JPH06271314A - Production of high purity barium halide - Google Patents

Production of high purity barium halide

Info

Publication number
JPH06271314A
JPH06271314A JP5057487A JP5748793A JPH06271314A JP H06271314 A JPH06271314 A JP H06271314A JP 5057487 A JP5057487 A JP 5057487A JP 5748793 A JP5748793 A JP 5748793A JP H06271314 A JPH06271314 A JP H06271314A
Authority
JP
Japan
Prior art keywords
barium
halide
solution
chloride
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5057487A
Other languages
Japanese (ja)
Other versions
JP3360743B2 (en
Inventor
Kenji Kobayashi
健二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP05748793A priority Critical patent/JP3360743B2/en
Publication of JPH06271314A publication Critical patent/JPH06271314A/en
Application granted granted Critical
Publication of JP3360743B2 publication Critical patent/JP3360743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/005Preparation involving liquid-liquid extraction, absorption or ion-exchange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To produce high purity barium halide useful for manufacturing optical fiber having a high amplification factor by extracting and removing transition metal impurities from a barium aqueous solution with a dithiocarbamate thereafter preparing barium halide from the resulting solution. CONSTITUTION:After adjusting the pH of the barium aq. solution, the transition metal impurites are extracted and removed from the barium aq. solution by adding a dithiocarbamate represented by the formula RCS2R1 to the solution. The objective high purity barium halide is produced by preparing barium halide from the barium aq. solution, from which the transition metal impurites are extracted and removed. In the above formula, R is (C2H5)2N-, etc.; R1 is H<+>, NH4<+>, NH2<+>(C2H5)2 or Na<+>. This production features in which the barium halide, such as barium chloride, barium fluoride, etc., is produced from a water-soluble barium salt such as barium nitrate, acetate, chloride, etc., or barium hydroxide as the starting material, differnetly from the conventional methods using water- insoluble barium carbonate as the starting material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高純度ハロゲン化バリウ
ムの製造方法、さらに詳細には光増幅用光ファイバ用高
純度原料の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-purity barium halide, and more particularly to a method for producing a high-purity raw material for optical fibers for optical amplification.

【0002】[0002]

