JP4369402B2 - Rh recovery method - Google Patents
Rh recovery method Download PDFInfo
- Publication number
- JP4369402B2 JP4369402B2 JP2005194874A JP2005194874A JP4369402B2 JP 4369402 B2 JP4369402 B2 JP 4369402B2 JP 2005194874 A JP2005194874 A JP 2005194874A JP 2005194874 A JP2005194874 A JP 2005194874A JP 4369402 B2 JP4369402 B2 JP 4369402B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrochloric acid
- solution
- extraction
- loss
- molar ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 21
- 238000011084 recovery Methods 0.000 title claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 184
- 239000000243 solution Substances 0.000 claims description 103
- 239000002244 precipitate Substances 0.000 claims description 30
- 239000008346 aqueous phase Substances 0.000 claims description 22
- 229910001385 heavy metal Inorganic materials 0.000 claims description 21
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 18
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 18
- 238000001914 filtration Methods 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 13
- 239000012535 impurity Substances 0.000 claims description 12
- 239000003513 alkali Substances 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 238000001556 precipitation Methods 0.000 claims 1
- 238000000605 extraction Methods 0.000 description 74
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 36
- 239000000047 product Substances 0.000 description 24
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 16
- 239000000706 filtrate Substances 0.000 description 16
- 238000005191 phase separation Methods 0.000 description 13
- 235000011121 sodium hydroxide Nutrition 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000006386 neutralization reaction Methods 0.000 description 10
- 239000012071 phase Substances 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 239000012074 organic phase Substances 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- 229910021607 Silver chloride Inorganic materials 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 6
- 238000000926 separation method Methods 0.000 description 5
- 125000001309 chloro group Chemical group Cl* 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 229910000510 noble metal Inorganic materials 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052745 lead Inorganic materials 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 230000001502 supplementing effect Effects 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は、Rhを含有する溶液、例えば、銅電解スライムからの貴金属回収プロセスの中間品残渣を処理して得られる重金属、アルカリ土類金属、Agを含むRh塩酸溶液の精製方法に関する。 The present invention relates to a method for purifying a solution containing Rh, for example, a Rh hydrochloric acid solution containing heavy metal, alkaline earth metal, and Ag obtained by treating an intermediate product residue of a noble metal recovery process from copper electrolytic slime.
上記のようにRh等の貴金属を含む溶液からRhを効率良く回収する技術は、
多くは開示されていない。
As described above, the technology for efficiently recovering Rh from a solution containing a noble metal such as Rh,
Many are not disclosed.
しかしながら、例えば、特開2005-97695号「白金族元素の相互分離方法」(特許文献1)には、Pd、Pt、Ir、Rh等の白金族元素の相互分離方法が、開示されている。 However, for example, JP 2005-97695 “Platinum group element mutual separation method” (Patent Document 1) discloses a method for mutual separation of platinum group elements such as Pd, Pt, Ir, and Rh.
この処理液においては、Agが含まれる場合を開示されていない。このため抽出剤によりRhを回収する際に、抽出時のトラブルが示されていない。 This treatment liquid does not disclose the case where Ag is contained. For this reason, when recovering Rh with an extractant, no trouble is shown during extraction.
本発明者等は、Agが含まれている溶液からRhを回収する場合には、分相性が悪く、Rhを効率的に回収できない。 Fe、Pb等の不純物が抽出後液中に残存し、効率的なRhの回収ができないことを知見した。
本発明は、上記の従来技術の欠点である、分相性の悪化、及びFe、Pb等の不純物の残存を無くし、重金属及びアルカリ土類金属、Agを含有するRh溶液を効率的に精製するし、高純度のRhを回収する方法を提供する。 The present invention eliminates the deterioration of phase separation and the remaining impurities such as Fe and Pb, which are the disadvantages of the prior art, and efficiently purifies Rh solutions containing heavy metals, alkaline earth metals, and Ag. A method for recovering high-purity Rh is provided.
本発明者等は、上記の課題を解決すべく以下の発明をなした。
即ち、本発明は、
(1)重金属及びアルカリ土類金属のうち何れか1種以上の不純物と、Agを含
有するRh塩酸溶液について、アルカリを添加してRhその他の成分を中和物として回収した後、この中和物を塩酸で再溶解しRhを濃縮する際に、添加塩酸の添加量をRhに対するClのモル数が3〜4になるように添加し、90℃以上で1時間以上加熱したRh塩酸溶液からAgをろ過分離した液を抽出前液とし、DEHPAで抽出するRh溶液の精製方法。
The present inventors have made the following invention to solve the above-mentioned problems.
That is, the present invention
(1) About Rh hydrochloric acid solution containing one or more impurities of heavy metal and alkaline earth metal and Ag, after adding alkali and recovering Rh and other components as neutralized products, this neutralization When re-dissolving the product with hydrochloric acid and concentrating Rh, the amount of added hydrochloric acid was added so that the number of moles of Cl relative to Rh was 3 to 4, and the Rh hydrochloric acid solution was heated at 90 ° C or higher for 1 hour or longer. A method for purifying Rh solution in which Ag is filtered and separated, and extracted with DEHPA.
(2)上記(1)の抽出前液中のAgを40mg/l以下まで除去する必要がある場
合、アルカリを添加してRhその他の成分を中和物として回収した後、この中和物を塩酸で再溶解しRhを濃縮する際に、添加する塩酸の添加量をRhに対するClのモル数が1.5〜2.5になるように調整したRh溶液をろ過し、AgをAgCl沈殿物として除去した後、Rhに対するClのモル比Cl/Rhが3〜8になるように調整し、90℃以上で1時間以上加熱した液を、DEHPAで抽出するRh溶液の精製方法。
(2) When it is necessary to remove Ag in the pre-extraction solution of (1) above to 40 mg / l or less, after adding alkali and recovering Rh and other components as neutralized products, When re-dissolving with hydrochloric acid and concentrating Rh, after filtering the Rh solution adjusted so that the molar amount of Cl to Rh is 1.5 to 2.5, and removing Ag as an AgCl precipitate A method for purifying an Rh solution, in which a liquid heated at 90 ° C. or more for 1 hour or more is extracted with DEHPA after adjusting the molar ratio of Cl to Rh to Cl / Rh of 3 to 8.
