JPH0626832A - Method and apparatus for measuring surface shape - Google Patents

Method and apparatus for measuring surface shape

Info

Publication number
JPH0626832A
JPH0626832A JP20443692A JP20443692A JPH0626832A JP H0626832 A JPH0626832 A JP H0626832A JP 20443692 A JP20443692 A JP 20443692A JP 20443692 A JP20443692 A JP 20443692A JP H0626832 A JPH0626832 A JP H0626832A
Authority
JP
Japan
Prior art keywords
measured
light
objective lens
contact
reference surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20443692A
Other languages
Japanese (ja)
Inventor
Naoto Akaha
尚登 赤羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP20443692A priority Critical patent/JPH0626832A/en
Publication of JPH0626832A publication Critical patent/JPH0626832A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To make it possible to measure the shape of a surface under the contact condition close to the actual using state by correcting the length of a light path so that optical interference is generated with the reflected light from the surface of a material to be measured and the reflected light from a reference surface, and masuring the surface shape. CONSTITUTION:A material to be measured 1 is supported on a reare contact 2. A light transmitting contact body 4 is brought into contact with the front surface of the material. Liquid-state filler 5 is filled between the contact body 4 and the surface of irregularities. A reference surface and a lens 19 are moved in the direction of an optical axis with a light-path-length correcting mechanism 24. Adjustment is performed so that the light-path length from a lens 18 to the surface of the material to be measured 1 becomes equal to the light-path length from an objective lens 19 on the reference surface side to a reference surface 20. The reflected light, which is reflected from a beam splitter 17 of an interferometer and advances upward, is overlapped and made to interfere with the reflected light, which is reflected from the surface of the material to be measured 1, transmitted through the splitter 17 and advances upward. The interference fringes corresponding to the irregularities of the surface of the material to be measured are generated. The result of the analysis of the interference fringes with an interference-fringe analyzer 32 is transmitted to a measurement controller 33. A piezoelectric element 22 is driven so as to generate the interference fringes accurately, and the light-path-correting mechanism 24 is operated. Therefore, the surface shape of the material to be measured 1 can be measured under the contact condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は磁気テ−プ、フロッピ
−ディスク、プラスチックフィルム、研磨シ−ト等の軟
質材料およびその複合材料の表面形状を計測する方法と
その装置に関し、さらに詳しくは、磁気ヘッド等に摺接
させて使用されるこれらの材料の表面形状を、当接体を
接触させながら実用状態に近い接触条件下において計測
する方法とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring the surface shape of soft materials such as magnetic tapes, floppy disks, plastic films, polishing sheets and the like, and composite materials thereof, and more specifically, The present invention relates to a method and an apparatus for measuring the surface shape of these materials used in sliding contact with a magnetic head or the like under contact conditions close to a practical state while contacting an abutting body.

【0002】[0002]

【従来の技術】磁気テ−プ、フロッピ−ディスク等の高
密度磁気記録媒体では、記録再生出力の向上、高S/N
化のため、磁性層表面を可及的に平滑にすることが望ま
しい。しかしながら、磁性層表面を平滑にしすぎると摺
動ノイズを増加させたり、磁気ヘッドおよびガイド部材
等に対する摩擦・摩耗特性を劣化させたりすることがあ
る。
2. Description of the Related Art In a high density magnetic recording medium such as a magnetic tape or a floppy disk, the recording / reproducing output is improved and the S / N ratio is increased.
For this reason, it is desirable to make the surface of the magnetic layer as smooth as possible. However, if the surface of the magnetic layer is too smooth, sliding noise may be increased, or the friction and wear characteristics of the magnetic head and the guide member may be deteriorated.

【0003】このため、磁性層表面の形状を精密に計測
し、解析して、平滑でなお微細な凹凸形状を有するよう
に制御する試みが行われており、このような磁性層の表
面形状計測方法として、たとえば、ランクテ−ラホブソ
ン社製;タリステップおよびタリサ−フ、東京精密社
製;サ−フコムなどの触針式表面形状測定機、WYKO
社製;TOPO−3Dなどの光干渉式表面形状測定機、
小坂研究所社製;ET−30HKなどの光焦点エラ−検
出式表面形状測定機、ディジタルインストゥルメント社
製;NanoscopeIIなどの走査型トンネル顕微
鏡、エリオニクス社製;ERA−3000などの電子顕
微鏡等を用いることが行われている。
For this reason, attempts have been made to precisely measure and analyze the shape of the surface of the magnetic layer and control it so that it has a smooth and fine uneven shape. As a method, for example, Tactile Step and Talysurf manufactured by Rank-Tera-Hobson, Tokyo Seimitsu Co., Ltd., a stylus type surface profile measuring instrument such as Surfcom, WYKO
Manufactured by the company; optical interference type surface profile measuring instrument such as TOPO-3D,
Optical focus error detection type surface profile measuring instrument such as ET-30HK, scanning tunnel microscope such as Nanoscope II, electron microscope such as ERA-3000, manufactured by Kosaka Laboratory; Is being used.