【従来の技術】BaF2は、ZrF4,LaF3,Al
3,NaFなどと共に光増幅用光ファイバの構成原料
である。このうち、BaF2の組成の一部をバリウムの
塩化物、すなわち、BaCl2あるいはバリウムのフッ
化塩化物、すなわち、BaFClに置き換え増幅度を向
上することが検討されている.光増幅用光ファイバの増
幅効率を阻害する要因として光ファイバ中に混入してい
るクロム、鉄、コバルト、ニッケル、銅などの遷移金属
が挙げられる。これらの遷移金属は構成原料中に不純物
として存在しており、フッ化物光ファイバを使用した光
増幅用光ファイバの実現には遷移金属を含まない金属フ
ッ化物の作製が主に乾式精製法の昇華法を使用し、金属
フッ化物の精製(M.Robinson,Mat.Sc
i.Forum,5,19(1985))が行われてい
る.一方、従来の高純度の塩化バリウム、フッ化塩化バ
リウムの製造は高純度の炭酸バリウムを塩酸に溶解後、
析出する塩化バリウム結晶を乾燥し、塩化バリウムの二
水和物から塩化バリウムを得る方法あるいは塩化バリウ
ムにフッ素ガスを反応させてフッ化塩化バリウムを製造
する方法があるが,遷移金属の不純物濃度は1ppm以
上である.従来の塩化バリウムあるいはフッ化塩化バリ
ウムの製造方法では純度については、製造工程に精製を
含まないために、出発物質の純度に全て依存し、後工程
において不純物汚染をもたらすことの問題点がある。
2. Description of the Related Art BaF 2 is ZrF 4 , LaF 3 , Al.
It is a constituent raw material of an optical fiber for optical amplification together with F 3 and NaF. Of these, a part of the composition of BaF 2 is replaced with barium chloride, that is, BaCl 2 or barium fluorinated chloride, that is, BaFCl, to improve amplification. Factors that hinder the amplification efficiency of the optical fiber for optical amplification include transition metals such as chromium, iron, cobalt, nickel and copper mixed in the optical fiber. These transition metals exist as impurities in the constituent raw materials, and in order to realize an optical fiber for optical amplification using a fluoride optical fiber, the production of metal fluoride containing no transition metal is mainly used for the sublimation of the dry purification method. Purification of metal fluorides (M. Robinson, Mat. Sc.
i. Forum, 5, 19 (1985)). On the other hand, the conventional production of high-purity barium chloride and barium fluorochloride was performed by dissolving high-purity barium carbonate in hydrochloric acid.
The precipitated barium chloride crystals are dried to obtain barium chloride from barium chloride dihydrate, or there is a method of producing barium fluoride chloride by reacting barium chloride with fluorine gas. It is 1 ppm or more. The conventional method for producing barium chloride or barium fluoride chloride has a problem in that the purity does not include purification in the production process, and therefore depends entirely on the purity of the starting material, resulting in impurity contamination in the subsequent process.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、出発
物質にバリウムを含む水溶液を用い、水溶液に含まれる
クロム、鉄、コバルト、ニッケル、銅などの遷移金属の
不純物を1種類の有機試薬と溶媒の組合せによる溶媒抽
出で上述の欠点を解決し、その後、高純度の塩酸あるい
はフッ素化剤との反応によってハロゲン化バリウムを製
造する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to use an aqueous solution containing barium as a starting material and to remove impurities of transition metals such as chromium, iron, cobalt, nickel and copper contained in the aqueous solution as one organic reagent. It is an object of the present invention to provide a method for solving the above-mentioned drawbacks by solvent extraction using a combination of a solvent and a solvent, and then producing barium halide by a reaction with highly pure hydrochloric acid or a fluorinating agent.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
め、本発明によるハロゲン化バリウムの製造方法は、バ
リウム水溶液のpHを調整した後、下記一般式:RCS
21からなるジチオカルバメートを添加して不純物遷移
金属を抽出除去し、不純物遷移金属を抽出除去した前記
バリウム水溶液からハロゲン化バリウムを作製すること
を特徴とする。 一般式:RCS21(ここで、Rは(C252N−、
あるいは
In order to solve the above problems, the method for producing barium halide according to the present invention comprises the following general formula: RCS after adjusting the pH of an aqueous barium solution.
It is characterized in that dithiocarbamate composed of 2 R 1 is added to extract and remove the impurity transition metal, and barium halide is produced from the barium aqueous solution from which the impurity transition metal is extracted and removed. General formula: RCS 2 R 1 (wherein, R represents (C 2 H 5) 2 N- ,
Or

【0005】[0005]

【化2】 を示し、R1はH2、NH4 +、NH2 +(C252
Na+を示す。)
[Chemical 2] R 1 is H 2 , NH 4 + , NH 2 + (C 2 H 5 ) 2 ,
Indicates Na + . )

【0006】[0006]

【作用】本発明は、従来技術の炭酸バリウムを出発物質
とする塩化バリウムの製造方法および塩化バリウムを出
発物質とするフッ化塩化バリウムの製造方法の問題点を
解決するためにバリウムの水溶液を使用し、水溶液内に
存在する不純物遷移金属たる、例えばクロム、鉄、コバ
ルト、ニッケル、銅の元素個々に対し、最も安定な錯体
を形成する有機試薬、溶媒を決定し、溶媒中に遷移金属
不純物を抽出し、除去することを最も主要な特徴とし、
抽出除去後に残ったバリウム水溶液に例えば塩酸または
フッ素化剤を添加し、ハロゲン化バリウム水和物を生成
し、これを脱水、乾燥させ高純度の塩化バリウムあるい
はフッ化塩化バリウムを製造するものである。
The present invention uses an aqueous solution of barium in order to solve the problems of the prior art method for producing barium chloride starting from barium carbonate and the method for producing barium fluorochloride starting from barium chloride. However, for each of the transition metal impurities present in the aqueous solution, such as chromium, iron, cobalt, nickel, and copper elements, determine the organic reagent and solvent that form the most stable complex, and determine the transition metal impurities in the solvent. The most important feature is to extract and remove,
For example, hydrochloric acid or a fluorinating agent is added to the aqueous barium solution remaining after extraction and removal to form a barium halide hydrate, which is dehydrated and dried to produce high-purity barium chloride or barium fluorochloride. .