:
(3)上記(1)又は(2)において、Rh中和沈殿物を塩酸で再溶解した液中のRu濃度を20mg/l以下とし、DEHPAで抽出することにより、Rhの水相への回収率を高く保ちつつ、重金属、アルカリ土類金属を除去するRh溶液の精製方法。を提供する。
:
(3) In the above (1) or (2), the Ru concentration in the solution obtained by re-dissolving the Rh neutralized precipitate with hydrochloric acid should be 20 mg / l or less, and extracted with DEHPA to recover Rh into the aqueous phase. A method for purifying Rh solutions that removes heavy metals and alkaline earth metals while maintaining a high rate. I will provide a.
本発明のRh塩酸溶液の精製方法は、
(1)重金属、アルカリ土類金属のうち何れか1種以上の不純物等を含むRhの塩酸溶液のRhに対するClのモル比Cl/Rhが3〜4になるように調整し、90℃以上で1時間以上加熱したものをDEHPAで抽出することにより、Rhロスを低く保ちつつ、重金属およびアルカリ土類金属を十分に除去することができる。
The method for purifying the Rh hydrochloric acid solution of the present invention comprises:
(1) Adjust the molar ratio Cl / Rh of Cl to Rh of hydrochloric acid solution of Rh containing one or more impurities such as heavy metals and alkaline earth metals to be 3-4, and above 90 ℃ By extracting the material heated for 1 hour or more with DEHPA, it is possible to sufficiently remove heavy metals and alkaline earth metals while keeping the Rh loss low.
(2)上記(1)塩酸の添加を2回に分けて、Agがクロロ錯体として溶解することを抑制することで、Ag濃度を40mg/l以下まで除去することができる。 (2) The concentration of Ag can be reduced to 40 mg / l or less by inhibiting the dissolution of Ag as a chloro complex by dividing the addition of (1) hydrochloric acid into two times.
(3)上記(1)、(2)において、DP抽出前液中のRu濃度を40mg/l以下にし、DEHPAで抽出することにより、Rhロスを低く保ちつつ、重金属およびアルカリ土類金属を十分に除去することができる。 (3) In (1) and (2) above, the Ru concentration in the pre-DP extraction solution is 40 mg / l or less, and extraction with DEHPA is sufficient to keep heavy metals and alkaline earth metals while keeping Rh loss low. Can be removed.
以下本発明に関して、詳細に説明する。
本発明における処理対象液は、銅電解スライムから貴金属を回収する際に発生する溶液の処理或いは、廃触媒中から貴金属を回収する際等に発生する溶液の処理であって、Agを含有する溶液である。
Hereinafter, the present invention will be described in detail.
The solution to be treated in the present invention is a treatment of a solution generated when recovering a noble metal from a copper electrolytic slime or a solution generated when recovering a noble metal from a waste catalyst, and a solution containing Ag It is.
例えば、Ptを50mg/Lから1g/L、Pdを50から400mg/L、Ruを1から30mg/L、Irを15mg/Lから3g/L、Rhを100mg/Lから40g/L、Agを0.5から1.5g/L、Feを0.5から2g/L、Pbを50mg/Lから2g/L等を含む液である。 For example, Pt from 50 mg / L to 1 g / L, Pd from 50 to 400 mg / L, Ru from 1 to 30 mg / L, Ir from 15 mg / L to 3 g / L, Rh from 100 mg / L to 40 g / L, Ag A liquid containing 0.5 to 1.5 g / L, Fe 0.5 to 2 g / L, Pb 50 mg / L to 2 g / L, and the like.
本発明における対象処理液は、塩酸酸性である。塩酸の濃度は、0.1から8.0mol/Lである。 The target treatment liquid in the present invention is acidic with hydrochloric acid. The concentration of hydrochloric acid is 0.1 to 8.0 mol / L.
処理対象のRh含有塩酸溶液に、アルカリ剤を添加する。アルカリ剤は、苛性ソーダ等である。 An alkaline agent is added to the Rh-containing hydrochloric acid solution to be treated. The alkaline agent is caustic soda.
アルカリ剤の添加は、Rhその他の成分を中和物として回収する際のpHを7〜12にする。
これにより、Rhを中和後液中に溶解ロスすることなく、中和物としてろ過分離回収することができる。尚この時、Agの一部はろ液中に分離される。
The addition of the alkaline agent brings the pH at the time of recovering Rh and other components as a neutralized product to 7-12.
As a result, Rh can be filtered and recovered as a neutralized product without loss of dissolution in the solution after neutralization. At this time, a part of Ag is separated into the filtrate.
(塩酸1回添加法)
Rh及びその他の成分を含む中和物を塩酸で再溶解する際に、Rhに対するClのモル比Cl/Rhが3〜4程度になるように調整する。
このモル比であると、Rhのロスが極めて少ないと知見した。
Cl/Rhモル比が3より低い場合、DEHPAで抽出する際に中間相が生成し、Rhロスが増大するとともに、抽出後液に残留する重金属濃度が高くなる。
Cl/Rhモル比が4より高い場合、Rhロスの点からは問題ないが、Rhに対して不純物であるAgの溶解度が上がってAg濃度が高くなるとともに、Cl濃度が高くなり、溶液中に含まれるIr、Pt、Pdを除去するために、NaOHを添加する。この処理により、NaClが析出し好ましくない。
(Method of adding hydrochloric acid once)
When redissolving the neutralized product containing Rh and other components with hydrochloric acid, the molar ratio of Cl to Rh, Cl / Rh, is adjusted to about 3-4.
It was found that the loss of Rh was very small at this molar ratio.
When the Cl / Rh molar ratio is lower than 3, an intermediate phase is generated during extraction with DEHPA, Rh loss increases, and the concentration of heavy metals remaining in the liquid after extraction increases.
When the Cl / Rh molar ratio is higher than 4, there is no problem in terms of Rh loss, but the solubility of Ag as an impurity in Rh increases, the Ag concentration increases, and the Cl concentration increases, so that In order to remove Ir, Pt, and Pd contained therein, NaOH is added. This treatment is not preferable because NaCl is precipitated.
また、この溶液を、90℃以上で1時間以上加熱すれば十分である。色の変化の仕方より容易に調整できる。90℃以上になると明らかに赤みが増して溶液は赤褐色になるからである。
100℃まで加熱すると、黒緑色であった溶液が80℃付近でわずかに赤みを帯び始め、上記のように90℃以上と成ると赤みを増す。
この色の変化はRhへのCl配位が進んだためと推測され、Cl/Rhモル比が3以上になるよう塩酸を添加することで、[RhCl3(H2O)3]等のRhクロロ錯体を生成すると考えられる。
It is sufficient to heat the solution at 90 ° C. or higher for 1 hour or longer. It can be adjusted more easily than the way the color changes. This is because when the temperature exceeds 90 ° C., redness increases and the solution becomes reddish brown.
