JPH0626844A - Surface inspection apparatus using inverse reflection screen - Google Patents

Surface inspection apparatus using inverse reflection screen

Info

Publication number
JPH0626844A
JPH0626844A JP18065192A JP18065192A JPH0626844A JP H0626844 A JPH0626844 A JP H0626844A JP 18065192 A JP18065192 A JP 18065192A JP 18065192 A JP18065192 A JP 18065192A JP H0626844 A JPH0626844 A JP H0626844A
Authority
JP
Japan
Prior art keywords
light
light source
illuminance
inspection
inspection object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18065192A
Other languages
Japanese (ja)
Inventor
Shigeto Adachi
成人 足立
Shiro Koike
史朗 小池
Tadayuki Nakami
忠行 中見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP18065192A priority Critical patent/JPH0626844A/en
Publication of JPH0626844A publication Critical patent/JPH0626844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To obtain a surface inspecting apparatus with an inverse reflection screen, which can accurately perform the detection of defects and quantization of the irregularity defects by keeping the illuminance ratio by the environment light around an object under inspection and the light from a light source at a constant value. CONSTITUTION:In a surface inspecting apparatus with an inverse reflection screen, an illuminance meter 6, which measures the environment illuminance at the position of an object under inspection 5, a comparison operating part 7, which adjusts the luminous intensity of a light source 4 in response to the measured value of the illuminance meter 6, and power regulating means 8, are provided. The environment illuminance at the position of the object under inspection 5 is measured with the illuminance meter 6. The electric power, which is supplied into the light source 4 for keeping the illuminance ratio between the environment light and the emitted light from the light source constant, is operated with the comparison operating part 7. The luminous intensity of the light source is adjusted with the power adjusting part 8. Therefore, the surface can be inspected under the constant conditions all the time regardless of the change in environment light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,自動車外板,プラスチ
ック面などの表面検査装置に関し,詳しくは,逆反射ス
クリーンを用いて検査対象物表面の欠陥部分を明暗画像
として強調することで,欠陥部分を検出しやすくする表
面検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface inspection apparatus for automobile outer panels, plastic surfaces, and the like. More specifically, a retroreflective screen is used to emphasize a defective portion on the surface of an object to be inspected as a light and dark image to thereby detect a defect. The present invention relates to a surface inspection device that makes it easy to detect a portion.

【0002】[0002]