【0007】従来技術の炭酸バリウムによる塩化バリウ
ムあるいは塩化バリウムのフッ素ガスによるフッ化塩化
バリウムの製造方法とは、出発物質の炭酸バリウムが水
溶液に溶解しないのに比べ、硝酸塩、酢酸塩、塩化物な
どの水溶性塩あるいは水酸化バリウムを出発物質とし
て、塩化バリウム、フッ化塩化バリウムなどを製造する
点で異なる。
The conventional method for producing barium fluorochloride using barium chloride or barium chloride using fluorine gas is that the starting material barium carbonate is not dissolved in an aqueous solution, but nitrates, acetates, chlorides, etc. The difference lies in that barium chloride, barium fluoride chloride, etc. are produced using the water-soluble salt or barium hydroxide as a starting material.

【0008】本発明において、使用される抽出用の有機
試薬はジチオカルバメート化合物である。このような有
機試薬は有機溶媒とともに使用することができる。有機
試薬としては、一般式:RCS21で示されるジチオカ
ルバメートを使用する。上記式中、Rは(C252
−、あるいは、
In the present invention, the organic reagent for extraction used is a dithiocarbamate compound. Such organic reagents can be used with organic solvents. As the organic reagent, a dithiocarbamate represented by the general formula: RCS 2 R 1 is used. In the above formula, R is (C 2 H 5 ) 2 N
-Or

【0009】[0009]

【化3】 を示し、またR1はH+ ,NH4 + ,NH2 +(C2
52あるいはNa+などを示す。
[Chemical 3] And R 1 is H + , NH 4 + , NH 2 + (C 2
H 5 ) 2 or Na + .

【0010】[0010]

【実施例】【Example】

(実施例1)酢酸バリウムを出発物質とし、有機試薬の
使用によるクロム、鉄、コバルトヽニッケル、銅の最適
抽出条件について以下に説明する。
(Example 1) The optimum extraction conditions for chromium, iron, cobalt and nickel, and copper using barium acetate as a starting material and using an organic reagent will be described below.

【0011】ビーカにBa(CH3COO)2 を100
g秤量後、溶液とし、51Cr、59Fe、60CO、 65
i、64Cuの放射性同位体を各々100μg添加した
後、pH=2.0〜5.0に設定する。pH調整した溶
液にジエチルアンモニウムジエチルジチオカルバメート
(以下DDDCと略)の有機試薬0.1gを100ml
の四塩化炭素に溶解後、このうちの20m1を加え、分
液ロートに移し替え、5分間振とうする。振とう後、5
分間静置し、有機相と水相の放射能を放射線検出器で測
定し、5元素の有機相への抽出率を算出する。抽出率と
してクロム、鉄、コバルト、ニッケル、銅、の5元素に
対し、99.9%以上の値がpH=2.0〜5.0の領
域で得られた。
Ba (CH 3 COO) 2 100 in a beaker
g Weighed and made into a solution, 51 Cr, 59 Fe, 60 CO, 65 N
After adding 100 μg of each of the radioisotopes of i and 64 Cu, pH is set to 2.0 to 5.0. 100 ml of an organic reagent 0.1 g of diethylammonium diethyldithiocarbamate (hereinafter abbreviated as DDDC) was added to the pH-adjusted solution.
After dissolving it in carbon tetrachloride, add 20 ml of it, transfer to a separating funnel, and shake for 5 minutes. After shaking, 5
The mixture is allowed to stand for a minute, the radioactivity of the organic phase and the aqueous phase is measured with a radiation detector, and the extraction rate of the five elements into the organic phase is calculated. As the extraction rate, a value of 99.9% or more was obtained in the region of pH = 2.0 to 5.0 for the five elements of chromium, iron, cobalt, nickel, and copper.

【0012】出発物質として、硝酸バリウム、塩化バリ
ウム(BaC12・2H20)を使用し、上述の条件でD
DDCとクロロホルム抽出を行った場合にも99.9%
以上の抽出率が上述のpH領域で得られる。上述の有機
試薬と溶媒を使用すれば、99.9%以上のクロム、
鉄、コバルト、ニッケル、銅の抽出、言い換えればこれ
ら5元素の排除が3桁までできる効果を示している。
Barium nitrate and barium chloride (BaC1 2 .2H 2 0) were used as starting materials, and D
99.9% even when DDC and chloroform extraction are performed
The above extraction rates are obtained in the above pH range. If the above organic reagents and solvents are used, 99.9% or more of chromium,
It shows the effect of extracting iron, cobalt, nickel, and copper, in other words, eliminating these five elements up to three digits.