【0004】[0004]

【発明が解決しようとする課題】ところが、これら従来
の表面形状測定機は、すべて大気中あるいは真空中にて
磁性層表面を無接触状態で固定した後に計測が行えるよ
うにしたものであるため、磁性層表面が磁気ヘッド等と
接触するときの表面形状を測定することができず、実用
に際しての磁性層表面は、磁気ヘッド等と接触している
ため、これら従来の表面形状測定機により計測される状
態に比べ、接触力による弾塑性変形を生じている。そし
て、磁気テ−プ、フロッピ−ディスク等の軟質材料、あ
るいはその複合材料では、接触力による表面凹凸中特に
凸部の変形が大きく、そのため、従来の表面形状計測結
果では磁気記録媒体の諸特性を充分に解明することがで
きないという問題があった。
However, all of these conventional surface profile measuring machines are designed to perform measurement after fixing the magnetic layer surface in a non-contact state in the atmosphere or vacuum, Since the surface shape when the magnetic layer surface comes into contact with the magnetic head, etc. cannot be measured and the magnetic layer surface during practical use is in contact with the magnetic head etc., it is measured by these conventional surface shape measuring machines. Elastic deformation due to the contact force, as compared with the case of In a soft material such as a magnetic tape or a floppy disk, or a composite material thereof, deformation of the convex portion is particularly large among the surface irregularities due to the contact force. Therefore, according to the conventional surface shape measurement result, various characteristics of the magnetic recording medium are obtained. There was a problem that could not be fully clarified.

【0005】[0005]

【課題を解決するための手段】この発明はかかる欠点を
改善するため種々検討を行った結果なされたもので、被
測定物の表面に光線を当て、その反射光を利用して、リ
ニック干渉計で被測定物の表面形状を計測する計測方法
において、リニック干渉計の被測定物側対物レンズの合
焦点位置から被測定物側対物レンズまでの光路長の変化
に対応して、リニック干渉計の参照面と参照面側対物レ
ンズとを同時に光軸方向に移動させ、被測定物表面から
の反射光と参照面からの反射光が光干渉を生じるように
光路長を補正して、被測定物の表面形状を計測すること
によって、実用状態に近い接触条件下における被測定物
の表面形状を計測できるようにしたものである。
The present invention has been made as a result of various studies for improving such a drawback, and a light beam is applied to the surface of an object to be measured, and the reflected light is used to make a Linic interferometer. In the measurement method for measuring the surface shape of the measured object with, the change of the optical path length from the focusing point of the measured object side objective lens of the lnic interferometer to the measured object side objective lens The reference surface and the reference surface side objective lens are simultaneously moved in the optical axis direction, and the optical path length is corrected so that the reflected light from the surface of the DUT and the reflected light from the reference surface cause optical interference, and the DUT is measured. The surface shape of the object to be measured can be measured under the contact condition close to the practical state by measuring the surface shape of.

【0006】[0006]

【実施例】以下、この発明に係る表面形状計測装置の一
実施例を示す図1に基づいて説明する。図1において、
1は被測定物であって裏当て2上に支持され、試料押さ
え3で上昇不能に支持された光透過性当接体4をその表
面に当接している。そして、光透過性当接体4と凹凸の
ある被測定物1の表面との間に液状充填剤5を充填して
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the surface shape measuring apparatus according to the present invention will be described below with reference to FIG. In FIG.
An object to be measured 1 is supported on a backing 2, and a light-transmitting contact body 4 supported by a sample holder 3 so as not to be raised is in contact with the surface thereof. The liquid filler 5 is filled between the light-transmitting contact member 4 and the surface of the DUT 1 having irregularities.

【0007】裏当て2は微動台6の揺動支持板7上に設
置されたロ−ドセル8上の弾性体9によって支持され、
微動台6は試料ステ−ジ10上に配設されている。11
は微動台6に取りつけられた調整撮みで、この調整撮み
11の回動によりピン12で揺動自在に枢支された揺動
支持板7が揺動され、ロ−ドセル8、弾性体9、裏当て
2を介して光透過性当接体4に当接された被測定物1の
表面に任意の接触力が加えられる。そして、この接触力
はロ−ドセル8によって検出される。
The backing 2 is supported by an elastic body 9 on a load cell 8 installed on a swing support plate 7 of a fine movement table 6,
The fine movement table 6 is arranged on the sample stage 10. 11
Is an adjustment photograph attached to the fine movement table 6, and the rotation of the adjustment photograph 11 causes the rocking support plate 7 pivotally supported by the pin 12 to swing, and the load cell 8 and the elastic body. 9. Any contact force is applied to the surface of the DUT 1 that is in contact with the light transmissive contact member 4 via the backing 2. Then, this contact force is detected by the load cell 8.

【0008】13は発光体13a,レンズ13b,レン
ズ13c,アパ−チュアストップ13d,レンズ13
e,フィ−ルドストップ13f,レンズ13gで構成さ
れた光源であり、この光源13からの光は、スペクトラ
ルフィルタ14を透過した後、光源ビ−ムスプリッタ1
5により反射されて下方に向かう。
Reference numeral 13 denotes a light emitting body 13a, a lens 13b, a lens 13c, an aperture stop 13d, and a lens 13.
e, a field stop 13f and a lens 13g, the light from the light source 13 is transmitted through the spectral filter 14 and then the light source beam splitter 1
It is reflected by 5 and goes downward.

【0009】この下方に向かう反射光の一部は、リニッ
ク干渉計16の干渉計ビ−ムスプリッタ17を透過して
被測定物側対物レンズ18に至り、この被測定物側対物
レンズ18により、光透過性当接体4および液状充填剤
5を通して被測定物1の凹凸を有する表面で焦点が結ば
れる。そして、被測定物1の表面で反射された光は、再
度液状充填剤5および光透過性当接体4を経て、被測定
物側対物レンズ18に戻り、さらに干渉計ビ−ムスプリ
ッタ17を透過して上方に向かう。
A part of the downward reflected light is transmitted through the interferometer beam splitter 17 of the linic interferometer 16 to reach the object-to-be-measured side objective lens 18, and by this object-to-be-measured side objective lens 18. The light-transmitting contact member 4 and the liquid filler 5 are focused on the uneven surface of the DUT 1. Then, the light reflected by the surface of the DUT 1 returns to the DUT objective lens 18 through the liquid filler 5 and the light-transmitting contact body 4 again, and further passes through the interferometer beam splitter 17. It penetrates and goes upward.

【0010】また、リニック干渉計16に入射された光
の一部は干渉計ビ−ムスプリッタ17により反射されて
参照面側対物レンズ19に至り、この参照面側対物レン
ズ19により参照面20に焦点が結ばれる。そして、参
照面20からの反射光は参照面側対物レンズ19に戻
り、さらに干渉計ビ−ムスプリッタ17で反射されて上
方へ向かう。
Further, a part of the light incident on the lnic interferometer 16 is reflected by the interferometer beam splitter 17 and reaches the reference surface side objective lens 19, and the reference surface side objective lens 19 directs the reference surface 20. Focused. Then, the reflected light from the reference surface 20 returns to the reference surface side objective lens 19, is further reflected by the interferometer beam splitter 17, and travels upward.

【0011】ここで、参照面側対物レンズ19は、横設
した有底外筒体21内にピエゾ素子22を介在させ有底
内筒体23を内嵌して構成された光路長補正機構24の
有底内筒体23内に嵌合固定され、ピエゾ素子22で光
軸方向に微動移動調整される。また、光路長補正機構2
4は、ステ−ジ25上の移動台車26で光軸方向へ移動
可能に支持され、光軸方向に精密に移動調整される。
Here, the reference surface side objective lens 19 is an optical path length correction mechanism 24 constructed by inserting a bottomed inner cylindrical body 23 with a piezo element 22 interposed in a horizontally arranged bottomed outer cylindrical body 21. It is fitted and fixed in the bottomed inner cylindrical body 23, and is finely moved and adjusted by the piezo element 22 in the optical axis direction. In addition, the optical path length correction mechanism 2
4 is movably supported in the optical axis direction by a moving carriage 26 on the stage 25, and is precisely moved and adjusted in the optical axis direction.

【0012】また、参照面20は有底内筒体23の底壁
に取りつけられた参照面焦点調整機構27に固定され、
参照面側対物レンズ19が有底外筒体21の移動により
光軸方向に移動するとき同時に移動し、有底外筒体21
底壁の透孔28から突出した参照面焦点調整機構27の
調整摘み29で参照面の焦点調整が行われる。
The reference surface 20 is fixed to a reference surface focus adjusting mechanism 27 attached to the bottom wall of the bottomed inner cylindrical body 23,
When the reference surface side objective lens 19 moves in the optical axis direction due to the movement of the bottomed outer cylindrical body 21, the reference surface side objective lens 19 moves at the same time.
The focus of the reference surface is adjusted by the adjusting knob 29 of the reference surface focus adjusting mechanism 27 protruding from the through hole 28 in the bottom wall.

【0013】しかして、リニック干渉計16に入射され
た光が被測定物側対物レンズ18を介して光透過性当接
体4を透過するとき、光透過性当接体4と空気の接触面
での光の屈折により焦点距離が深くなり、被測定物側対
物レンズ18から被測定物1の表面までの光路長が、光
透過性当接体4の屈折率が空気に比べて大きい分だけ長
くなると、この光路長の変化に応じて、光路長補正機構
24により、参照面20と参照面側対物レンズ19とが
光軸方向に同時に移動され、被測定物側対物レンズ18
から被測定物1の表面までの光路長と、参照面側対物レ
ンズ19から参照面20までの光路長が等しくなるよう
に調整される。
Thus, when the light incident on the linic interferometer 16 passes through the light-transmissive abutting body 4 via the object-side objective lens 18, the contact surface between the light-transmissive abutting body 4 and the air. The focal length becomes deeper due to the refraction of light at 1, and the optical path length from the object-side objective lens 18 to the surface of the object to be measured 1 is equal to the refractive index of the light-transmitting contact member 4 being larger than that of air. When the length is increased, the reference surface 20 and the reference surface side objective lens 19 are simultaneously moved in the optical axis direction by the optical path length correction mechanism 24 in accordance with the change of the optical path length, and the object side objective lens 18 is measured.
To the surface of the DUT 1 and the optical path length from the reference surface side objective lens 19 to the reference surface 20 are adjusted to be equal.

【0014】その結果、干渉計ビ−ムスプリッタ17で
反射されて上方へ向かう反射光と、前記の被測定物1の
表面で反射され、干渉計ビ−ムスプリッタ17を透過し
て上方に向かう反射光が重なって干渉し、被測定物1の
表面の凹凸に対応した干渉縞が発生する。そして、この
干渉縞はカメラ側対物レンズ30を介してカメラ31に
至り、カメラ31にて電気映像信号に変換される。
As a result, the reflected light which is reflected by the interferometer beam splitter 17 and goes upward, and the reflected light which is reflected by the surface of the DUT 1 and passes through the interferometer beam splitter 17 and goes upward. The reflected lights are overlapped and interfere with each other to generate interference fringes corresponding to the unevenness of the surface of the DUT 1. Then, this interference fringe reaches the camera 31 via the camera-side objective lens 30, and is converted into an electric image signal by the camera 31.

【0015】次いで、カメラ31にて変換された電気映
像信号は、干渉縞解析装置32に伝達されて解析され、
この解析に基づいて、たとえば、Katherine
Creath:COMPARISON OF PHAS
E−MEASUREMENTALGORITHMS,S
PIE Vol(1986)に記載された縞走査法で被
測定物1の表面形状が求められ、被測定物1の表面に光
透過性当接体4を接触させた状態で、被測定物1の表面
形状が計測される。
Next, the electric image signal converted by the camera 31 is transmitted to and analyzed by the interference fringe analyzer 32.
Based on this analysis, for example, Katerine
Cream: COMPARISON OF PHAS
E-MEASUREMENTAL GORITHMS, S
The surface shape of the DUT 1 is obtained by the stripe scanning method described in PIE Vol (1986), and the surface of the DUT 1 is contacted with the light-transmissive abutting body 4, and The surface shape is measured.

【0016】また、干渉縞解析装置32による干渉縞の
解析結果は、干渉縞解析装置32に接続された計測制御
装置33に伝達され、干渉縞が常に正確に発生するよう
に計測制御装置33による指令でピエゾ素子22が電圧
駆動され、光路長補正機構24が作動される。
The analysis result of the interference fringes by the interference fringe analyzer 32 is transmitted to the measurement controller 33 connected to the interference fringe analyzer 32, and the measurement controller 33 causes the interference fringes to always be generated accurately. The piezoelectric element 22 is voltage-driven by the command, and the optical path length correction mechanism 24 is operated.

【0017】従って、この方法および装置によれば、磁
気ヘッド等に摺接して使用される磁気記録媒体のよう
に、被測定物1が接触状態で使用される場合、実用状態
に近い接触条件下における被測定物1の表面形状を計測
することができる。
Therefore, according to this method and apparatus, when the DUT 1 is used in a contact state such as a magnetic recording medium used in sliding contact with a magnetic head or the like, contact conditions close to a practical state are used. The surface shape of the DUT 1 can be measured.

【0018】また、この方法および装置によれば、光透
過性当接体4を当接した被測定物1の表面形状の他、光
透過性当接体内部にある適当な光反射面の形状を非破壊
で測定することが可能であり、たとえば、磁気テ−プの
磁性層とベ−スフィルムとの接着面を、ベ−スフィルム
を透過させて計測することもでき、中空ガラスの内面計
測や、光ディスク媒体、表示素子などへの応用も可能で
ある。
Further, according to this method and apparatus, in addition to the surface shape of the DUT 1 in contact with the light-transmissive contact body 4, the shape of an appropriate light-reflecting surface inside the light-transmissive contact body. Can be measured nondestructively, for example, the adhesive surface between the magnetic layer of the magnetic tape and the base film can be measured by passing through the base film, and the inner surface of the hollow glass can be measured. It can also be applied to measurement, optical disc media, display devices, and the like.

【0019】これに対し、リニック干渉計16に光路長
補正機構24が備えられていない場合は、リニック干渉
計16に入射された光が試料側対物レンズ18を介して
光透過性当接体4を透過するとき、光透過性当接体4と
空気の接触面での光の屈折により焦点距離が深くなり、
試料側対物レンズ18から被測定物1の表面までの光路
長が、光透過性当接体4の屈折率が空気に比べて大きい
分だけ長くなっても、参照面側対物レンズ19から参照
面20までの光路長が変わらないため、光路差が生じ、
光の可干渉が失われて被測定物1の表面形状の計測は不
可能になる。
On the other hand, if the optical interferometer 16 is not provided with the optical path length correction mechanism 24, the light incident on the linear interferometer 16 is transmitted through the sample-side objective lens 18 to the light-transmitting contact member 4. When the light is transmitted, the focal length becomes deep due to the refraction of light at the contact surface between the light-transmitting contact member 4 and air
Even if the optical path length from the sample-side objective lens 18 to the surface of the DUT 1 is lengthened by the refractive index of the light-transmitting contact member 4 being larger than that of air, the reference surface-side objective lens 19 to the reference surface Since the optical path length up to 20 does not change, an optical path difference occurs,
The coherence of light is lost and the surface shape of the DUT 1 cannot be measured.

【0020】ここで、光透過性当接体4としては、被測
定物1の表面に実用状態に近い接触条件を与えるような
種々の形状、材質の物を用いることができるが、その材
質は表面形状計測のための測定用光線を最小限透過する
ものを選定する必要がある。また、光透過性当接体4は
被測定物1の表面に接触させて用いられる他、非接触、
無応力状態との比較計測を可能とするため、適当に離し
て放置することも可能にするのが好ましく、この場合、
液状充填剤5に気泡が発生すると計測に不都合が生じる
ことから、被測定物1の表面との離間距離は 0.1mm以
内とするのが好ましい。
Here, as the light-transmitting contact member 4, various shapes and materials that give the surface of the object to be measured 1 a contact condition close to a practical state can be used. It is necessary to select the one that transmits the measurement light beam for surface shape measurement to the minimum. Further, the light-transmitting contact member 4 is used by being brought into contact with the surface of the DUT 1 as well as non-contact,
In order to enable comparative measurement with a stress-free state, it is preferable to be able to leave it at an appropriate distance. In this case,
It is preferable that the distance from the surface of the DUT 1 is 0.1 mm or less because the measurement will be inconvenient if bubbles are generated in the liquid filler 5.

【0021】また、液状充填剤5は、光透過性当接体4
の被測定物1の表面に向かい会う面が測定用光線を反射
し、表面形状計測時に、ノイズ、誤差、エラ−等を発生
するのを防ぐために設けたものである。そのため、でき
るだけ光透過性当接体4の屈折率に近いものが望まし
く、離れても光透過性当接体4との屈折率の差が 0.3以
下のものであることが好ましい。具体例としては、たと
えば、水や液浸法顕微鏡観察に用いられる液体などがあ
げられ、被測定物1の表面形状を変化させないような化
学的性質を有するものであれば、特に限定することなく
使用できる。
The liquid filler 5 is used as the light-transmitting contact member 4.
The surface facing the surface of the DUT 1 reflects the measuring light beam, and is provided to prevent noise, error, error, etc. from occurring at the time of measuring the surface shape. Therefore, it is preferable that the refractive index of the light-transmitting contact member 4 is as close as possible, and the difference in refractive index between the light-transmitting contact member 4 and the light-transmitting contact member 4 is preferably 0.3 or less. Specific examples include, for example, water and liquids used for observation by a liquid immersion microscope, and are not particularly limited as long as they have chemical properties that do not change the surface shape of the DUT 1. Can be used.

【0022】さらに、光路差補正のため、光路長補正機
構24の有底外筒体21の移動を可能とするステ−ジ2
5上の移動台車26による移動は、できるだけ精密に移
動できるようにするのが望ましく、光透過性当接体4の
材料や形状を任意に設定しても、これによって生じる光
路差を補正することが可能なように充分な移動量をもつ
ものが望ましい。たとえば、光透過性当接体4が接触力
に充分耐えうる厚さを確保するためには、少なくとも1
mm以上の移動量を持つことが望ましい。
Further, in order to correct the optical path difference, the stage 2 which allows the bottomed outer cylindrical body 21 of the optical path length correction mechanism 24 to move.
It is desirable to move the movable carriage 26 on the carriage 5 as accurately as possible. Even if the material and the shape of the light-transmissive abutting body 4 are arbitrarily set, the optical path difference caused thereby can be corrected. It is desirable to have a sufficient amount of movement so that For example, in order to secure the thickness of the light-transmitting contact member 4 that can sufficiently withstand the contact force, at least 1
It is desirable to have a movement amount of mm or more.

【0023】以下、図1に示す表面形状計測装置を用い
て、ビデオテ−プの磁性層表面の表面形状を計測した試
験例について説明する。 試験例1 強磁性金属鉄粉末(保磁力1600エルステッド、飽和磁 100重量部 化量120emu/g、長軸径0.18μm、軸比10) 水酸基含有塩化ビニル系樹脂 10 〃 熱可塑性ポリウレタン樹脂 7 〃 アルミナ(粒径 0.2μm) 8 〃 ミリスチン酸 2 〃 ベンガラ(粒径 0.8μm) 2 〃 シ−スト5H(東海カ−ボン社製;カ−ボンブラック、粒 2 〃 径20mμ) シクロヘキサノン 70 〃 トルエン 70 〃
A test example in which the surface shape of the magnetic layer surface of the video tape is measured by using the surface shape measuring apparatus shown in FIG. 1 will be described below. Test Example 1 Ferromagnetic iron metal powder (coercive force 1600 oersted, saturation magnetic 100 parts by weight 120 emu / g, major axis diameter 0.18 μm, axial ratio 10) Hydroxyl group-containing vinyl chloride resin 10〃 Thermoplastic polyurethane resin 7〃 Alumina (Particle size 0.2 μm) 8 〃 myristic acid 2 〃 red iron oxide (particle size 0.8 μm) 2 〃 cast 5H (Tokai Carbon Co., Ltd .; carbon black, particles 2 〃 diameter 20 mμ) cyclohexanone 70 〃 toluene 70 〃

【0024】この組成物をボ−ルミル中で96時間混合
分散した後、さらに、三官能性ポリイソシアネ−ト化合
物を5重量部加え、5分間撹拌して磁性塗料を調製し
た。この磁性塗料を厚み10μmの二軸配向ポリエチレ
ンテレフタレ−トフィルム上に、乾燥後の厚さが 2.5μ
mとなるよう塗布、乾燥し、カレンダ処理を行った後、
所定の幅に裁断してビデオテ−プをつくった。なお、表
面形状計測装置の効果を確認しやすくするためカレンダ
処理は弱めに調整し、磁性層表面を市販のメタルビデオ
テ−プよりは粗面とした。
This composition was mixed and dispersed in a ball mill for 96 hours, and then 5 parts by weight of a trifunctional polyisocyanate compound was added, followed by stirring for 5 minutes to prepare a magnetic paint. This magnetic coating was applied onto a biaxially oriented polyethylene terephthalate film with a thickness of 10 μm and the thickness after drying was 2.5 μm.
m after coating, drying and calendering
A video tape was made by cutting it into a predetermined width. In order to make it easier to confirm the effect of the surface profile measuring device, the calendering process was adjusted weakly, and the surface of the magnetic layer was rougher than that of a commercially available metal video tape.

【0025】次いで、図1に示す表面形状計測装置にお
いて、下記に対応して示す各部材 裏当て2 :ポリエチレンテレフタレ−トフィルム (縦1mm×横1mm×厚み 0.075mm) 光透過性当接体4 :顕微鏡用のカバ−グラス(屈折率1.52) 液状充填剤5 :水(屈折率1.33) 微動台6 :中央精機社製;TS−201 ロ−ドセル8 :TMI社製;T7 弾性体9 :シリコンゴム板(縦1mm×横1mm×厚み2mm) 試料ステ−ジ10 :中央精機社製;X軸ステ−ジLS−641−(C2 ) CLを2個直角に組み合わせ、さらに傾斜ステ−ジT D−601を組み合わせたもの 被測定物側対物レン:ニコン社製;顕微鏡用対物レンズ(40倍、長距離タ ズ18 イプ) 参照面側対物レンズ:ニコン社製;顕微鏡用対物レンズ(40倍、長距離タ 19 イプ) カメラ31 :256×256μm素子のもの をそれぞれ用いて、ロ−ドセル8の出力電圧から読み取
った荷重が0gおよび25gの時のビデオテ−プの表面
形状を計測し、表面粗さとしてRa(中心線平均粗さ)
およびP−V(Peak to Valley)を求め
た。なお、この試験例では被測定物1の表面形状を水中
で光学的に計測したため、大気中での計測に比べ水の屈
折率倍大きな値となる。そこで、実測値を1/1.33倍し
て表面粗さを計算した。
Then, in the surface shape measuring apparatus shown in FIG. 1, each member corresponding to the following: Backing 2: Polyethylene terephthalate film (length 1 mm × width 1 mm × thickness 0.075 mm) Light transmitting contact member 4 : Cover glass for microscope (refractive index 1.52) Liquid filler 5: Water (refractive index 1.33) Micro table 6: Chuo Seiki Co., Ltd .; TS-201 load cell 8: TMI Co .; T7 elastic body 9: Silicon Rubber plate (length 1 mm x width 1 mm x thickness 2 mm) Sample stage 10: manufactured by Chuo Seiki Co., Ltd .; X-axis stage LS-641- (C 2 ) CL is combined at right angles and further inclined stage T Combined with D-601 Object side objective lens: Nikon; microscope objective lens (40x, long-distance type 18) Reference plane side objective lens: Nikon; microscope objective (40x) Long-distance type) turtle La 31: 256 × 256 μm element was used to measure the surface shape of the video tape when the load read from the output voltage of the load cell 8 was 0 g and 25 g, and the surface roughness Ra (center line) was measured. Average roughness)
And PV (Peak to Valley) were calculated. In this test example, since the surface shape of the DUT 1 was optically measured in water, the refractive index of water is twice as large as that in the atmosphere. Therefore, the surface roughness was calculated by multiplying the measured value by 1 / 1.33.

【0026】試験例2 試験例1で用いたビデオテ−プを、オプチカルフラット
にしわが発生しないように裏面を水でぬらして貼り付
け、参照面対物レンズ19および参照面20を図1に示
す点線で示した位置に合わせて、大気中にてその表面形
状を計測し、表面粗さRaおよびP−Vを求めた。下記
表1はその結果である。
Test Example 2 The video tape used in Test Example 1 was adhered to an optical flat surface by wetting the back surface with water so that wrinkles did not occur, and the reference surface objective lens 19 and the reference surface 20 were indicated by dotted lines in FIG. The surface shape was measured in the atmosphere at the indicated position to determine the surface roughness Ra and PV. Table 1 below shows the results.

【0027】 [0027]

【0028】上記表1から明らかなように、この発明に
よる表面形状計測方法(試験例1)では、接触力を示す
荷重を0gとしたときは通常の表面形状計測方法の試験
例2による結果とほぼ同等の結果が得られた。また、接
触力を示す荷重を25gとした場合、荷重0gに比べて
特にP−Vが減少し、これにより、ビデオテ−プ表面の
凸部が接触力により弾性変形してつぶれていることがわ
かる。
As is clear from Table 1 above, in the surface profile measuring method (Test Example 1) according to the present invention, when the load indicating the contact force is 0 g, the result obtained in Test Example 2 of the normal surface profile measuring method is as follows. Almost the same results were obtained. Further, when the load indicating the contact force is set to 25 g, the PV is reduced particularly as compared with the load of 0 g, which shows that the convex portion on the surface of the video tape is elastically deformed and collapsed by the contact force. .

【0029】[0029]

【発明の効果】以上説明したように、この発明の表面形
状計測方法及び表面形状計測装置によれば、磁気ヘッド
等に摺接させて使用される材料の表面形状を、実用状態
に近い接触条件下において計測することができる。
As described above, according to the surface shape measuring method and the surface shape measuring apparatus of the present invention, the surface shape of the material to be used in sliding contact with the magnetic head or the like is set to a contact condition close to a practical state. It can be measured below.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の表面形状計測装置の一実施例を示す
概略説明図である。
FIG. 1 is a schematic explanatory view showing an embodiment of a surface shape measuring apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 被測定物 13 光源 14 スペクトラルフィルタ 15 光源ビ−ムスプリッタ 16 リニック干渉計 17 干渉計ビ−ムスプリッタ 18 被測定物側対物レンズ 19 参照面側対物レンズ 20 参照面 21 有底外筒体 22 ピエゾ素子 23 有底内筒体 24 光路長補正機構 25 ステ−ジ 26 台車 27 参照面焦点調整機構 28 透孔 29 調整摘み DESCRIPTION OF SYMBOLS 1 Object to be measured 13 Light source 14 Spectral filter 15 Light source beam splitter 16 Linic interferometer 17 Interferometer beam splitter 18 Object to be measured side objective lens 19 Reference surface side objective lens 20 Reference surface 21 Bottomed outer cylinder 22 Piezo Element 23 Bottomed inner cylindrical body 24 Optical path length correction mechanism 25 Stage 26 Truck 27 Reference plane focus adjustment mechanism 28 Through hole 29 Adjustment knob

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定物の表面に照射した光線の反射光
を利用してリニック干渉計で被測定物の表面形状を計測
する計測方法において、リニック干渉計の被測定物側対
物レンズの合焦点位置から被測定物側対物レンズまでの
光路長の変化に対応して、リニック干渉計の参照面と参
照面側対物レンズとを同時に光軸方向に移動させ、被測
定物表面からの反射光と参照面からの反射光が光干渉を
生じるように光路長を補正して、被測定物の表面形状を
計測することを特徴とする表面形状計測方法
1. A measuring method for measuring a surface shape of an object to be measured by a linic interferometer using reflected light of a light beam irradiating the surface of the object to be measured, wherein the object lens of the object to be measured of the linic interferometer is combined. In response to changes in the optical path length from the focus position to the DUT-side objective lens, the reference surface of the Linic interferometer and the reference-plane-side objective lens are simultaneously moved in the optical axis direction to reflect the light reflected from the DUT surface. Shape measuring method characterized by measuring the surface shape of an object to be measured by correcting the optical path length so that the reflected light from the reference surface and the reference surface cause optical interference.
【請求項2】 被測定物の表面に照射した光線の反射光
を利用して被測定物の表面形状を計測するリニック干渉
計を備えた表面形状計測装置において、リニック干渉計
の参照面と参照面側対物レンズとを同時に光軸方向に移
動する移動手段を設けてなり、リニック干渉計の被測定
物側対物レンズの合焦点位置から被測定物側対物レンズ
までの光路長の変化に対応して、リニック干渉計の参照
面と参照面側対物レンズとを同時に光軸方向に移動さ
せ、被測定物表面からの反射光と参照面からの反射光が
光干渉を生じるように光路長を補正して、被測定物の表
面形状を計測する表面形状計測装置
2. A surface shape measuring apparatus having a linic interferometer for measuring the surface shape of an object to be measured using reflected light of a light beam applied to the surface of the object to be measured. It is equipped with moving means that moves the surface-side objective lens in the optical axis direction at the same time, and responds to changes in the optical path length from the focusing point of the object-side objective lens of the Linic interferometer to the object-side objective lens. Then, the reference surface of the Linic interferometer and the reference surface side objective lens are simultaneously moved in the optical axis direction, and the optical path length is corrected so that the reflected light from the DUT surface and the reflected light from the reference surface cause optical interference. To measure the surface shape of the object to be measured
JP20443692A 1992-07-07 1992-07-07 Method and apparatus for measuring surface shape Withdrawn JPH0626832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20443692A JPH0626832A (en) 1992-07-07 1992-07-07 Method and apparatus for measuring surface shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20443692A JPH0626832A (en) 1992-07-07 1992-07-07 Method and apparatus for measuring surface shape

Publications (1)

Publication Number Publication Date
JPH0626832A true JPH0626832A (en) 1994-02-04

Family

ID=16490509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20443692A Withdrawn JPH0626832A (en) 1992-07-07 1992-07-07 Method and apparatus for measuring surface shape

Country Status (1)

Country Link
JP (1) JPH0626832A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036848A (en) * 2011-08-08 2013-02-21 Nikon Corp Height measuring device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036848A (en) * 2011-08-08 2013-02-21 Nikon Corp Height measuring device and method

Similar Documents

Publication Publication Date Title
US7440383B2 (en) Optical pickup device and recording and/or reproducing apparatus
EP0209140B1 (en) A method of measuring a minute flying height of an object and a magnetic disk apparatus
US5552884A (en) Calibration standard for flying height tester having a head mounted on a multilevel surface transparent disc
US20100020324A1 (en) Micro-distance measuring method and device
JPH0626832A (en) Method and apparatus for measuring surface shape
JP3103946B2 (en) Surface shape measuring method and surface shape measuring device
US6473385B1 (en) Optical head, and optical recording and/or reproducing apparatus
US5715060A (en) Apparatus and method for measuring linear nanometric distances using evanescent radiation
CN1327412C (en) System and method for hard disc drive magnetic head flying height tester calibration
JPH08105723A (en) Method and apparatus for measurement of face shape of tape
JPH0626831A (en) Method and apparatus for measuring surface shape
US5365333A (en) Apparatus for analyzing tracking error in magnetic tapes
KR20010041003A (en) Method and apparatus to determine fly height of a recording head
US7123431B2 (en) Precise positioning of media
JPH0725682Y2 (en) Disk inspection device
JP3095418B2 (en) Apparatus for determining dynamic position and orientation of a transducing head with respect to a storage medium
US6462349B1 (en) Measuring spacing between two surfaces via evanescent coupling
JP2000100008A (en) Magneto-optical recording medium and optical head device
JP2003151111A (en) Coating for sensitivity enhancement of signal from glass disk
JP2869675B2 (en) How to measure minute intervals
KR100285916B1 (en) Hard disk drive slider and flying height decision method using therefor
JPS5810196Y2 (en) autofocus device
JPH04246Y2 (en)
JP4145793B2 (en) Slider for optical data writing / reading apparatus and apparatus having the slider
JP2001035110A (en) Device and method for evaluating disk system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005