When heated to 100 ° C., the black-green solution starts to be slightly reddish at around 80 ° C., and when it reaches 90 ° C. or higher as described above, the reddishness increases.
This color change is presumed to be due to the progress of Cl coordination to Rh. By adding hydrochloric acid so that the Cl / Rh molar ratio is 3 or more, Rh such as [RhCl 3 (H 2 O) 3 ] It is thought to form a chloro complex.
加熱したRh溶液を室温まで冷却した後、沈殿しているAgClをろ過分離することにより、ろ液中のAg濃度を40〜80mg/lにすることができる。なお、AgCl沈殿物の粒度は小さいので、なるべく目の細かいフィルターでろ別することが好ましく、0.1μmメンブランフィルターでろ過することにより、完全に除去することができる。 After cooling the heated Rh solution to room temperature, the Ag concentration in the filtrate can be adjusted to 40 to 80 mg / l by separating the precipitated AgCl by filtration. In addition, since the particle size of the AgCl precipitate is small, it is preferable to filter with a fine filter as much as possible, and it can be completely removed by filtering with a 0.1 μm membrane filter.
(塩酸2回添加法)
Rhの最終製品中のAg品位を低くするために、抽出処理前に液中のAg濃度を低くする必要がある場合には、塩酸の添加を2回に分けることにより、Agがクロロ錯体として溶解することを抑制することができる。
Rhその他の成分を含む中和物を塩酸で再溶解する際に、Rhに対するClのモル数が1.5〜2.5になるように塩酸の添加量を調整し、溶解したRh塩酸溶液をろ過し、Agを沈殿物として除去することにより、Rhの未溶解ロスをほとんど出すことなく、ろ液中のAg濃度を40mg/l以下にすることができる。
この時の塩酸添加量が多いとAg溶解度が上がり、ろ液中のAg濃度が高くなる。塩酸添加量が少ないと中和物中のRhが全量溶解せず、ろ過した時に、ろ過残渣としてRhの未溶解ロスが発生する。
(Method of adding hydrochloric acid twice)
In order to reduce the Ag quality in the final product of Rh, if it is necessary to reduce the Ag concentration in the solution before extraction, Ag is dissolved as a chloro complex by dividing the addition of hydrochloric acid twice. Can be suppressed.
When redissolving the neutralized product containing Rh and other components with hydrochloric acid, the amount of hydrochloric acid added is adjusted so that the number of moles of Cl relative to Rh is 1.5 to 2.5, and the dissolved Rh hydrochloric acid solution is filtered, Ag As a precipitate, the Ag concentration in the filtrate can be reduced to 40 mg / l or less with almost no undissolved loss of Rh.
If the amount of hydrochloric acid added at this time is large, Ag solubility increases and the Ag concentration in the filtrate increases. If the amount of hydrochloric acid added is small, the total amount of Rh in the neutralized product does not dissolve, and when filtered, an undissolved loss of Rh occurs as a filtration residue.
さらに、このろ液に対し、Cl/Rhのモル比が3〜8になるように塩酸を添加し、90℃以上で加熱した液を、DEHPAで抽出することにより、水相中のRhをわずかしかロスすることなく、4N程度のRhを製造することが可能なレベルまで、重金属およびアルカリ土類金属を除去できる。
塩酸の補加、加熱なしで、DEHPAで抽出すると、RhへのCl配位が不足しているため、中間相が生成して水相からのRhロスが増大する。
Furthermore, hydrochloric acid was added to this filtrate so that the molar ratio of Cl / Rh was 3 to 8, and the liquid heated at 90 ° C. or higher was extracted with DEHPA, so that Rh in the aqueous phase was slightly increased. Without loss, heavy metals and alkaline earth metals can be removed to a level where Rh of about 4N can be produced.
Extraction with DEHPA without supplementation of hydrochloric acid and heating results in insufficient Cl coordination to Rh, so an intermediate phase is generated and Rh loss from the aqueous phase increases.
なお、上記の中和沈殿物にNaClが含まれる場合には、塩酸で中和沈殿物を溶解する際のCl濃度を下げAgを沈殿除去しやすくするとともに、抽出操作時に塩析することを防止するため、中和沈殿物を純水でリパルプ洗浄後にろ過してNaClをろ液中に分離してから塩酸で溶解する。 If NaCl is contained in the neutralized precipitate, the Cl concentration during dissolution of the neutralized precipitate with hydrochloric acid is lowered to make it easier to precipitate Ag and prevent salting out during the extraction operation. For this purpose, the neutralized precipitate is washed with pure water after repulping and filtered to separate NaCl into the filtrate and then dissolved with hydrochloric acid.
(予めRuを除去する法)
さらに、DEHPAで抽出する際のRh塩酸溶液にRuが含まれていると、抽出時に、廃油状のドロドロした粘性の高い中間相が生成し、Rhロスが増大する。原因ははっきりしないが、抽出操作時にRuが水相中に安定に存在できずにスラッジを生成するためと考えられる。
従って、抽出操作に先立ち、例えば蒸留等の方法により、あらかじめRuを40mg/l程度まで除去しておく必要がある。
(Method to remove Ru in advance)
Furthermore, if Ru is contained in the Rh hydrochloric acid solution during extraction with DEHPA, a wasteful, oily and viscous intermediate phase is generated during extraction, and Rh loss increases. The cause is not clear, but it is thought that Ru does not exist stably in the aqueous phase during the extraction operation and generates sludge.
Therefore, prior to the extraction operation, it is necessary to remove Ru to about 40 mg / l in advance by a method such as distillation.
(塩酸1回添加法)
塩酸1回添加法について、図1に示すフローシートに沿って説明する。なお、以下の実施例および比較例の分析は、いずれもICP発光分光分析装置によって行なった。
(Method of adding hydrochloric acid once)
The hydrochloric acid once addition method is demonstrated along the flow sheet shown in FIG. The analysis of the following examples and comparative examples were all performed by an ICP emission spectroscopic analyzer.
(実施例1)
原料として表1に示すRh塩酸溶液を使用した。
The Rh hydrochloric acid solution shown in Table 1 was used as a raw material.