【0013】(実施例2)硝酸バリウムを出発物質とす
る高純度塩化バリウムの作製法について、図1の工程図
によって説明する。硝酸バリウム10gを純水150m
1に溶解後、酢酸アンモニウムを添加し、pH=4.0
〜5.0の間に設定する。DDDC1.0gを四塩化炭
素100m1に溶解した溶液の50m1の使用により不
純物を抽出除去後、水相に濃塩酸150m1を入れ、水
浴上で加熱し,濃縮後,冷却し、析出した結晶を吸引濾
過し、少量の純水で洗浄し塩化バリウムの二水和物を得
る。塩化バリウムの二水和物は、室温から130℃の間
で真空乾燥器内で脱水・乾燥し、塩化バリウムを作製す
る。出発物質を酢酸バリウム、塩化バリウム、水酸化バ
リウムとして上述の抽出操作を行っても塩化物の二水和
物が得られる。また、作製した塩化バリウム中のクロ
ム,鉄,コバルト,ニッケル,銅の放射化分析を行い、
5元素について1ppbの分析結果が得られ、従来、行
われている塩化バリウムについての不純物濃度の分析値
よりも高純度の塩化バリウムが作製できた。
(Example 2) A method for producing high-purity barium chloride using barium nitrate as a starting material will be described with reference to the process chart of FIG. Barium nitrate 10g, pure water 150m
After dissolving in 1, ammonium acetate was added, pH = 4.0
Set between 5.0. After extracting and removing impurities by using 50 ml of a solution prepared by dissolving 1.0 g of DDDC in 100 ml of carbon tetrachloride, 150 ml of concentrated hydrochloric acid was added to the aqueous phase, heated on a water bath, concentrated and cooled, and the precipitated crystals were filtered by suction. Then, it is washed with a small amount of pure water to obtain barium chloride dihydrate. Barium chloride dihydrate is dehydrated and dried in a vacuum dryer at room temperature to 130 ° C. to produce barium chloride. The chloride dihydrate can also be obtained by performing the above-mentioned extraction operation using barium acetate, barium chloride or barium hydroxide as the starting material. In addition, the activation analysis of chromium, iron, cobalt, nickel, and copper in the prepared barium chloride was performed.
An analysis result of 1 ppb was obtained for the five elements, and barium chloride having a higher purity than the conventional analysis value of the impurity concentration of barium chloride could be produced.

【0014】(実施例3)酢酸バリウム(Ba(CH3
COO)2)を出発物質とする塩化バリウムの作製方法
について,図2の工程図によって説明する.酢酸バリウ
ム100gを純水150mlに溶解する。水溶液に酢酸
アンモニウムを少量添加し、pH=4.0〜6.0の間
に設定する。ジエチルジチオカルバミン酸ナトリウム
(以下,DDTCと略))1.0gを純水10mlに溶
解し,この1mlと四塩化炭素50mlの使用により不
純物を抽出除去後、水相に濃塩酸150mlを入れ、水
浴上で加熱し,濃縮後,冷却し、析出した結晶を吸引濾
過し、少量の純水で洗浄し塩化バリウムの二水和物を得
る.塩化バリウムの二水和物は、室温から130℃の間
で真空乾燥器内で脱水・乾燥し、塩化バリウムを作製す
る。出発物質を硝酸バリウム、塩化バリウム、水酸化バ
リウムとして上述の抽出操作を行っても塩化物の二水和
物が得られる。また、作製した塩化バリウム中のクロ
ム,鉄,コバルト,ニッケル,銅の放射化分析を行い、
5元素について1ppbの分析結果が得られ、従来、行
われている塩化バリウムについての不純物濃度の分析値
よりも高純度の塩化バリウムが作製できた。
Example 3 Barium acetate (Ba (CH 3
A method for producing barium chloride using COO) 2 ) as a starting material will be described with reference to the process chart of FIG. 100 g of barium acetate is dissolved in 150 ml of pure water. A small amount of ammonium acetate is added to the aqueous solution, and the pH is set between 4.0 and 6.0. Sodium diethyldithiocarbamate (hereinafter abbreviated as DDTC) 1.0 g was dissolved in pure water 10 ml, and 1 ml of this and 50 ml of carbon tetrachloride were used to extract and remove impurities. Then, 150 ml of concentrated hydrochloric acid was added to the aqueous phase, and the mixture was placed on a water bath. After heating, concentrating and cooling, the precipitated crystals are suction filtered and washed with a small amount of pure water to obtain barium chloride dihydrate. Barium chloride dihydrate is dehydrated and dried in a vacuum dryer at room temperature to 130 ° C. to produce barium chloride. The chloride dihydrate can also be obtained by performing the above extraction operation using barium nitrate, barium chloride, or barium hydroxide as the starting material. In addition, the activation analysis of chromium, iron, cobalt, nickel, and copper in the prepared barium chloride was performed.
An analysis result of 1 ppb was obtained for the five elements, and barium chloride having a higher purity than the conventional analysis value of the impurity concentration of barium chloride could be produced.

【0015】(実施例4)塩化バリウムを出発物質と
し,水酸化バリウム(Ba(OH)2・8H2O)を作製
後、塩化バリウムを製造する作製法について図3の工程
図によって説明する。塩化バリウム100gを純水20
0mlに溶解し、酢酸アンモニウムを添加後、pHを
4.0〜5.0に調整した後、DDDC1.0gを四塩
化炭素10mlに溶解した溶液1mlと四塩化炭素50
mlにより、遷移金属不純物を溶媒抽出で排除する。抽
出で残った水相中に超高純度の水酸化ナトリウム水溶液
を添加し、冷却し、バリウム沈澱物を作製する。バリウ
ム沈澱物は濾過,加熱,冷却により、再結晶操作を2〜
3回繰り返し、水酸化バリウム(Ba(OH)2・8H2
O)結晶を作製する。水酸化バリウム(Ba(OH)2
・8H2O)は、6規定の希塩酸中に入れ、水浴上で加
熱、濃縮したのち冷却し,塩化バリウムニ水和物の結晶
を得る。塩化バリウムの二水和物は、室温から130℃
の間で真空乾燥器内で脱水・乾燥し、塩化バリウムを作
製する。出発物質を酢酸バリウム、硝酸バリウム、水酸
化バリウムとして上述の抽出操作を行っても塩化物の二
水和物が得られる。また、作製した塩化バリウム中のク
ロム,鉄,コバルト,ニッケル,銅の放射化分析を行
い、5元素について1ppbの分析結果が得られ、従
来、行われている塩化バリウムについての不純物濃度の
分析値よりも高純度の塩化バリウムが作製できた。
Example 4 Using barium chloride as a starting material, barium hydroxide (Ba (OH) 2 .8H 2 O) is prepared, and then barium chloride is prepared. Barium chloride 100g pure water 20
After dissolving in 0 ml and adding ammonium acetate, the pH was adjusted to 4.0 to 5.0, and 1 ml of a solution prepared by dissolving 1.0 g of DDDC in 10 ml of carbon tetrachloride and 50 ml of carbon tetrachloride.
ml removes transition metal impurities by solvent extraction. An ultrahigh-purity sodium hydroxide aqueous solution is added to the aqueous phase remaining after the extraction, and the mixture is cooled to form a barium precipitate. The barium precipitate can be recrystallized by filtration, heating and cooling.
Repeat 3 times to remove barium hydroxide (Ba (OH) 2 · 8H 2
O) Make crystals. Barium hydroxide (Ba (OH) 2
8H 2 O) is placed in 6N dilute hydrochloric acid, heated on a water bath, concentrated and then cooled to obtain crystals of barium chloride dihydrate. Barium chloride dihydrate, room temperature to 130 ℃
In the meantime, it is dehydrated and dried in a vacuum dryer to produce barium chloride. The chloride dihydrate can also be obtained by performing the above-mentioned extraction procedure using barium acetate, barium nitrate, or barium hydroxide as the starting material. In addition, the activation analysis of chromium, iron, cobalt, nickel, and copper in the prepared barium chloride was performed, and the analysis result of 1 ppb was obtained for 5 elements. It was possible to produce barium chloride of higher purity than that.

【0016】(実施例5)塩化バリウムを出発物質とす
る高純度フッ化塩化バリウムの作製法について、図4の
工程図によって説明する。塩化バリウム100gを純水
200mlに溶解し、pHを4.0〜6.0に調整した
後、DDTC1.0gを純水100mlに溶解した溶液
10mlと四塩化炭素50mlにより、遷移金属不純物
を溶媒抽出で排除する。抽出で残った水相をフッ化水素
酸中に添加し、バリウム沈澱物を作製する。バリウム沈
澱物はデカンテーション後、テフロン濾過器で濾過,脱
水を行い、真空乾燥器内で30℃〜150℃の温度範囲
で脱水乾燥し、フッ化塩化バリウム(BaFCl)を作
製する。また、作製したフッ化塩化バリウム中のクロ
ム,鉄,コバルト,ニッケル,銅の放射化分析を行い、
5元素について1ppbの分析結果が得られ、従来、行
われているフッ化塩化バリウムについての不純物濃度の
分析値よりも高純度の塩化バリウムが作製できた。
(Example 5) A method for producing high-purity barium fluorochloride using barium chloride as a starting material will be described with reference to the process chart of FIG. After dissolving 100 g of barium chloride in 200 ml of pure water and adjusting the pH to 4.0 to 6.0, solvent extraction of transition metal impurities with 10 ml of a solution of 1.0 g of DDTC in 100 ml of pure water and 50 ml of carbon tetrachloride. Eliminate with. The aqueous phase remaining from the extraction is added to hydrofluoric acid to produce a barium precipitate. The barium precipitate is decanted, filtered with a Teflon filter and dehydrated, and dehydrated and dried in a vacuum dryer at a temperature range of 30 ° C. to 150 ° C. to produce barium fluorochloride (BaFCl). In addition, activation analysis of chromium, iron, cobalt, nickel, and copper in the prepared barium fluorochloride was performed,
An analysis result of 1 ppb was obtained for the five elements, and barium chloride having a higher purity than the conventional analysis value of the impurity concentration of barium fluorochloride could be produced.

【0017】[0017]

【発明の効果】以上説明したように、本発明の製造方法
によれば、バリウムを含む水溶性塩を使用し、水溶液内
に存在するクロム、鉄、コバルト、ニッケル、銅の元素
個々に対し、最も安定な錯体を形成する有機試薬と溶媒
により抽出排除することにより、高純度ハロゲン化バリ
ウムを作製するものであるから、遷移金属を極低濃度に
した高純度の塩化バリウム、フッ化塩化バリウムを製造
することができた。さらに、これをフッ化物光ファイバ
アンプの出発金属原料として用いることにより、増幅度
の高い光ファイバを製造できる利点がある。
As described above, according to the production method of the present invention, the water-soluble salt containing barium is used, and for each element of chromium, iron, cobalt, nickel and copper present in the aqueous solution, Since high-purity barium halide is produced by extracting and eliminating with the organic reagent and solvent that form the most stable complex, high-purity barium chloride and barium fluorochloride with extremely low transition metal concentrations are used. It was possible to manufacture. Further, by using this as a starting metal raw material of a fluoride optical fiber amplifier, there is an advantage that an optical fiber having a high amplification degree can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2における高純度塩化バリウムの製造方
法を示す工程図である。
FIG. 1 is a process drawing showing a method for producing high-purity barium chloride in Example 2.

【図2】実施例3における高純度塩化バリウムの製造方
法を示す工程図である。
FIG. 2 is a process drawing showing a method for producing high-purity barium chloride in Example 3.

【図3】実施例4における高純度塩化バリウムの製造方
法を示す工程図である。
FIG. 3 is a process drawing showing the method for producing high-purity barium chloride in Example 4.

【図4】実施例5における高純度フッ化塩化バリウムの
製造方法を示す工程図である。
FIG. 4 is a process drawing showing the method for producing high-purity barium fluorochloride in Example 5.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高純度ハロゲン化バリウムを製造する方
法において、バリウム水溶液のpHを調整した後、下記
一般式:RCS21からなるジチオカルバメートを添加
して不純物遷移金属を抽出除去し、不純物遷移金属を抽
出除去した前記バリウム水溶液からハロゲン化バリウム
を作製することを特徴とする高純度ハロゲン化バリウム
の製造方法。 一般式:RCS21(ここで、Rは(C252N−、
あるいは 【化1】 を示し、R1はH2、NH4 +、NH2 +(C252
Na+を示す。)
1. In a method for producing high-purity barium halide, the pH of an aqueous barium solution is adjusted, and then dithiocarbamate having the following general formula: RCS 2 R 1 is added to extract and remove impurity transition metals to obtain impurities. A method for producing high-purity barium halide, which comprises producing barium halide from the aqueous barium solution from which transition metal has been extracted and removed. General formula: RCS 2 R 1 (wherein, R represents (C 2 H 5) 2 N- ,
Or: R 1 is H 2 , NH 4 + , NH 2 + (C 2 H 5 ) 2 ,
Indicates Na + . )
【請求項2】 前記高純度ハロゲン化バリウムが塩化バ
リウム、フッ化塩化バリウムであることを特徴とする請
求項1に記載の高純度ハロゲン化バリウムの製造方法。
2. The method for producing high-purity barium halide according to claim 1, wherein the high-purity barium halide is barium chloride or barium fluorochloride.
【請求項3】 前記バリウムを含む水溶液が酢酸塩、硝
酸塩、塩化物などの塩および/または水酸化物からなる
ことを特徴とする請求項1に記載の高純度ハロゲン化バ
リウムの製造方法。
3. The method for producing high-purity barium halide according to claim 1, wherein the aqueous solution containing barium is composed of salts such as acetate, nitrate, chloride and / or hydroxide.
JP05748793A 1993-03-17 1993-03-17 Production method of barium chloride Expired - Fee Related JP3360743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05748793A JP3360743B2 (en) 1993-03-17 1993-03-17 Production method of barium chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05748793A JP3360743B2 (en) 1993-03-17 1993-03-17 Production method of barium chloride

Publications (2)

Publication Number Publication Date
JPH06271314A true JPH06271314A (en) 1994-09-27
JP3360743B2 JP3360743B2 (en) 2002-12-24

Family

ID=13057081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05748793A Expired - Fee Related JP3360743B2 (en) 1993-03-17 1993-03-17 Production method of barium chloride

Country Status (1)

Country Link
JP (1) JP3360743B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212971A (en) * 2012-03-30 2013-10-17 Guizhou Redstar Developing Co Ltd Low-strontium high-purity barium chloride and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212971A (en) * 2012-03-30 2013-10-17 Guizhou Redstar Developing Co Ltd Low-strontium high-purity barium chloride and method for producing the same

Also Published As

Publication number Publication date
JP3360743B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
Morss et al. Preparation of cubic chloro complex compounds of trivalent metals: Cs2NaMCl6
JPS61146717A (en) Purification of tantalum
RU2171229C2 (en) Method of dissolving and purifying tantalum pentaoxide (variants)
JPS62502683A (en) chemical purification method
JPH06271314A (en) Production of high purity barium halide
JPH10287402A (en) Production of metal fluoride
JP2559040B2 (en) Method for producing metal fluoride
CA1122416A (en) Method of extracting columbium-tantalum values from pyrochlore ores
JPH054801A (en) Production of highly pure metal fluoride
JP2963905B2 (en) Method for producing high-purity metal fluoride
Kinsman et al. Preparation and purification of metal fluorides for crystals and glasses
JP3591746B2 (en) Method for producing zinc fluoride
JP3403240B2 (en) Method for producing high purity metal fluoride
JPH0742103B2 (en) Method for producing alkali metal fluoride
JP2729740B2 (en) Method for producing high-purity metal fluoride
JP3385565B2 (en) Production method of lead fluoride
JP4322008B2 (en) Method for recovering tantalum compound and / or niobium compound
US4012489A (en) Process for the preparation of uranium dioxide
JPH03137003A (en) Production of high-purity metal fluoride
US3058801A (en) Production of hafnium-free zirconium compounds
JP2001064015A (en) Production of fluoride of rare earth metal
JP3847635B2 (en) Method for producing magnesium carbonate powder
JPH0617205B2 (en) Method for producing high-purity metal compound
JPH11157836A (en) Production of high purity gallium compound
JP3577224B2 (en) Method for producing strontium hydrogen fluoride

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees