11-18 日鉱金属株式会社 Rh recovery method

Also Published As

Publication number Publication date
JP2011214077A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP3741117B2 (en) Mutual separation of platinum group elements
JP4448937B2 (en) Palladium extractant and method for separating and recovering palladium
CN105899691B (en) Scandium recovery method
JP5825484B2 (en) Method for recovering platinum group metals
JP6176491B2 (en) Method for removing copper from aqueous nickel chloride solution
JP2013508566A (en) Precious metal recovery method
JP2020084199A (en) Production method of cobalt chloride aqueous solution
US4012481A (en) Process for the separation of platinum group metals
JP6409796B2 (en) Scandium recovery method
JP2018111858A (en) Method for producing scandium oxide
JP6172100B2 (en) Scandium recovery method
JP5667111B2 (en) Method for recovering gold in dilute gold solution
JP2012246198A (en) Method for purifying selenium by wet process
JP4116490B2 (en) High-purity platinum group recovery method
JP7487499B2 (en) Method for separating platinum group elements from each other
JP5539775B2 (en) Method for purifying solution containing rhodium
JP3557685B2 (en) A method for separating and recovering a platinum group element from a platinum group containing iron alloy.
JP6756235B2 (en) How to collect bismuth
JP7400443B2 (en) Mutual separation method of platinum group elements
JP2020084200A (en) Production method of cobalt chloride aqueous solution
JP5502178B2 (en) Silver recovery method
JP2020164945A (en) Manufacturing method of cobalt chloride aqueous solution
JP5154486B2 (en) Method for recovering platinum group elements
JP5965213B2 (en) Method and apparatus for recovering copper oxide from copper-containing acidic waste liquid
JP5338186B2 (en) Method for scrubbing amine-based extractant after back extraction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5539775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140501

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250