JPH06271655A - Production of functional electrode - Google Patents

Production of functional electrode

Info

Publication number
JPH06271655A
JPH06271655A JP6452893A JP6452893A JPH06271655A JP H06271655 A JPH06271655 A JP H06271655A JP 6452893 A JP6452893 A JP 6452893A JP 6452893 A JP6452893 A JP 6452893A JP H06271655 A JPH06271655 A JP H06271655A
Authority
JP
Japan
Prior art keywords
electrode
conductive polymer
solution
polymerization
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6452893A
Other languages
Japanese (ja)
Inventor
Hidetoshi Tsuchida
英俊 土田
Kimihisa Yamamoto
公寿 山元
Shinji Takeoka
真司 武岡
Hideo Boku
英緒 朴
Satoyuki Ota
智行 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6452893A priority Critical patent/JPH06271655A/en
Publication of JPH06271655A publication Critical patent/JPH06271655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To obtain a functional electrode having excellent adhesivity by impregnating a porous electrode with a solution containing a monomer for an electrically conductive polymer and a supporting electrolyte and subjecting the monomer to electrolytic oxidation, thereby forming an electrically conductive polymer coating film on the total surface of the electrode. CONSTITUTION:A porous electrode is impregnated with a solution containing a monomer capable of forming an electrically conductive polymer (e.g. polypyrrole, polyaniline and polythiophene) and a supporting electrolyte (e.g. tetraalkylammonium salt) and subjected to electrolysis in a solution of a supporting electrolyte to form an electrically conductive polymer coating film on the total surface in the porous electrode and obtain the objective functional electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機能電極の製造方法に
関し、特に電解酸化重合により多孔体電極内の全表面に
導電性高分子被膜を形成させる方法に関する。また本発
明は金属/導電性高分子の界面を利用したコンデンサな
どのデバイスに関し、大きな界面面積を有する多孔体電
極内部に電解重合により導電性高分子を合成し、高性能
のデバイスの製作に利用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a functional electrode, and more particularly to a method for forming a conductive polymer film on the entire surface of a porous electrode by electrolytic oxidation polymerization. Further, the present invention relates to a device such as a capacitor using an interface of a metal / conductive polymer, which is used for manufacturing a high-performance device by synthesizing a conductive polymer inside a porous electrode having a large interface area by electrolytic polymerization. It is what is done.

【0002】[0002]

【従来の技術】タンタル焼結体電極などの微細な空孔を
有する多孔体電極内部の表面に導電性高分子被膜を形成
させる方法として、化学酸化重合法と電解酸化重合法が
ある。化学酸化重合法による合成は、FeCl3 やFe
(ClO4 3 などの酸化触媒を内部に導入した多孔体
電極をピロール溶液の中に入れることにより行う。この
方法で得られた導電性高分子は一般的に導電率が低く、
触媒の残存が系の性能を低下させることが知られてい
る。また電極から直接重合させる方法ではないので電極
との密着性も悪い。
2. Description of the Related Art There are a chemical oxidative polymerization method and an electrolytic oxidative polymerization method as a method for forming a conductive polymer film on the surface inside a porous electrode having fine pores such as a tantalum sintered electrode. FeCl 3 and Fe are used for the synthesis by chemical oxidative polymerization.
It is performed by putting a porous electrode into which an oxidation catalyst such as (ClO 4 ) 3 is introduced into a pyrrole solution. The conductive polymer obtained by this method generally has low conductivity,
It is known that residual catalyst reduces system performance. Further, since it is not a method of directly polymerizing from the electrode, the adhesion with the electrode is poor.

【0003】通常、電解酸化重合法による合成は、モノ
マー溶液の中に電極を入れて電解酸化を行うが、多孔体
電極の場合電極外表面にのみ導電性高分子が生成し、電
極内部には全く生成されない。これは同条件では電極表
面の方が電極内部よりも重合が起こりやすいためであ
る。
Usually, in the synthesis by the electrolytic oxidation polymerization method, an electrode is put in a monomer solution to carry out electrolytic oxidation, but in the case of a porous electrode, a conductive polymer is generated only on the outer surface of the electrode and inside the electrode. Not generated at all. This is because under the same conditions, polymerization is more likely to occur on the electrode surface than on the inside of the electrode.

【0004】また、化学酸化重合にてある程度多孔体内
部に導電性高分子被膜を形成させた後、この導電性高分
子を電極とした電解酸化重合により良質な導電性高分子
を形成させて性能を補う方法が、例えばコンデンサーな
どの製法において用いられている(特開昭63−173
313)。
Further, after a conductive polymer film is formed inside the porous body to some extent by chemical oxidative polymerization, a good quality conductive polymer is formed by electrolytic oxidative polymerization using this conductive polymer as an electrode. Has been used in the manufacturing method of capacitors and the like (Japanese Patent Laid-Open No. 63-173).
313).

【0005】[0005]

【発明が解決しようとする課題】上述の化学酸化重合法
を用いて形成された導電性高分子被膜は、一般的に導電
率が低く、触媒の残存が系の性能低下させるという問題
点があり、また電極との密着性も悪い。また、従来の電
解酸化重合法では、電極の外表面にのみ導電性高分子が
生成し、電極内部には生成されない。さらに、特開昭6
3−173313に開示された方法では、多孔体の各々
に針状の電極を接触させる必要があるので、作業工程が
煩雑になるという欠点がある。
The conductive polymer film formed by using the above-mentioned chemical oxidative polymerization method generally has a low electric conductivity, and there is a problem that the residual catalyst deteriorates the performance of the system. Also, the adhesion with the electrode is poor. Further, in the conventional electrolytic oxidation polymerization method, the conductive polymer is generated only on the outer surface of the electrode and is not generated inside the electrode. Furthermore, JP-A-6
In the method disclosed in 3-173313, it is necessary to bring a needle-shaped electrode into contact with each of the porous bodies, so that there is a drawback in that the working process becomes complicated.

【0006】したがって、本発明の目的は、多孔体電極
内全表面に導電性高分子被膜を直接電解酸化重合により
形成させることができる機能電極の製造方法を提供する
ことである。
Therefore, an object of the present invention is to provide a method for producing a functional electrode in which a conductive polymer film can be directly formed on the entire inner surface of a porous electrode by electrolytic oxidation polymerization.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記問題点
を解決するため鋭意研究を行った結果、簡便な電解酸化
重合のみで多孔体電極内の全表面に導電性高分子被膜を
形成させる方法を発明するに至った。すなわち、本発明
は導電性高分子を生成するモノマーと支持電解質を含有
させた溶液を多孔体電極の内部に含浸させ、これをモノ
マーを含有しない支持電解質のみの溶液の中に入れて電
解酸化することにより、多孔体電極内全表面に導電性高
分子被膜を形成させる方法である。
As a result of intensive studies to solve the above problems, the present inventors have found that a conductive polymer film is formed on the entire surface of a porous electrode only by simple electrolytic oxidation polymerization. Invented the method of making. That is, the present invention impregnates the inside of a porous electrode with a solution containing a monomer for forming a conductive polymer and a supporting electrolyte, and puts this in a solution of only a supporting electrolyte containing no monomer for electrolytic oxidation. This is a method of forming a conductive polymer film on the entire inner surface of the porous electrode.

【0008】本発明は、微細な空孔を有する導電性多孔
体であれば利用可能である。具体的にはタンタル、アル
ミニウム、ニオブのような各種金属粉末の焼結体等が挙
げられる。また生成させる導電性高分子は電解重合が可
能ならば制限はなく、例えばポリピロール、ポリアニリ
ン、ポリチオフェン、ポリパラフェニレン、ポリアズレ
ン、ポリアセチレン、などが挙げられる。
The present invention can be applied to any conductive porous body having fine pores. Specific examples thereof include sintered bodies of various metal powders such as tantalum, aluminum and niobium. The conductive polymer to be generated is not limited as long as it can be electropolymerized, and examples thereof include polypyrrole, polyaniline, polythiophene, polyparaphenylene, polyazulene, and polyacetylene.

【0009】導電性高分子のドーパントとしては、例え
ばテトラブチルアンモニウムパークロレート、テトラエ
チルアンモニウムテトラフルオロボレート、パラトルエ
ンスルホン酸、パラトルエンスルホン酸ナトリウム、テ
トラエチルアンモニウムパラトルエンスルホネート、リ
チウムパークロレート、などがある。特にテトラアルキ
ルアンモニウム塩は高濃度導電性高分子モノマー溶液へ
の溶解度が高く、電極内部に存在させる濃厚モノマー溶
液を調製する際に有効であるので好ましい。
Examples of the conductive polymer dopant include tetrabutylammonium perchlorate, tetraethylammonium tetrafluoroborate, paratoluenesulfonic acid, sodium paratoluenesulfonate, tetraethylammonium paratoluenesulfonate, and lithium perchlorate. In particular, a tetraalkylammonium salt is preferable because it has high solubility in a high-concentration conductive polymer monomer solution and is effective in preparing a concentrated monomer solution to be present inside the electrode.

【0010】重合溶媒または外部支持電解質溶液の溶媒
は電気化学的に安定ならばどの様なものでも使用可能で
ある。しかし本発明の方法では高濃度モノマー溶液の使
用が重要であるので、まずモノマーの高い溶解性が第一
の選択項目である。そのほか支持電解質の溶解性、密
度、粘度、溶液としてのイオン伝導度などを考慮する必
要がある。
The polymerization solvent or the solvent of the external supporting electrolyte solution may be any as long as it is electrochemically stable. However, since it is important to use a high-concentration monomer solution in the method of the present invention, high monomer solubility is the first choice. In addition, it is necessary to consider the solubility, density, viscosity, ionic conductivity of the solution, etc. of the supporting electrolyte.

【0011】例えばピロールの重合の場合には外部支持
電解質溶液の溶媒の選択に関し、以下の点を注意する必
要がある。例えば密度の低いアセトニトリル(密度0.
78)の場合、多孔体電極内部に存在させているピロー
ル重合溶液の方がアセトニトリルよりも密度が高くなる
と、重合中に内部溶液が漏出する。ピロールと密度がほ
ぼ等しいジメチルホルムアミドを用いると重合溶液の漏
出を抑制させることができる。
For example, in the case of pyrrole polymerization, the following points should be noted regarding the selection of the solvent for the external supporting electrolyte solution. For example, acetonitrile having a low density (density 0.
In the case of 78), when the density of the pyrrole polymerization solution present inside the porous electrode is higher than that of acetonitrile, the internal solution leaks during the polymerization. The use of dimethylformamide having substantially the same density as that of pyrrole can suppress the leakage of the polymerization solution.

【0012】多孔体電極内部に存在させる重合溶液は、
モノマー濃度が高い方が内部での導電性高分子被膜の形
成が容易になる。また、重合溶液の伝導度を増大させる
ために支持電解質濃度も高くした方が内部での導電性高
分子被膜の形成は容易になる。
The polymerization solution present inside the porous electrode is
The higher the monomer concentration, the easier the formation of the conductive polymer film inside. Further, if the supporting electrolyte concentration is increased in order to increase the conductivity of the polymerization solution, the formation of the conductive polymer film inside becomes easier.

【0013】対極は白金製が望ましいが、ステンレスな
ど電気化学的に安定な金属ならば重合に問題なく使用で
きる。対極は多孔体電極表面からの距離がどこも等しく
なるような形状が望ましく、例えば円柱形多孔体電極を
用いる場合、対極は円筒形とし多孔体電極はその中心に
設置するとよい。参照極は有機溶媒系ではAg/AgC
l、水系ではSCEを使用するが、参照極を使用しなく
ても電極内部への重合は可能である。
The counter electrode is preferably made of platinum, but an electrochemically stable metal such as stainless steel can be used without any problem in polymerization. The counter electrode preferably has a shape such that the distance from the surface of the porous electrode is equal. For example, when a cylindrical porous electrode is used, the counter electrode may be cylindrical and the porous electrode may be placed at the center thereof. Reference electrode is Ag / AgC in organic solvent system
1, SCE is used in an aqueous system, but polymerization inside the electrode is possible without using a reference electrode.

【0014】重合は定電位、定電流、CVいずれの方法
でも可能である。但しタンタル焼結体電極の様に表面に
酸化被膜が形成されるような金属で定電位重合を行う場
合は、モノマーの重合電位よりも電位を高める必要があ
る。
Polymerization can be carried out by any of constant potential, constant current and CV methods. However, when carrying out potentiostatic polymerization with a metal such as a tantalum sintered body electrode on which an oxide film is formed, it is necessary to raise the potential higher than the polymerization potential of the monomer.

【0015】また多孔体電極表面に更に導電性高分子を
生成させる場合には、電極内部の重合が終了した後外部
支持電解質溶液中にモノマーを添加するか、あるいはモ
ノマーを含んだ外部支持電解質溶液中に多孔体電極を移
して重合することにより、外表面にも充分な厚さを有す
る導電性高分子被膜を形成させることができる。
When a conductive polymer is further formed on the surface of the porous electrode, the monomer is added to the external supporting electrolyte solution after the polymerization inside the electrode is completed, or the external supporting electrolyte solution containing the monomer is added. By transferring and polymerizing the porous electrode therein, a conductive polymer film having a sufficient thickness can be formed on the outer surface.

【0016】多孔体電極内部に導電性高分子が生成した
ことの確認は電極割断面の目視、SEM観察、XPS、
ESCA、FT−IRなどにより行うことができる。ま
た、電極外表面に生成した導電性高分子を取り除いてか
ら充分に乾燥させて秤量することにより内表面に生成し
た導電性高分子の定量を非破壊で簡便に行うことも可能
である。
The formation of the conductive polymer inside the porous electrode can be confirmed by visual inspection of the electrode cut surface, SEM observation, XPS,
It can be performed by ESCA, FT-IR, or the like. It is also possible to easily and non-destructively quantify the conductive polymer formed on the inner surface by removing the conductive polymer formed on the outer surface of the electrode, sufficiently drying and weighing.

【0017】またタンタルのように絶縁体となる酸化被
膜が形成される金属を用いた場合、導電性高分子を重合
後電解化成、または金属酸化物と導電性高分子を同時形
成することにより導電性高分子/金属酸化被膜/金属の
三層構造を形成させ、多孔体内部の大きな界面面積を利
用した大容量のコンデンサを製作することができる。
When a metal, such as tantalum, which forms an oxide film serving as an insulator is used, the conductive polymer is polymerized to form an electrolytic chemical conversion, or the metal oxide and the conductive polymer are simultaneously formed to achieve the conductive property. It is possible to manufacture a large-capacity capacitor using a large interfacial area inside the porous body by forming a three-layer structure of a high polymer / metal oxide film / metal.

【0018】[0018]

【作用】簡便な電解酸化重合法で、導電性、電極との密
着性において共に従来技術を凌駕する導電性高分子被膜
を多孔金属内全表面に形成させることが可能となった。
また、この方法の発明により多孔体内部の大きな界面面
積を利用して大容量のコンデンサの製作が容易に行え
る。
By a simple electrolytic oxidative polymerization method, it has become possible to form a conductive polymer coating on the entire surface of a porous metal, which is superior in conductivity and adhesion to electrodes to the prior art.
Further, according to the invention of this method, a large-capacity capacitor can be easily manufactured by utilizing the large interfacial area inside the porous body.

【0019】[0019]

【実施例】【Example】

実施例1 タンタル焼結体電極(円柱形(4.5mmφ×6.8m
mh),表面積4.3×102 cm2 ,構成粒子径1μ
φ)を濃硫酸に1時間浸し、硫酸が検出されなくなるま
でアセトニトリルで洗浄、室温にて5時間真空乾燥し
た。重合溶液はピロール/プロピレンカーボネート=3
/1(by vol)溶液にテトラブチルアンモニウム
パークロレートを0.3(mol/l)溶解させた溶液
を使用し、タンタル焼結体電極に充分に含浸させ、5分
間放置した。外部支持電解質溶液はテトラブチルアンモ
ニウムパークロレートを0.1(mol/l)溶解した
プロピレンカーボネート溶液とした。対極は円筒形ステ
ンレス電極(17mmφ×20mmh)を用いタンタン
ル焼結体をその中心に設置して定電位(10V)で10
分間電解を行った。参照極はAg/AgCl電極とし
た。
Example 1 Tantalum sintered body electrode (cylindrical shape (4.5 mmφ × 6.8 m
mh), surface area 4.3 × 10 2 cm 2 , constituent particle diameter 1 μ
φ) was immersed in concentrated sulfuric acid for 1 hour, washed with acetonitrile until sulfuric acid was not detected, and vacuum dried at room temperature for 5 hours. Polymerization solution is pyrrole / propylene carbonate = 3
Using a solution in which 0.3 (mol / l) of tetrabutylammonium perchlorate was dissolved in a 1/1 (by vol) solution, the tantalum sintered body electrode was sufficiently impregnated and left for 5 minutes. The external supporting electrolyte solution was a propylene carbonate solution in which 0.1 (mol / l) of tetrabutylammonium perchlorate was dissolved. As the counter electrode, a cylindrical stainless electrode (17 mmφ × 20 mmh) was used, and a tantalum sintered body was placed in the center of the electrode and a constant potential (10 V) was applied to the electrode.
Electrolysis was performed for a minute. The reference electrode was an Ag / AgCl electrode.

【0020】タンタル焼結体電極割断面の目視およびS
EM観察により、電極内部にポリピロールが生成したこ
とを確認した。また、電極表面に生成したポリピロール
を取り除き、多孔体電極内部に生成した重量を測定した
ところ73mgであり、ポリピロールは多孔体電極の空
孔の約90%を埋めている。
Visual inspection of the split surface of the tantalum sintered body electrode and S
It was confirmed by EM observation that polypyrrole was generated inside the electrode. Further, the polypyrrole generated on the electrode surface was removed, and the weight generated inside the porous electrode was measured to be 73 mg, which filled about 90% of the pores of the porous electrode.

【0021】比較例1 実施例1との比較のため外部支持電解質溶液も電極内部
に存在させる重合溶液と同じ組成にし、そのほかの条件
を実施例1と等しくして電解酸化重合を行った。 この
場合電極外表面には大量のポリピロールが生成したが、
割断面の観察の結果、電極内部にはポリピロールは全く
生成しないことが明らかとなった。
Comparative Example 1 For comparison with Example 1, the external supporting electrolyte solution was also made to have the same composition as the polymerization solution to be present inside the electrode, and the other conditions were the same as in Example 1 to carry out electrolytic oxidative polymerization. In this case, a large amount of polypyrrole was generated on the outer surface of the electrode,
As a result of observation of the fractured surface, it became clear that no polypyrrole was formed inside the electrode.

【0022】実施例2 タンタル焼結体電極(円柱形(1.2mmφ×3.3m
mh))は実施例1と同様の処理を行った。重合溶液は
ピロール/プロピレンカーボネート=3/1(by v
ol)溶液にテトラブチルアンモニウムテトラフルオロ
ボレートを0.1(mol/l)溶解させた溶液を使用
し、タンタル焼結体電極に充分に含浸させ、5分間放置
した。外部支持電解質溶液はテトラブチルアンモニウム
テトラフルオロボレートを0.1(mol/l)溶解し
たプロピレンカーボネート溶液とした。重合は実施例1
と同様にして行ったが、参照極は用いなかった。
Example 2 Sintered tantalum electrode (cylindrical shape (1.2 mmφ × 3.3 m
mh)) was treated in the same manner as in Example 1. The polymerization solution was pyrrole / propylene carbonate = 3/1 (by v
solution) in which 0.1 (mol / l) of tetrabutylammonium tetrafluoroborate was dissolved in the solution, and the tantalum sintered body electrode was sufficiently impregnated and left for 5 minutes. The external supporting electrolyte solution was a propylene carbonate solution having 0.1 (mol / l) tetrabutylammonium tetrafluoroborate dissolved therein. Polymerization is Example 1
Was performed in the same manner as above, but the reference electrode was not used.

【0023】タンタル焼結体電極割断面のSEM観察に
より、電極内部にポリピロールが生成したことを確認し
た。
It was confirmed that polypyrrole was formed inside the electrode by SEM observation of the cleaved cross section of the tantalum sintered body electrode.

【0024】実施例3 タンタル焼結体電極(直方体(0.5mm×2.0mm
×3.0mm))は実施例1と同様の処理を行った。重
合溶液は、ピロール(0.8mol/l)とトルエンス
ルホン酸(0.2mol/l)を溶解させた水溶液を使
用し、タンタル焼結体電極に充分に含浸させ、5分間放
置した。外部支持電解質溶液はトルエンスルホン酸を
0.1(mol/l)溶解した水溶液とした。重合は実
施例1と同様に行った。参照極はSCE電極とした。
Example 3 Tantalum sintered body electrode (rectangular solid (0.5 mm × 2.0 mm
X3.0 mm)) was treated in the same manner as in Example 1. As the polymerization solution, an aqueous solution in which pyrrole (0.8 mol / l) and toluenesulfonic acid (0.2 mol / l) were dissolved was used, and the tantalum sintered body electrode was sufficiently impregnated and left for 5 minutes. The external supporting electrolyte solution was an aqueous solution in which 0.1 (mol / l) of toluenesulfonic acid was dissolved. Polymerization was carried out in the same manner as in Example 1. The reference electrode was an SCE electrode.

【0025】タンタル焼結体電極割断面をESCAで解
析した結果、399.8eVと284.2eVにポリピ
ロールのN1s,C1sに基づく大きなピークを確認したこ
とにより、電極内部にポリピロールが生成したことを確
認した。
As a result of ESCA analysis of the fractured surface of the tantalum sintered body electrode, it was confirmed that polypyrrole was generated inside the electrode by confirming large peaks at 399.8 eV and 284.2 eV based on N1s and C1s of polypyrrole. did.

【0026】実施例4 重合溶液としてチオフェン/PC=3/1(by vo
l)溶液にテトラブチルアンモニウムパークロレートを
0.3(mol/l)溶解させた溶液を使用し、実施例
1で使用したタンタル焼結体電極に充分に含浸させ、5
分間放置した。外部支持電解質溶液はテトラブチルアン
モニウムパークロレートを0.1(mol/l)溶解し
たプロピレンカーボネート溶液とした。重合は定電流法
(1mA/cm2 ,1800秒)により行った。参照極
は使用しなかった。
Example 4 Thiophene / PC = 3/1 (by vo) as a polymerization solution
l) A solution of tetrabutylammonium perchlorate dissolved in 0.3 (mol / l) was used to sufficiently impregnate the tantalum sintered body electrode used in Example 1 with 5
Let stand for a minute. The external supporting electrolyte solution was a propylene carbonate solution in which 0.1 (mol / l) of tetrabutylammonium perchlorate was dissolved. Polymerization was carried out by the constant current method (1 mA / cm 2, 1800 seconds). The reference electrode was not used.

【0027】タンタル焼結体電極割断面のSEM観察に
より、電極内部にポリチオフェンが生成したことを確認
した。また、電極表面に生成したポリチオフェンを取り
除き、多孔体電極内部に生成した重量を測定したところ
64mgであり、オリチオフェンは多孔体電極の空孔の
約80%を埋めている。
It was confirmed that polythiophene was formed inside the electrode by SEM observation of the sectioned surface of the electrode of the tantalum sintered body. Further, the polythiophene generated on the electrode surface was removed, and the weight generated inside the porous electrode was measured and found to be 64 mg, and orithiophene filled about 80% of the pores of the porous electrode.

【0028】実施例5 白金焼結体電極(円柱形(4.5mmφ×6.8mm
h))はエタノール中に24時間浸して脱脂し、室温に
て5時間真空乾燥した後に使用した。重合溶液はアニリ
ン(1mol/l)とH2 SO4 (0.3mol/l)
水溶液を、白金焼結体電極に充分に含浸させ、5分間放
置した。外部支持電解質溶液はH2 SO4(0.1mo
l/l)水溶液とした。重合は定電位(1V、30mi
n)で行った。参照曲はSCE電極とした。
Example 5 Platinum sintered body electrode (cylindrical shape (4.5 mmφ × 6.8 mm
h)) was soaked in ethanol for 24 hours for degreasing, and vacuum dried at room temperature for 5 hours before use. The polymerization solution was aniline (1 mol / l) and H 2 SO 4 (0.3 mol / l)
The platinum sintered electrode was sufficiently impregnated with the aqueous solution and left for 5 minutes. The external supporting electrolyte solution is H 2 SO 4 (0.1mo
1 / l) aqueous solution. Polymerization was carried out at a constant potential (1 V, 30 mi
n). The reference song was an SCE electrode.

【0029】白金焼結体電極割断面のSEM観察によ
り、電極内にポリアニリンが生成したことを確認した。
また、電極表面に生成したポリアニリンを取り除き、多
孔体電極内部に生成した重量を測定したところ65mg
であり、ポリアニリンは多孔体電極の空孔の約80%を
埋めている。
SEM observation of the split surface of the platinum sintered electrode confirmed that polyaniline was produced in the electrode.
Further, the polyaniline formed on the electrode surface was removed, and the weight formed inside the porous electrode was measured to find 65 mg.
And polyaniline fills about 80% of the pores of the porous electrode.

【0030】応用例1 実施例1にて内部にピロールを電解重合したタンタル焼
結体を電解重合と同様のセルを用いて定電流電解し、ポ
リピロールで被覆されたタンタル表面に酸化タンタル層
を形成した。溶媒は0.01wt%の燐酸水溶液、電流
密度は1mA/cm2 、電解終了は電解電位が80Vに
なるまでとした。電極割断面をESCAで解析した結
果、実施例3と同様に観測されるポリピロールに基づく
ピークの他に、酸化タンタルのTa4fに基づく強いピー
クが26.3eV,28.1eVに認められ、ポリピロ
ール/酸化タンタル/タンタルの三層構造を確認した。
Application Example 1 A tantalum sintered body, in which the pyrrole was electrolytically polymerized inside in Example 1, was subjected to constant current electrolysis using the same cell as the electrolytic polymerization to form a tantalum oxide layer on the tantalum surface coated with polypyrrole. did. The solvent was 0.01 wt% phosphoric acid aqueous solution, the current density was 1 mA / cm 2 , and the electrolysis was completed until the electrolysis potential reached 80V. As a result of analyzing the electrode section by ESCA, strong peaks based on Ta 4f of tantalum oxide were observed at 26.3 eV and 28.1 eV, in addition to the peak based on polypyrrole observed in the same manner as in Example 3, and polypyrrole / A three-layer structure of tantalum oxide / tantalum was confirmed.

【0031】デシケーター内で乾燥後ポリピロール表面
にグラファイト懸濁液を塗布し、さらに導電性樹脂ドー
タイトで覆った。この銀ペーストの表面に対極リード線
を取り付け、エポキシ樹脂により外装しコンデンサを完
成させた。
After drying in a desiccator, a graphite suspension was applied to the surface of polypyrrole and further covered with a conductive resin doutite. A counter electrode lead wire was attached to the surface of this silver paste, and it was covered with an epoxy resin to complete a capacitor.

【0032】得られたコンデンサは120Hzにおいて
静電容量120μFで損失角の正接(tanδ)は1%
であり、密着性の高いことを示している。また、等価直
列抵抗値は0.5Ωで良好な値を示している。漏れ電流
は0.5μAであった。
The obtained capacitor has a capacitance of 120 μF at 120 Hz and a loss angle tangent (tan δ) of 1%.
Which indicates that the adhesiveness is high. The equivalent series resistance value is 0.5Ω, which is a good value. The leakage current was 0.5 μA.

【0033】[0033]

【発明の効果】以上詳細に説明したように、本発明の電
解酸化重合法により、容易に多孔体金属内全表面に導電
性を有し、電極との密着性の高い導電性高分子被膜を形
成させることが可能となった。
As described in detail above, by the electrolytic oxidation polymerization method of the present invention, it is possible to easily form a conductive polymer film which has conductivity on the entire inner surface of a porous metal and has high adhesion to an electrode. It became possible to form.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 朴 英緒 東京都新宿区早稲田町27ゲストハウス早稲 田町203号 (72)発明者 太田 智行 東京都保谷市東町3丁目10番18号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Park, Guest House No. 203, Waseda-cho, 27 Waseda-cho, Shinjuku-ku, Tokyo (72) Inventor, Tomoyuki Ota 3-10-18 Higashi-cho, Hoya-shi, Tokyo

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多孔体電極の内部に導電性高分子を生成
するモノマーと支持電解質を含有させた溶液を含浸さ
せ、これを支持電解質溶液の中で電解酸化させることに
より多孔体電極内全表面に導電性高分子被膜を形成させ
ることを特徴とする機能電極の製造方法。
1. The entire surface inside the porous electrode by impregnating the inside of the porous electrode with a solution containing a monomer for forming a conductive polymer and a supporting electrolyte and electrolytically oxidizing the solution in a supporting electrolyte solution. A method for producing a functional electrode, comprising forming a conductive polymer film on the surface.
【請求項2】 前記多孔体電極がタンタル焼結体電極で
あることを特徴とする請求項1記載の機能電極の製造方
法。
2. The method for producing a functional electrode according to claim 1, wherein the porous body electrode is a tantalum sintered body electrode.
【請求項3】 前記導電性高分子がポリピロールである
ことを特徴とする請求項1または2記載の機能電極の製
造方法。
3. The method for producing a functional electrode according to claim 1, wherein the conductive polymer is polypyrrole.
【請求項4】 支持電解質がテトラアルキルアンモニウ
ム塩であることを特徴とする請求項3記載の機能電極の
製造方法。
4. The method for producing a functional electrode according to claim 3, wherein the supporting electrolyte is a tetraalkylammonium salt.
JP6452893A 1993-03-24 1993-03-24 Production of functional electrode Pending JPH06271655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6452893A JPH06271655A (en) 1993-03-24 1993-03-24 Production of functional electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6452893A JPH06271655A (en) 1993-03-24 1993-03-24 Production of functional electrode

Publications (1)

Publication Number Publication Date
JPH06271655A true JPH06271655A (en) 1994-09-27

Family

ID=13260819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6452893A Pending JPH06271655A (en) 1993-03-24 1993-03-24 Production of functional electrode

Country Status (1)

Country Link
JP (1) JPH06271655A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951721A (en) * 1996-04-19 1999-09-14 Nec Corporation Process for producing solid electrolytic capacitor
US6134099A (en) * 1997-06-03 2000-10-17 Matsushita Electric Industrial Electrolytic capacitor having a conducting polymer layer without containing an organic acid-type dopant
US6337155B1 (en) 1998-12-17 2002-01-08 Fujitsu Limited Battery and method of manufacture thereof
WO2004108918A1 (en) 2003-06-05 2004-12-16 Sony Corporation Immobilization support, process for producing the same, electrode, process for producing the same, electrode reaction utilizing apparatus and process for producing the same
EP1544905A1 (en) * 2002-09-25 2005-06-22 Konica Minolta Holdings, Inc. Electric circuit, thin film transistor, method for manufacturing electric circuit and method for manufacturing thin film transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318009A (en) * 1989-06-15 1991-01-25 Marcon Electron Co Ltd Manufacture of solid tantalum electrolytic capacitor
JPH04274312A (en) * 1991-03-01 1992-09-30 Nec Corp Manufacture of solid electrolytic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318009A (en) * 1989-06-15 1991-01-25 Marcon Electron Co Ltd Manufacture of solid tantalum electrolytic capacitor
JPH04274312A (en) * 1991-03-01 1992-09-30 Nec Corp Manufacture of solid electrolytic capacitor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951721A (en) * 1996-04-19 1999-09-14 Nec Corporation Process for producing solid electrolytic capacitor
US6134099A (en) * 1997-06-03 2000-10-17 Matsushita Electric Industrial Electrolytic capacitor having a conducting polymer layer without containing an organic acid-type dopant
US6361572B1 (en) 1997-06-03 2002-03-26 Matsushita Electric Industrial Co., Ltd. Method of making an electrolytic capacitor having a conductive polymer formed on the inner surface of micropores of the anodes
US6337155B1 (en) 1998-12-17 2002-01-08 Fujitsu Limited Battery and method of manufacture thereof
EP1544905A1 (en) * 2002-09-25 2005-06-22 Konica Minolta Holdings, Inc. Electric circuit, thin film transistor, method for manufacturing electric circuit and method for manufacturing thin film transistor
EP1544905A4 (en) * 2002-09-25 2009-11-18 Konica Minolta Holdings Inc Electric circuit, thin film transistor, method for manufacturing electric circuit and method for manufacturing thin film transistor
US7910469B2 (en) 2002-09-25 2011-03-22 Konica Minolta Holdings, Inc. Electrical circuit, thin film transistor, method for manufacturing electric circuit and method for manufacturing thin film transistor
WO2004108918A1 (en) 2003-06-05 2004-12-16 Sony Corporation Immobilization support, process for producing the same, electrode, process for producing the same, electrode reaction utilizing apparatus and process for producing the same

Similar Documents

Publication Publication Date Title
US5914852A (en) Solid electrolyte capacitor and its manufacture
JPH0474853B2 (en)
JPH0831400B2 (en) Solid electrolytic capacitor
MXPA01011696A (en) Solid electrolytic capacitor.
JPH07283086A (en) Electrolytic capacitor and production thereof
JPH05121274A (en) Solid electrolytic capacitor and its manufacture
JP3296727B2 (en) Method for manufacturing solid electrolytic capacitor
US5189770A (en) Method of making solid electrolyte capacitor
JPH04112519A (en) Manufacture of solid electrolytic capacitor
JP6878896B2 (en) Electrolytic capacitors and their manufacturing methods
JPH06271655A (en) Production of functional electrode
JPH10321471A (en) Solid electrolytic capacitor and its manufacture
JP3362600B2 (en) Manufacturing method of capacitor
JP2001148330A (en) Method for forming conductive polymer film on metal oxide electrode and manufacturing method for solid electrolytic capacitor using it
JP2694670B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
JPH02224316A (en) Manufacture of solid electrolytic capacitor
JP3568382B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JPH02249222A (en) Manufacture of solid electrolytic capacitor
JP3092512B2 (en) Method for manufacturing solid electrolytic capacitor
JP4075421B2 (en) Method for producing conductive composition and capacitor
JP3963561B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0365007B2 (en)
JP4084862B2 (en) Manufacturing method of solid electrolytic capacitor
JP2000040642A (en) Manufacture of solid electrolytic capacitor
JPH0419688B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980623