中和沈殿物をCl/Rhモル比が3.1になるよう塩酸を添加し、60℃に加熱し溶解した。溶液のRh濃度が40g/l程度になるよう純水を添加したのち、90℃で1時間加熱し、RhへのCl配位反応を促進させた。溶液の色は黒緑色から赤褐色に変化した。1晩放冷した後、0.1μmメンブランフィルターでろ過し、AgClを主成分とする沈殿物をろ過分離した。
ろ過後のろ液中のAgは、表1に示すように37mg/Lとろ過前の4346mg/Lに比べ、大きく低減していることが把握される。
Hydrochloric acid was added to the neutralized precipitate so that the Cl / Rh molar ratio was 3.1, and the mixture was heated to 60 ° C. to dissolve. After adding pure water so that the Rh concentration of the solution was about 40 g / l, the solution was heated at 90 ° C. for 1 hour to promote Cl coordination reaction to Rh. The color of the solution changed from blackish green to reddish brown. After allowing to cool overnight, the mixture was filtered through a 0.1 μm membrane filter, and the precipitate containing AgCl as a main component was separated by filtration.
As shown in Table 1, it can be seen that Ag in the filtrate after filtration is greatly reduced compared to 37 mg / L and 4346 mg / L before filtration.
溶媒抽出は、抽出剤DEHPAとしてDP−8R(大八化学製)をケロシンで20%に希釈したものを使用した。O/A=2:1で塩酸再溶解液に20%DP−8Rを添加し、撹拌しながらNaOHを添加し、pH3.8に調整した。30分間撹拌後、分液ロートに移して静置し、有機相と水相を分離した。
この操作を2回繰返した後の水相をDP−8R抽出後液とした。分相性は抽出2段とも良好であった。分析値を表1に示す。Agを除く重金属、アルカリ土類金属を10mg/l以下、Feは、9mg/L、Pbは、4mg/Lまで除去することができた。
この抽出操作によるRhロスは0.1%であった。
尚抽出操作におけるRhロスは、以下の計算式によって計算される。
抽出時のRhロス(%)=(C−D)÷ C×
100
C:抽出前液中のRh量(g)
=抽出前液量(L)×抽出前液Rh濃度分析値(mg/L)
÷1000
D:抽出後液中のRh量(g)
=抽出後液量(L)×抽出後液Rh濃度分析値(mg/L)
÷1000
中和物の塩酸再溶解条件を適正にすることで、抽出操作によるRhロスは低減できるが、それでも多少は有機相にRhが分配されるので、有機相へのRhロスが発生する。
In the solvent extraction, DP-8R (manufactured by Daihachi Chemical Co., Ltd.) diluted with kerosene to 20% was used as the extractant DEHPA. 20% DP-8R was added to the hydrochloric acid redissolved solution at O / A = 2: 1, and NaOH was added with stirring to adjust the pH to 3.8. After stirring for 30 minutes, the mixture was transferred to a separatory funnel and allowed to stand to separate an organic phase and an aqueous phase.
The aqueous phase after repeating this operation twice was used as a solution after DP-8R extraction. The phase separation was good in both extraction stages. The analytical values are shown in Table 1. It was possible to remove heavy metals and alkaline earth metals excluding Ag up to 10 mg / l, Fe up to 9 mg / L, and Pb up to 4 mg / L.
The Rh loss due to this extraction operation was 0.1%.
The Rh loss in the extraction operation is calculated by the following calculation formula.
Rh loss during extraction (%) = (CD) ÷ C ×
100
C: Rh amount in the pre-extraction solution (g)
= Pre-extraction solution volume (L) x Pre-extraction solution Rh concentration analysis value (mg / L)
÷ 1000
D: Rh amount in the solution after extraction (g)
= Extracted solution volume (L) x Extracted solution Rh concentration analysis value (mg / L)
÷ 1000
Rh loss due to extraction operation can be reduced by making the neutralized product re-dissolved with hydrochloric acid appropriately, but Rh is still distributed to the organic phase to some extent, so Rh loss to the organic phase occurs.
なお、上記の中和操作時の各pHに対する中和物へのRh回収率を
図2に示す。中和処理のpHを7〜12にすることで中和物へのRh回収率を99.9%以上にすることができることがわかる。
In addition, the Rh collection | recovery rate to the neutralized material with respect to each pH at the time of said neutralization operation is shown in FIG. It can be seen that the Rh recovery rate to the neutralized product can be increased to 99.9% or more by adjusting the pH of the neutralization treatment to 7-12.
さらに、上記の処理における塩酸添加量は、塩酸を補加する際のCl/Rhモル比を2.2〜3.6まで変えて、その他の操作は上記と同様に処理した後、上記と同様にDEHPAで抽出した時のRhロスを図3に示す。
Cl/Rhモル比を3.1〜3.6に調整した場合、抽出におけるRhロスは10%未満であり、また抽出後液中の重金属およびアルカリ金属は10mg/l未満であった。
Cl/Rhモル比が3未満では、抽出時の分相が悪化してRhロスは高くなり、極端な場合は分相しなくなる。
Furthermore, the amount of hydrochloric acid added in the above treatment was changed by changing the Cl / Rh molar ratio at the time of supplementing hydrochloric acid to 2.2 to 3.6, and other operations were treated in the same manner as described above, and then extracted with DEHPA in the same manner as above. The Rh loss at this time is shown in FIG.
When the Cl / Rh molar ratio was adjusted to 3.1 to 3.6, the Rh loss during extraction was less than 10%, and the heavy metals and alkali metals in the solution after extraction were less than 10 mg / l.
If the Cl / Rh molar ratio is less than 3, the phase separation during extraction deteriorates and the Rh loss increases, and in extreme cases, phase separation does not occur.