【従来の技術】逆反射スクリーンによる表面検査装置の
基本的な構成は,図4に示すように逆反射スクリーン3
0,カメラ31,光源32の基本要素により構成され
る。同図に示すように,検査対象物33の表面を逆反射
スクリーン30と光源32の間に配置し,光源32の光
が検査対象物33の表面に当たり,反射して逆反射スク
リーン30に向かうような光路を形成する。上記配置に
より,光源32からの光は検査対象物33で反射し,逆
反射スクリーン30に入って入射光軸とほぼ同じ方向に
反射するので,再び検査対象物33の表面で反射して光
源32のやや上方に配置されたカメラ31に捕らえられ
る。この構成によって検査対象物33の表面の凹凸変化
が光学的に強調された画像をカメラ31で捕らえること
ができ,平滑であるべき表面の欠陥場所を容易に発見す
ることができる。上記逆反射スクリーンによる表面欠陥
の検出原理を,図5及び図6を用いて説明する。図5は
検査対象物33の表面に欠陥のない場合を示し,図6は
欠陥がある場合を示している。逆反射スクリーン30
は,その表面にビーズ状の反射球34が密設されてお
り,各反射球34は入射光に対し図示するような指向性
の反射パターンを有している。図5,図6に示すように
光源方向からきた光は,検査対象物33の表面で逆反射
スクリーン30の方向に反射する。一方,光源近傍の光
源よりやや上方に配置されたカメラは,図中のカメラビ
ューイング方向から検査対象物33表面に向いており,
逆反射スクリーン30からの反射光が検査対象物33で
再反射する光を捕らえている。検査対象物33表面の
A,B,Cの各点をカメラから見るとき,図5に示すよ
うに欠陥のない平面では逆反射スクリーン30の各反射
球34の角度αで反射される同じ強さの光を見ているこ
とになり,カメラは濃淡変化のない中間的な明るさをも
った面として捕らえる。一方,図6に示すように検査対
象物33の表面に欠陥がある場合,欠陥のないA点では
前記と同様に,逆反射スクリーン30の反射球34の角
度αの反射光を捕らえるが,B点(カメラ側から見て下
り坂)では反射角γの強い光を捕らえ,C点(カメラ側
から見て上り坂)では角度βの弱い反射光を捕らえるこ
とになる。従って,B点のような下り坂は明るく,C点
のような上り坂は暗く見えることになる。逆反射スクリ
ーン30の反射球34の反射パターンの指向性の幅は約
±1度と鋭いため,欠陥の微妙な傾きでも明暗の変化量
が激しく,欠陥の凹凸が強調されて観測されることにな
る。
2. Description of the Related Art The basic structure of a surface inspection apparatus using a retroreflective screen is shown in FIG.
0, a camera 31, and a light source 32. As shown in the figure, the surface of the inspection object 33 is arranged between the retro-reflection screen 30 and the light source 32, and the light of the light source 32 hits the surface of the inspection object 33 and is reflected and directed toward the retro-reflection screen 30. To form a simple optical path. With the above arrangement, the light from the light source 32 is reflected by the inspection object 33, enters the retro-reflective screen 30, and is reflected in almost the same direction as the incident optical axis. It is caught by the camera 31 arranged slightly above. With this configuration, the camera 31 can capture an image in which the unevenness of the surface of the inspection object 33 is optically emphasized, and the defect location on the surface that should be smooth can be easily found. The principle of detecting the surface defect by the retroreflective screen will be described with reference to FIGS. 5 shows the case where there is no defect on the surface of the inspection object 33, and FIG. 6 shows the case where there is a defect. Retroreflective screen 30
Are closely packed with bead-shaped reflecting spheres 34, and each reflecting sphere 34 has a directional reflection pattern for incident light as shown in the figure. As shown in FIGS. 5 and 6, the light coming from the light source direction is reflected by the surface of the inspection object 33 in the direction of the retroreflective screen 30. On the other hand, the camera arranged slightly above the light source near the light source faces the surface of the inspection object 33 from the camera viewing direction in the figure,
The reflected light from the retroreflective screen 30 captures the light that is re-reflected by the inspection object 33. When the respective points A, B and C on the surface of the inspection object 33 are viewed from the camera, as shown in FIG. 5, in a plane having no defects, the same intensity reflected at the angle α of each reflecting sphere 34 of the retroreflective screen 30. You will be seeing the light of, and the camera will see it as a surface with an intermediate brightness without any change in shade. On the other hand, when there is a defect on the surface of the inspection object 33 as shown in FIG. 6, the reflected light of the angle α of the reflecting sphere 34 of the retroreflective screen 30 is captured at the point A where there is no defect as in the above. Light having a strong reflection angle γ is captured at a point (downhill viewed from the camera side), and weak reflected light having a angle β is captured at point C (uphill viewed from the camera side). Therefore, the downhill like point B looks bright and the uphill like point C looks dark. Since the width of the directivity of the reflection pattern of the reflection sphere 34 of the retro-reflection screen 30 is as sharp as about ± 1 degree, even if the defect has a slight inclination, the amount of change in light and shade is large, and the unevenness of the defect is emphasized and observed. Become.

【0003】[0003]

【発明が解決しようとする課題】上記逆反射スクリーン
による表面検査において,検査を実施する環境照度が光
源による検査対象物の照射照度に勝るような場合,欠陥
部分が明暗強調される特性が損なわれ,環境照度に大き
く影響される問題点があった。特に太陽光の強い光が検
査環境に照射されるような状況においては,凹凸欠陥の
定量化を行う場合に,同一時間帯を選んで照度計で環境
照度を測定し,所定の照度になった時点で測定すること
を要する。例えば,図7は環境光の光度が8LUX で,光
源として20Wハロゲンランプを用いている状況での,
カメラが捕らえた検査対象物33のA−B線上のグレイ
レベル・グラフであるが,A−B線上に生じている僅か
な凹凸欠陥による濃淡画像が明確に示されている。とこ
ろが,図7に示した場合と同一条件の光源と検査対象物
でありながら,環境照度が380LUX になると,図8に
示すように同じA−B線上のグレイレベルは濃淡変化が
殆ど観測されず,欠陥を検出することができないことに
なる。本発明は,上記問題点に鑑みて創案されたもの
で,検査対象物周辺の環境光と光源からの光とによる照
度比を一定に保つことにより,欠陥の検出並びに凹凸欠
陥の定量化を正確に行い得るようにした逆反射スクリー
ンによる表面検査装置を提供することを目的とする。
In the surface inspection using the retro-reflective screen, when the environmental illuminance to be inspected exceeds the illumination illuminance of the inspection object by the light source, the characteristic that the defect portion is bright and dark enhanced is impaired. , There was a problem that was greatly affected by the environmental illuminance. Especially when the inspection environment is exposed to strong sunlight, when quantifying unevenness defects, the ambient illuminance was measured with an illuminometer by selecting the same time period, and the predetermined illuminance was obtained. It is necessary to measure at the time point. For example, Fig. 7 shows the situation where the luminous intensity of ambient light is 8LUX and a 20W halogen lamp is used as the light source.
It is a gray level graph on the line AB of the inspection object 33 captured by the camera, and a grayscale image due to slight irregularities on the line AB is clearly shown. However, even though the light source and the inspection object under the same conditions as those shown in FIG. 7 are used and the ambient illuminance is 380 LUX, the gray level on the same AB line shows almost no change in gray level as shown in FIG. , The defect cannot be detected. The present invention was devised in view of the above-mentioned problems, and it is possible to accurately detect defects and quantify uneven defects by maintaining a constant illuminance ratio by ambient light around the inspection object and light from the light source. It is an object of the present invention to provide a surface inspection device using a retro-reflective screen that can be performed according to the above method.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用する手段は,逆反射スクリーンと,光源
と,検査対象物とを,前記光源からの光が前記検査対象
物に当たり反射して,前記逆反射スクリーンに向かうよ
うな相対的位置に配置し,検査対象物の表面を光源で照
射したときの反射光を逆反射スクリーンで検査対象物に
戻し,検査対象物の表面で再反射した光を光源の近傍に
配置したカメラで捕らえることにより,検査対象物表面
の欠陥部分の凹凸変化を明暗変化に強調された画像とし
て得る逆反射スクリーンによる表面検査装置において,
前記検査対象物位置の環境照度を測定する照度計と,該
照度計の測定値に対応して前記光源の光度を調整する光
源光度調整手段とを具備してなることを特徴とする逆反
射スクリーンによる表面検査装置として構成される。
In order to achieve the above object, the means adopted by the present invention is a retroreflective screen, a light source, and an inspection object, and the light from the light source hits the inspection object and is reflected. Then, it is placed at a relative position so as to face the retro-reflective screen, the reflected light when the surface of the inspection object is illuminated by the light source is returned to the inspection object by the retro-reflection screen, and is re-exposed on the surface of the inspection object. In a surface inspection device using a retro-reflective screen, which captures the reflected light with a camera placed near the light source to obtain the unevenness change of the defect portion of the inspection object surface as an image emphasized by the light and dark changes,
A retroreflective screen comprising: an illuminometer for measuring the environmental illuminance at the position of the inspection object; and a light source luminosity adjusting means for adjusting the luminosity of the light source according to the measurement value of the illuminometer. Configured as a surface inspection device.

【0005】[0005]

【作用】本発明によれば,検査対象物位置の環境照度を
照度計によって測定し,この測定値に対応して光源の光
度を光源光度調整手段により調整することができるの
で,検査対象物位置の環境光と光源から照射光との照度
比は一定に保たれる。従って,環境光の変化による逆反
射スクリーンによる表面検査は,常に一定した条件で実
施することができる。
According to the present invention, the ambient illuminance at the inspection object position can be measured by the illuminometer, and the luminous intensity of the light source can be adjusted by the light source luminous intensity adjusting means in accordance with the measured value. The illuminance ratio between the ambient light and the light emitted from the light source is kept constant. Therefore, the surface inspection by the retroreflective screen due to the change of the ambient light can be always performed under a constant condition.

【0006】[0006]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は本発明を具体化した一例であって,本発明
の技術的範囲を限定するものではない。ここに,図1は
本発明の第1実施例に係る逆反射スクリーンによる表面
検査装置の構成を示す模式図,図2は本発明の第2実施
例に係る逆反射スクリーンによる表面検査装置の構成を
示す模式図,図3は実施例装置により環境光と光源光と
の照度比を一定に補正した場合の濃淡変化を示すグレイ
レベル・グラフである。図1において,表面検査装置1
は表面にビーズ状の反射球の密設した逆反射スクリーン
2,カメラ3,光源4の基本要素の間に検査対象物5を
おき,光源4の光が検査対象物5の表面に当たり,反射
して逆反射スクリーン2に向かうような相対的位置に配
置されている。光源4からの光は検査対象物5で反射
し,逆反射スクリーン2に入射して入射光軸とほぼ同じ
方向に反射するので,再び検査対象物5の表面で反射し
て光源4のやや上方に配置されたカメラ3に捕らえられ
る。この構成によって検査対象物5の表面の凹凸変化が
光学的に強調された画像をカメラ3で捕らえることがで
き,平滑であるべき表面の欠陥場所を容易に発見するこ
とができる。表面欠陥の検出原理は,従来技術で説明し
た通りである。本実施例になる表面検査装置1は,上記
基本構成の他に,検査対象物5の置かれた環境照度を測
定する照度計6と,該照度計6の測定値から光源4の光
度を演算する比較演算部7と,該比較演算部7で算出さ
れた光源動作電力値により光源4への供給電力を調整す
る電力調整部8とを具備して構成されている。上記比較
演算部7と電力調整部8とにより光源光度調整手段が構
成されているので,環境照度の変化は照度計6によって
測定され,光源4の光度が調整されるため,検査対象物
5上での環境照度と光源照度との照度比はほぼ一定に保
たれる。図3は環境光の照度が大きい(680LUX )状
態で,光源4の電力を大きく(200W)して,照度比
を一定にした例を示している。図2に示す第2実施例に
よる場合は,スイッチ9をオフにして光源4からの照射
を停止した状態で,照度計6で環境照度のみを測定す
る。次いで,スイッチ9をオンにして,同様に照度計6
によって環境光と光源光との合計照度を測定する。この
スイッチ9のオンとオフとの各状態での照度計6の測定
値が入力される比較演算部7aでは,スイッチ9オフ時
の照度とスイッチ9オン時の照度との照度比を計算し,
その比が所定の一定値になるまで電力調整部8aからの
光源4への供給電力を調整する。この構成によれば,光
源4と検査対象物5との距離が変化したときにも,環境
光と光源光との照度比を一定に調整することができる。
上記第1実施例及び第2実施例の構成により,環境光の
変化による凹凸欠陥の定量化への影響がなくなり,検査
環境の昼夜時間帯や設置場所の変化にかかわらず欠陥の
検出と定量化を正確に実施できる。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and do not limit the technical scope of the present invention. FIG. 1 is a schematic diagram showing the structure of a surface inspection apparatus using a retroreflective screen according to the first embodiment of the present invention, and FIG. 2 is a structure of a surface inspection apparatus using a retroreflective screen according to the second embodiment of the present invention. And FIG. 3 is a gray level graph showing a change in shading when the illuminance ratio between the ambient light and the light from the light source is corrected to be constant by the apparatus of the embodiment. In FIG. 1, the surface inspection device 1
Puts the inspection object 5 between the basic elements of the retro-reflective screen 2, the camera 3 and the light source 4 in which beads-like reflection spheres are densely arranged on the surface, and the light of the light source 4 hits the surface of the inspection object 5 and is reflected. Are arranged at relative positions so as to face the retro-reflective screen 2. The light from the light source 4 is reflected by the inspection object 5, is incident on the retro-reflective screen 2 and is reflected in almost the same direction as the incident optical axis, so that it is reflected again on the surface of the inspection object 5 and slightly above the light source 4. It is caught by the camera 3 arranged at. With this configuration, the camera 3 can capture an image in which the unevenness of the surface of the inspection object 5 is optically emphasized, and the defect location on the surface that should be smooth can be easily found. The principle of surface defect detection is as described in the related art. In addition to the basic configuration described above, the surface inspection apparatus 1 according to the present embodiment calculates an illuminance meter 6 for measuring the environmental illuminance of the inspection object 5 and the luminosity of the light source 4 from the measured value of the illuminance meter 6. And a power adjustment unit 8 for adjusting the power supplied to the light source 4 according to the light source operating power value calculated by the comparison operation unit 7. Since the light source light intensity adjusting means is configured by the comparison operation unit 7 and the power adjusting unit 8, the change in the environmental illuminance is measured by the illuminance meter 6 and the light intensity of the light source 4 is adjusted, so that the inspection object 5 is The illuminance ratio between the ambient illuminance and the light source illuminance is kept substantially constant. FIG. 3 shows an example in which the illuminance ratio is kept constant by increasing the power of the light source 4 (200 W) in a state where the illuminance of ambient light is large (680 LUX). In the case of the second embodiment shown in FIG. 2, only the ambient illuminance is measured by the illuminometer 6 in a state where the switch 9 is turned off and the irradiation from the light source 4 is stopped. Then, switch 9 is turned on and illuminance meter 6
The total illuminance of ambient light and light from the light source is measured by. The comparison calculation unit 7a to which the measured value of the illuminance meter 6 in each of the ON and OFF states of the switch 9 is input, calculates the illuminance ratio between the illuminance when the switch 9 is off and the illuminance when the switch 9 is on,
The power supplied from the power adjusting unit 8a to the light source 4 is adjusted until the ratio reaches a predetermined constant value. According to this configuration, even when the distance between the light source 4 and the inspection object 5 changes, the illuminance ratio between the ambient light and the light source light can be adjusted to be constant.
With the configurations of the first and second embodiments described above, there is no influence on the quantification of uneven defects due to changes in ambient light, and the detection and quantification of defects regardless of the day / night time zone of the inspection environment or changes in the installation location. Can be carried out accurately.

【0007】[0007]

【発明の効果】以上の説明の通り本発明によれば,検査
対象物位置の環境照度を照度計によって測定し,この測
定値に対応して光源の光度を光源光度調整手段により調
整することができるので,検査対象物位置の環境光と光
源から照射光との照度比は一定に保たれる。従って,環
境光の変化による逆反射スクリーンによる表面検査は,
常に一定した条件で実施することができる表面検査装置
を提供することができる。
As described above, according to the present invention, the ambient illuminance at the inspection object position can be measured by the illuminometer, and the luminous intensity of the light source can be adjusted by the light source luminous intensity adjusting means in accordance with the measured value. Therefore, the illuminance ratio between the ambient light at the position of the inspection object and the irradiation light from the light source is kept constant. Therefore, surface inspection with a retro-reflective screen due to changes in ambient light
It is possible to provide a surface inspection device that can be always performed under constant conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例に係る表面検査装置の構
成を示す模式図。
FIG. 1 is a schematic diagram showing the configuration of a surface inspection apparatus according to a first embodiment of the present invention.

【図2】 本発明の第1実施例に係る表面検査装置の構
成を示す模式図。
FIG. 2 is a schematic diagram showing the configuration of a surface inspection apparatus according to the first embodiment of the present invention.

【図3】 実施例装置の光源光度調整手段により光源光
度を調整した場合のグレイレベル・グラフ。
FIG. 3 is a gray level graph when the light source light intensity is adjusted by the light source light intensity adjusting means of the embodiment apparatus.

【図4】 逆反射スクリーンによる表面検査の基本構成
を示す模式図。
FIG. 4 is a schematic diagram showing a basic configuration of a surface inspection using a retroreflective screen.

【図5】 逆反射スクリーンによる表面検査の原理を示
す説明図(表面欠陥が無い場合)。
FIG. 5 is an explanatory diagram showing the principle of surface inspection using a retroreflective screen (when there is no surface defect).

【図6】 逆反射スクリーンによる表面検査の原理を示
す説明図(表面欠陥が有る場合)。
FIG. 6 is an explanatory diagram showing the principle of surface inspection using a retroreflective screen (when there is a surface defect).

【図7】 環境光と光源光との照度が適当である状態の
グレイレベル・グラフ。
FIG. 7 is a gray level graph in a state where the illuminances of ambient light and light from the light source are appropriate.

【図8】 環境光が強い状態のグレイレベル・グラフ。FIG. 8 is a gray level graph in a state where the ambient light is strong.

【符号の説明】[Explanation of symbols]

1──表面検査装置 2──逆反射スクリーン 3──カメラ 4──光源 5──検査対象物 6──照度計 7,7a──比較演算部(光源光度調整手段) 8,8a──電力調整部(光源光度調整手段) 1-Surface inspection device 2-Reverse reflection screen 3-Camera 4-Light source 5-Inspection object 6-Illuminance meter 7,7a-Comparison unit (light source light intensity adjusting means) 8,8a- Power adjustment unit (light source light intensity adjustment means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 逆反射スクリーンと,光源と,検査対象
物とを,前記光源からの光が前記検査対象物に当たり反
射して,前記逆反射スクリーンに向かうような相対的位
置に配置し,検査対象物の表面を光源で照射したときの
反射光を逆反射スクリーンで検査対象物に戻し,検査対
象物の表面で再反射した光を光源の近傍に配置したカメ
ラで捕らえることにより,検査対象物表面の欠陥部分の
凹凸変化を明暗変化に強調された画像として得る逆反射
スクリーンによる表面検査装置において,前記検査対象
物位置の環境照度を測定する照度計と,該照度計の測定
値に対応して前記光源の光度を調整する光源光度調整手
段とを具備してなることを特徴とする逆反射スクリーン
による表面検査装置。
1. A retroreflective screen, a light source, and an inspection object are arranged at relative positions such that the light from the light source hits the inspection object and is reflected toward the retroreflective screen. The reflected light when the surface of the object is illuminated by the light source is returned to the object to be inspected by the retroreflective screen, and the light re-reflected on the surface of the object to be inspected is captured by the camera arranged in the vicinity of the light source, so that the object to be inspected In a surface inspection device using a retro-reflective screen that obtains the unevenness change of the defective portion of the surface as an image emphasized by the light and dark changes, an illuminance meter that measures the environmental illuminance at the position of the inspection target and a measurement value of the illuminance meter And a light source light intensity adjusting means for adjusting the light intensity of the light source.
JP18065192A 1992-07-08 1992-07-08 Surface inspection apparatus using inverse reflection screen Pending JPH0626844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18065192A JPH0626844A (en) 1992-07-08 1992-07-08 Surface inspection apparatus using inverse reflection screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18065192A JPH0626844A (en) 1992-07-08 1992-07-08 Surface inspection apparatus using inverse reflection screen

Publications (1)

Publication Number Publication Date
JPH0626844A true JPH0626844A (en) 1994-02-04

Family

ID=16086930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18065192A Pending JPH0626844A (en) 1992-07-08 1992-07-08 Surface inspection apparatus using inverse reflection screen

Country Status (1)

Country Link
JP (1) JPH0626844A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251220A (en) * 1994-02-07 1995-10-03 Yoonho Choi Method of restoring smashed metal plate of vehicle to original condition
JP2005092877A (en) * 2003-09-19 2005-04-07 Sensormatic Electronics Corp Object recognition system including adaptive light source
JP2016176910A (en) * 2015-03-23 2016-10-06 セイコーエプソン株式会社 Spectrometry device, image formation device, and method for spectrometry
CN111564110A (en) * 2020-05-29 2020-08-21 上海中航光电子有限公司 Display panel and display device
CN116718355A (en) * 2023-08-08 2023-09-08 陕西省计量科学研究院 Retroreflection sample grade and pose adjusting device and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251220A (en) * 1994-02-07 1995-10-03 Yoonho Choi Method of restoring smashed metal plate of vehicle to original condition
JP2005092877A (en) * 2003-09-19 2005-04-07 Sensormatic Electronics Corp Object recognition system including adaptive light source
JP2016176910A (en) * 2015-03-23 2016-10-06 セイコーエプソン株式会社 Spectrometry device, image formation device, and method for spectrometry
US10247609B2 (en) 2015-03-23 2019-04-02 Seiko Epson Corporation Spectrometry device, image forming apparatus, and spectrometry method
CN111564110A (en) * 2020-05-29 2020-08-21 上海中航光电子有限公司 Display panel and display device
CN116718355A (en) * 2023-08-08 2023-09-08 陕西省计量科学研究院 Retroreflection sample grade and pose adjusting device and method
CN116718355B (en) * 2023-08-08 2023-10-13 陕西省计量科学研究院 Retroreflection sample grade and pose adjusting device and method

Similar Documents

Publication Publication Date Title
US7382457B2 (en) Illumination system for material inspection
CN108076553B (en) Lighting system and lighting method thereof
JP2006242886A (en) Surface defect inspecting apparatus
JP2006266933A (en) Method and apparatus for inspecting defect in transparent plate
JP4158227B2 (en) Inspection method and inspection apparatus for minute unevenness
TW201217682A (en) capable of highlighting a detection target of the detected object according to the material, shape, surface roughness, or the reflection degree of the detected object
US6618136B1 (en) Method and apparatus for visually inspecting transparent body and translucent body
US8704670B2 (en) Target based smoke detection system
JPH0626844A (en) Surface inspection apparatus using inverse reflection screen
KR20230022725A (en) Lighting module inspection device for machine vision and light module inspection method for machine vision using thereof
KR101464877B1 (en) System for inspecting an object having irregular pattern
CA2093482A1 (en) Inspection of transparent containers
JP5768224B2 (en) Defect detection apparatus and defect detection method
CA1324503C (en) Method and apparatus for the inspection of specularly reflective surfaces
JPH0618245A (en) Surface condition inspecting equipment
KR101403926B1 (en) Apparatus for inspecting curved surface
JP2003028755A (en) Reflector inspection device and reflector inspection method
JPS5886408A (en) Detector and extractor for surface strain or the like
KR940005944A (en) Surface Defect Inspection System
JPH07306150A (en) Surface inspecting device using reversely reflecting screen
JP2009222614A (en) Surface inspection apparatus
KR100544501B1 (en) Apparatus for detecting surface defects on cold rolled strip
JP2002005845A (en) Defect inspecting apparatus
JPH0634349A (en) Surface inspecting method with counter-reflection screen
JP3214275B2 (en) Automatic visual inspection system sensitivity correction method