Cl/Rhモル比が大きい場合は、DEHPAによる抽出時のRhロスおよび不純物除去には問題ないが、Cl濃度増加により、溶液中に含まれるAg濃度が高くなり好ましくない。
中和沈殿物を塩酸で溶解する際のCl/Rhモル比を1.3〜4.4まで変えて、上記と同様に、中和物を塩酸で再溶解、ろ過した液のAg濃度及びRh未溶解ロスを図4に示す。
中和物を塩酸で再溶解する際に、Agの溶解度を下げるために、塩酸の添加量を抑えると中和物中のRhが全量溶解せずに、ろ過操作時にろ過残渣中へRhロスが発生する。
中和物を塩酸再溶解する際のCl/Rhモル比を3〜4にすることで、Rhロス1%未満に保ちつつ、Ag濃度を40〜80mg/lまで低くできることが分かる。
尚、中和物の塩酸溶解時のRhロスは以下の式により計算する。
中和物溶解時のRhロス(%)=(A−B)÷ A×
100
A:Rh塩酸溶液(中和前液)中のRh量(g)
= Rh塩酸溶液量(L) × Rh塩酸溶液Rh濃度分析値(mg/L)÷1000
B:中和物溶解液中のRh量(g)
= 溶解液量(L) × 溶解液Rh濃度分析値(mg/L) ÷1000
Rh塩酸溶液をNaOHで中和し、Rhを中和物として沈殿させたものを、純水でリパルプ・ろ過した後、中和物を塩酸で再溶解することにより、NaClを除去して、Rhを10
g/lから50〜80g/lに濃縮している。
ここで、中和条件を適正にすることにより、中和後液中Rh濃度は<1mg/lとなるので、中和操作によるRhロスはゼロと見なせる。また、純水で中和物をリパルプしてNaClをろ液中に除去する際のRhロスもゼロと見なせる。
When the Cl / Rh molar ratio is large, there is no problem in Rh loss and impurity removal during extraction with DEHPA, but the Ag concentration contained in the solution increases due to an increase in Cl concentration, which is not preferable.
Change the Cl / Rh molar ratio when dissolving the neutralized precipitate with hydrochloric acid from 1.3 to 4.4, and re-dissolve the neutralized product with hydrochloric acid and reduce the Ag concentration and Rh undissolved loss in the same manner as above. As shown in FIG.
When redissolving the neutralized product with hydrochloric acid, in order to reduce the solubility of Ag, if the amount of hydrochloric acid added is reduced, the total amount of Rh in the neutralized product will not dissolve, and Rh loss will occur in the filtration residue during filtration operation. appear.
It can be seen that the Ag concentration can be lowered to 40 to 80 mg / l while keeping the Rh loss less than 1% by setting the Cl / Rh molar ratio at 3 to 4 when redissolving the neutralized product with hydrochloric acid.
The Rh loss when the neutralized product is dissolved in hydrochloric acid is calculated by the following formula.
Rh loss (%) at neutralization dissolution = (A−B) ÷ A ×
100
A: Rh amount (g) in Rh hydrochloric acid solution (pre-neutralization solution)
= Rh hydrochloric acid solution volume (L) x Rh hydrochloric acid solution Rh concentration analysis value (mg / L) ÷ 1000
B: Rh amount in neutralized product solution (g)
= Volume of dissolved solution (L) x Analysis value of dissolved Rh concentration (mg / L) ÷ 1000
After neutralizing the Rh hydrochloric acid solution with NaOH and precipitating Rh as a neutralized product, repulping and filtering with pure water, the neutralized product is redissolved with hydrochloric acid to remove NaCl, and Rh 10
Concentrated from g / l to 50-80 g / l.
Here, by making the neutralization conditions appropriate, the Rh concentration in the post-neutralization solution becomes <1 mg / l, so that the Rh loss due to the neutralization operation can be regarded as zero. In addition, the Rh loss when removing the NaCl in the filtrate by repulping the neutralized product with pure water can be regarded as zero.
以上より、Rhの塩酸水溶液中にアルカリを添加しpHを7〜12に調整し、Rhその他の成分を沈殿させた中和沈殿物をろ過分離したのち、Rhに対するClのモル比Cl/Rhが3〜4になるように塩酸で溶解したRh溶液をろ過することでAgを沈殿物として除去し、ろ液中のAg濃度を40〜80mg/lにし、90℃以上で加熱した液を、DEHPAで抽出することにより、Rhロスを10%未満とし、抽出後液中の重金属、アルカリ土類金属濃度を10mg/l未満まで除去できることが分かる。 From the above, alkali was added to the hydrochloric acid aqueous solution of Rh to adjust the pH to 7 to 12, and the neutralized precipitate in which Rh and other components were precipitated was filtered and separated. Then, the molar ratio Cl / Rh of Cl to Rh was By filtering the Rh solution dissolved in hydrochloric acid so that it becomes 3-4, Ag is removed as a precipitate, the Ag concentration in the filtrate is 40-80 mg / l, and the liquid heated at 90 ° C. or higher is DEHPA It can be seen that the Rh loss can be reduced to less than 10% and the concentration of heavy metals and alkaline earth metals in the solution after extraction can be removed to less than 10 mg / l.
(比較例1)
原料として表2に示すRh塩酸溶液を使用した。
溶液の色は緑がかった赤褐色であった。20%DP−8Rで、O/A=2:1で混合撹拌しながらNaOHを添加してpH3.8に調整後30分間撹拌し、分液ロートに移して30分間静置したが、有機相と水相が激しく懸濁し、分相しなかった。
塩酸の添加量が足りないため、水相中の各成分が抽出操作時に水相中で安定的に溶解することができず一部が析出したためと推測される。
(Comparative Example 1)
The Rh hydrochloric acid solution shown in Table 2 was used as a raw material.
The color of the solution was greenish reddish brown. With 20% DP-8R, NaOH was added with O / A = 2: 1 while stirring, adjusted to pH 3.8, stirred for 30 minutes, transferred to a separatory funnel and allowed to stand for 30 minutes. And the aqueous phase suspended vigorously and did not separate.
It is presumed that because the amount of hydrochloric acid added is insufficient, each component in the aqueous phase cannot be stably dissolved in the aqueous phase during the extraction operation, and a part of it is precipitated.
(比較例2)
原料として表3に示すRh塩酸溶液を使用した。
溶液の色は黒緑色であった。20%DP−8Rで、O/A=2:1で混合撹拌しながらNaOHを添加してpH3.8に調整後30分間撹拌し、分液ロートに移して30分間静置した後、有機相と水相を分離した。
この操作を2回繰返した後の水相をDP−8R抽出後液とした。分相性は抽出2段とも界面に懸濁相が生成した。抽出前後の水相の分析値を表3に示す。抽出後液水相中のFe濃度10mg/l、Pb濃度18mg/lとFe、Pbの除去が不十分であった。
この抽出操作によるRhロスは19.7%であった。塩酸添加量が不足し、加熱が不十分であったため、と考えられる。
(Comparative Example 2)
The Rh hydrochloric acid solution shown in Table 3 was used as a raw material.
The color of the solution was blackish green. With 20% DP-8R, NaOH was added with stirring at O / A = 2: 1, adjusted to pH 3.8, stirred for 30 minutes, transferred to a separatory funnel, allowed to stand for 30 minutes, and then the organic phase. And the aqueous phase were separated.
The aqueous phase after repeating this operation twice was used as a solution after DP-8R extraction. As for the phase separation, a suspended phase was formed at the interface in both extraction stages. Table 3 shows the analysis values of the aqueous phase before and after extraction. After extraction, the Fe / Pb concentration was 10 mg / l and the Pb concentration was 18 mg / l, and the removal of Fe and Pb was insufficient.
Rh loss by this extraction operation was 19.7%. This is probably because the amount of hydrochloric acid added was insufficient and heating was insufficient.
(比較例3)
原料として表4に示すRh塩酸溶液を使用した。
溶液の色は赤褐色であった。20%DP−8Rで、O/A=2:1で混合撹拌しながらNaOHを添加してpH3.8に調整後30分間撹拌し、分液ロートに移して30分間静置した後、有機相と水相を分離した。
(Comparative Example 3)
The Rh hydrochloric acid solution shown in Table 4 was used as a raw material.
The color of the solution was reddish brown. With 20% DP-8R, NaOH was added with stirring at O / A = 2: 1, adjusted to pH 3.8, stirred for 30 minutes, transferred to a separatory funnel, allowed to stand for 30 minutes, and then the organic phase. And the aqueous phase were separated.
この操作を2回繰返した後の水相をDP−8R抽出後液とした。分相性は抽出2段とも界面に懸濁相が生成した。抽出前後の水相の分析値を表4に示す。抽出後液水相中のPb濃度13mg/lとPbの除去が不十分であった。
この抽出操作によるRhロスは7.7%であった。塩酸再溶解後の加熱が不十分であったため、RhへのCl配位が不十分であったため、Rhクロロ錯体の一部が析出し懸濁相に取り込まれたか、DP−8Rへ一部抽出されてしまったことが考えられる。
The aqueous phase after repeating this operation twice was used as a solution after DP-8R extraction. As for the phase separation, a suspended phase was formed at the interface in both extraction stages. Table 4 shows the analysis values of the aqueous phase before and after extraction. After extraction, the Pb concentration in the liquid water phase was 13 mg / l and the removal of Pb was insufficient.
The Rh loss by this extraction operation was 7.7%. Insufficient heating after re-dissolution of hydrochloric acid resulted in inadequate Cl coordination to Rh, so some of the Rh chloro complex was precipitated and incorporated into the suspension phase, or partially extracted into DP-8R It may have been done.
実施例1及び比較例1〜3の条件とDP抽出における分相性、不純物除去、Rhロスについて、表5にまとめる。
比較例1、2のように、Cl/Rhモル比が3未満の場合、加熱温度に関わらず、DEHPAで抽出した時に、まともに分相せず抽出操作ができなかったり、分相できても、中間相が生成し、Rhロスが増大し、不純物の抽出分離が悪化する。
比較例3のように、Cl/Rhモル比が3〜4の範囲にあっても、加熱温度が60℃と低い場合には、DEHPA抽出時に、中間相が生成し、不純物の抽出分離が悪化する。
Table 5 summarizes the conditions of Example 1 and Comparative Examples 1 to 3, and phase separation, impurity removal, and Rh loss in DP extraction.
As in Comparative Examples 1 and 2, when the Cl / Rh molar ratio is less than 3, regardless of the heating temperature, when extraction is performed with DEHPA, the extraction operation cannot be performed properly or phase separation is not possible. An intermediate phase is formed, Rh loss is increased, and extraction and separation of impurities are deteriorated.
As in Comparative Example 3, even when the Cl / Rh molar ratio is in the range of 3 to 4, if the heating temperature is as low as 60 ° C, an intermediate phase is generated during DEHPA extraction, and the extraction and separation of impurities deteriorates. To do.
なお、Cl/Rhモル比を4以上にすると、AgClの溶解度が上がり、Rh塩酸再溶解液のろ液中Ag濃度が上がり、Rh最終製品中のAg品位が上がることがあり好ましくない。Cl/Rhモル比とRh塩酸再溶解液Ag濃度の関係を図4に示す。
Rh塩酸再溶解において、Cl/Rhモル比4以下、60℃以上の条件で再溶解し、室温まで冷却してから、0.1μmメンブランフィルタでろ過すると、Ag濃度を80mg/l未満まで除去することができる。
Cl/Rhモル比3〜4において、Ag濃度を40〜80mg/lにすることができ、この時のRh未溶解ロスは、1%未満である。
以上により、Rhをわずかしかロスすることなく、重金属およびアルカリ土類金属を効果的に除去できることが分かる。
If the Cl / Rh molar ratio is 4 or more, the solubility of AgCl increases, the Ag concentration in the filtrate of the Rh hydrochloric acid redissolved solution increases, and the Ag quality in the Rh final product may increase, which is not preferable. The relationship between the Cl / Rh molar ratio and the Rh hydrochloric acid redissolved solution Ag concentration is shown in FIG.
When re-dissolving Rh hydrochloric acid, re-dissolve under Cl / Rh molar ratio of 4 or less and 60 ° C or higher, cool to room temperature, and then filter with a 0.1 μm membrane filter to remove Ag concentration to less than 80 mg / l. Can do.
At a Cl / Rh molar ratio of 3 to 4, the Ag concentration can be 40 to 80 mg / l, and the Rh undissolved loss at this time is less than 1%.
From the above, it can be seen that heavy metals and alkaline earth metals can be effectively removed with little loss of Rh.
(実施例2)
(塩酸添加2回法)
塩酸添加2回法について、図5に示すフローシートに沿って説明する。
原料として表6に示すRh塩酸溶液を使用した。
(Method of adding hydrochloric acid twice)
The method of adding hydrochloric acid twice will be described along the flow sheet shown in FIG.
The Rh hydrochloric acid solution shown in Table 6 was used as a raw material.
Cl/Rhモル比が1.5になるよう塩酸を中和沈殿物に添加し、溶液のRh濃度が50g/l程度になるよう純水を添加したのち、80℃で30分間加熱し、中和物を完全に溶解した。溶液の色は黒緑色であった。
1晩放冷した後、0.1μmメンブランフィルターでろ過し、AgClを主成分とする沈殿物をろ過分離した。ろ液のAg濃度は24mg/lと、実施例1のAg濃度37mg/lと比較し、低い値であった。この時のRh未溶解ロスは1.3%であった。
Add hydrochloric acid to the neutralized precipitate so that the Cl / Rh molar ratio is 1.5, add pure water so that the Rh concentration of the solution is about 50 g / l, and then heat at 80 ° C for 30 minutes to neutralize the product. Was completely dissolved. The color of the solution was blackish green.
After allowing to cool overnight, the mixture was filtered through a 0.1 μm membrane filter, and the precipitate containing AgCl as a main component was separated by filtration. The Ag concentration of the filtrate was 24 mg / l, which was lower than the Ag concentration of Example 1 of 37 mg / l. At this time, the Rh undissolved loss was 1.3%.
上記のろ液に、Cl/Rhモル比が3.4になるように塩酸を補加し、95℃で2時間加熱し、RhへのCl配位反応を促進させた。溶液の色は黒緑色から赤褐色に変化した。室温まで放冷した液を抽出前液とした。
溶媒抽出は、DP−8R(大八化学製)をケロシンで20%に希釈したものを使用した。O/A=1:1で抽出前液に20%DP−8Rを添加し、撹拌しながらNaOHを添加し、pH3.8に調整した。
30分間撹拌後、分液ロートに移して静置し、有機相と水相を分離した。この操作を2回繰返した後の水相をDP−8R抽出後液とした。分相性は抽出2段とも良好であった。
分析値を表6に示す。Agを除く重金属、アルカリ土類金属を10mg/l以下まで除去することができた。この抽出操作によるRhロスは2.6%であった。
Hydrochloric acid was added to the filtrate so that the Cl / Rh molar ratio was 3.4, and the mixture was heated at 95 ° C. for 2 hours to promote Cl coordination reaction to Rh. The color of the solution changed from blackish green to reddish brown. The liquid allowed to cool to room temperature was used as a pre-extraction liquid.
For solvent extraction, DP-8R (manufactured by Daihachi Chemical Co., Ltd.) diluted with kerosene to 20% was used. 20% DP-8R was added to the pre-extraction solution at O / A = 1: 1, and NaOH was added with stirring to adjust the pH to 3.8.
After stirring for 30 minutes, the mixture was transferred to a separatory funnel and allowed to stand to separate an organic phase and an aqueous phase. The aqueous phase after repeating this operation twice was used as a solution after DP-8R extraction. The phase separation was good in both extraction stages.
The analysis values are shown in Table 6. Heavy metals and alkaline earth metals excluding Ag could be removed to 10 mg / l or less. The Rh loss due to this extraction operation was 2.6%.
なお、中和沈殿物を塩酸で溶解する際のCl/Rhモル比を1.3〜4.4まで変えて、実施例2と同様に、中和物を塩酸で再溶解、ろ過した液のAg濃度及びRh未溶解ロスを図6に示す。
中和物を塩酸再溶解する際のCl/Rhモル比を1.5〜2.5にすることで、Rhロスを5%以下に保ちつつ、Ag濃度を40mg/l未満まで低くできることが分かる。
The Cl / Rh molar ratio when dissolving the neutralized precipitate with hydrochloric acid was changed from 1.3 to 4.4, and in the same manner as in Example 2, the neutralized product was redissolved with hydrochloric acid and the Ag concentration and Rh of the filtrate were filtered. Undissolved loss is shown in FIG.
It can be seen that the Ag concentration can be lowered to less than 40 mg / l while maintaining the Rh loss at 5% or less by setting the Cl / Rh molar ratio when redissolving the neutralized product to hydrochloric acid to 1.5 to 2.5.
さらに、実施例2において、塩酸を補加する際のCl/Rhモル比を3.1〜7.1まで変えて、その他の操作は実施例2と同様に処理した後、実施例2と同様にDEHPAで抽出した時のRhロスを図7に示す。
何れも、抽出におけるRhロスは6%未満であった。また抽出後液中の重金属およびアルカリ金属は10mg/l未満であった。Cl/Rhモル比が3未満では、比較例1,2で示したとおり、DEHPAによる抽出で中間相が生成し、Rhロスが増大した。
Further, in Example 2, the Cl / Rh molar ratio at the time of supplementing hydrochloric acid was changed from 3.1 to 7.1, and other operations were performed in the same manner as in Example 2 and then extracted with DEHPA as in Example 2. The Rh loss at this time is shown in FIG.
In all cases, the Rh loss in extraction was less than 6%. Heavy metals and alkali metals in the solution after extraction were less than 10 mg / l. When the Cl / Rh molar ratio was less than 3, as shown in Comparative Examples 1 and 2, extraction with DEHPA produced an intermediate phase and increased Rh loss.
Cl/Rhモル比が大きい分には、DEHPAによる抽出でのRhロス、不純物除去には問題ないが、Cl濃度増加により、溶液中に含まれるIr、Pt、Pdを除去のために、NaOHを添加すると、NaClが析出するため好ましくない。
従って、Cl/Rhモル比は8以下にすることが好ましい。
When the Cl / Rh molar ratio is large, there is no problem in Rh loss and impurity removal by DEHPA extraction, but NaOH is removed to remove Ir, Pt, and Pd contained in the solution by increasing the Cl concentration. Addition is not preferable because NaCl precipitates.
Therefore, the Cl / Rh molar ratio is preferably 8 or less.
以上より、請求項2に示すとおり、Rhの塩酸水溶液中にアルカリを添加しpHを7〜12に調整し、Rhその他の成分を沈殿させた中和沈殿物をろ過分離したのち、Rhに対するClのモル比Cl/Rhが1.5〜2.5になるように塩酸で溶解したRh溶液をろ過することでAgを沈殿物として除去し、ろ液中のAg濃度を40mg/l以下にし、さらに、Rhに対するClのモル比Cl/Rhが3〜8になるように塩酸を補加し、90℃以上で加熱した液を、DEHPAで抽出することにより、Rhロスを6%未満とし、抽出後液中の重金属、アルカリ土類金属濃度を10mg/l未満まで除去できることが分かる。 From the above, as shown in claim 2, alkali is added to an aqueous hydrochloric acid solution of Rh to adjust the pH to 7 to 12, and the neutralized precipitate in which Rh and other components are precipitated is separated by filtration, and then Cl is added to Rh. By filtering the Rh solution dissolved in hydrochloric acid so that the molar ratio Cl / Rh is 1.5 to 2.5, Ag is removed as a precipitate, and the Ag concentration in the filtrate is reduced to 40 mg / l or less. Hydrochloric acid was supplemented so that the molar ratio Cl / Rh of Cl was 3-8, and the liquid heated at 90 ° C. or higher was extracted with DEHPA to reduce the Rh loss to less than 6%. It can be seen that heavy metal and alkaline earth metal concentrations can be removed to less than 10 mg / l.
(実施例3)
(予め抽出処理前にRuを除去する法)
以下に予め抽出処理前にRuを除去する方法について実施例により、詳細に説明する。
原料として表7〜11に示すRh塩酸溶液を使用した。
Rh塩酸溶液のRu濃度が0mg/l及び10〜800mg/l程度ある以外は、実施例2と同様に処理した塩酸再溶解液を抽出前液とした。溶液の色は赤褐色であった。
20%DP−8Rで、O/A=1:1で混合撹拌しながらNaOHを添加してpH3.8に調整後30分間撹拌し、分液ロートに移して30分間静置した後、有機相と水相を分離した。
(Example 3)
(Method to remove Ru before extraction)
Hereinafter, a method for removing Ru before extraction processing will be described in detail with reference to examples.
Rh hydrochloric acid solutions shown in Tables 7 to 11 were used as raw materials.
A hydrochloric acid redissolved solution treated in the same manner as in Example 2 was used as the pre-extraction solution, except that the Ru concentration of the Rh hydrochloric acid solution was about 0 mg / l and 10 to 800 mg / l. The color of the solution was reddish brown.
With 20% DP-8R, NaOH was added with stirring at O / A = 1: 1, adjusted to pH 3.8, stirred for 30 minutes, transferred to a separatory funnel, allowed to stand for 30 minutes, and then the organic phase And the aqueous phase were separated.
この操作を1回実施した後の水相をDP−8R抽出後液とした。
処理対象液(塩酸再溶解(ろ過後))のRu濃度を変化させ、該液を抽出処理した後の水相及び処理前の分析値を表7〜11に示す。
Tables 7 to 11 show the aqueous phase after changing the Ru concentration of the solution to be treated (hydrochloric acid redissolved (after filtration)) and extracting the solution, and the analytical values before treatment.
抽出前液中Ru濃度が20mg/l以下であれば、DP抽出において、分相性がよく、Pb等重金属及びアルカリ土類金属を10mg/l未満まで除去でき、なおかつRhロスを6%未満にできることが分かる。
原因は、不明確であるが、抽出操作時にRuが水相中に安定的に存在できずにスラッジを生成するためと考えられる。
抽出操作前に行うべきRuの除去は、例えば蒸留操作により実施できる。
If the Ru concentration in the pre-extraction solution is 20 mg / l or less, phase separation is good in DP extraction, heavy metals such as Pb and alkaline earth metals can be removed to less than 10 mg / l, and Rh loss can be reduced to less than 6%. I understand.
The cause is unclear, but it is thought that Ru does not exist stably in the aqueous phase during the extraction operation and generates sludge.
The removal of Ru to be performed before the extraction operation can be performed by, for example, a distillation operation.
以上により、実施例1,2,3によりDP抽出において、分相性良く、重金属、アルカリ土類金属を除去でき、なおかつRhロスも少ないことが分かる。 From the above, it can be seen that in Examples 1, 2 and 3, DP extraction can remove heavy metals and alkaline earth metals with good phase separation, and there is little Rh loss.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005194874A JP4369402B2 (en) | 2005-07-04 | 2005-07-04 | Rh recovery method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005194874A JP4369402B2 (en) | 2005-07-04 | 2005-07-04 | Rh recovery method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007009306A JP2007009306A (en) | 2007-01-18 |
JP4369402B2 true JP4369402B2 (en) | 2009-11-18 |
Family
ID=37748183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005194874A Active JP4369402B2 (en) | 2005-07-04 | 2005-07-04 | Rh recovery method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4369402B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4209438B2 (en) * | 2006-03-31 | 2009-01-14 | 日鉱金属株式会社 | Rh recovery method |
JP2009102722A (en) * | 2007-10-25 | 2009-05-14 | Yokohama Kinzoku Kk | Method for obtaining precious metal from strongly acidic wastewater containing precious metal and metal other than precious metal |
JP5539775B2 (en) * | 2010-03-31 | 2014-07-02 | Jx日鉱日石金属株式会社 | Method for purifying solution containing rhodium |
-
2005
- 2005-07-04 JP JP2005194874A patent/JP4369402B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007009306A (en) | 2007-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2494159C1 (en) | Method of noble metal extraction | |
JP3879126B2 (en) | Precious metal smelting method | |
KR101853255B1 (en) | Process for purifying zinc oxide | |
JP2019127634A (en) | Manufacturing method of high purity scandium oxide | |
JP4209438B2 (en) | Rh recovery method | |
JP4369402B2 (en) | Rh recovery method | |
JP4116490B2 (en) | High-purity platinum group recovery method | |
JP4470749B2 (en) | Rhodium recovery method and metal rhodium production method | |
JP5339068B2 (en) | Ruthenium purification and recovery method | |
TWI391495B (en) | Rhodium recovery method | |
JP4100696B2 (en) | Te separation method from Rh solution | |
JP5881469B2 (en) | Ruthenium recovery method | |
JP5881502B2 (en) | Ruthenium recovery method | |
JP3823307B2 (en) | Method for producing high purity cobalt solution | |
CN104141042A (en) | Method for recovering RH | |
JP7400443B2 (en) | Mutual separation method of platinum group elements | |
JP4134613B2 (en) | Purification method for selenium, etc. | |
JP2004143527A (en) | Method for removing platinum and palladium in solution | |
JP2004035968A (en) | Method for separating platinum group element | |
JP3309814B2 (en) | How to remove platinum and palladium | |
JP3666337B2 (en) | How to recover palladium | |
JP3613443B2 (en) | Method for dissolving and extracting tantalum and / or niobium-containing alloys | |
JPH10158752A (en) | Method for extracting and recovering silver | |
JP3309801B2 (en) | How to collect gold | |
JP7347085B2 (en) | Manufacturing method of high purity scandium oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070319 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090728 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090803 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090825 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090827 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4369402 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120904 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120904 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120904 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120904 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130904 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130904 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |