JPH0626831A - Method and apparatus for measuring surface shape - Google Patents
Method and apparatus for measuring surface shapeInfo
- Publication number
- JPH0626831A JPH0626831A JP20443592A JP20443592A JPH0626831A JP H0626831 A JPH0626831 A JP H0626831A JP 20443592 A JP20443592 A JP 20443592A JP 20443592 A JP20443592 A JP 20443592A JP H0626831 A JPH0626831 A JP H0626831A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- light
- reflected
- surface shape
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は磁気テ−プ、フロッピ
−ディスク、プラスチックフィルム、研磨シ−ト等の軟
質材料およびその複合材料の表面形状を計測する方法と
その装置に関し、さらに詳しくは、磁気ヘッド等に摺接
させて使用されるこれらの材料の表面形状を、当接体を
接触させながら実用状態に近い接触条件下において計測
する方法とその装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring the surface shape of soft materials such as magnetic tapes, floppy disks, plastic films, polishing sheets and the like, and composite materials thereof, and more specifically, The present invention relates to a method and an apparatus for measuring the surface shape of these materials used in sliding contact with a magnetic head or the like under contact conditions close to a practical state while contacting an abutting body.
【0002】[0002]
【従来の技術】磁気テ−プ、フロッピ−ディスク等の高
密度磁気記録媒体では、記録再生出力の向上、高S/N
化のため、磁性層表面を可及的に平滑にすることが望ま
しい。しかしながら、磁性層表面を平滑にしすぎると摺
動ノイズを増加させたり、磁気ヘッドおよびガイド部材
等に対する摩擦・摩耗特性を劣化させたりすることがあ
る。2. Description of the Related Art In a high density magnetic recording medium such as a magnetic tape or a floppy disk, the recording / reproducing output is improved and the S / N ratio is increased.
For this reason, it is desirable to make the surface of the magnetic layer as smooth as possible. However, if the surface of the magnetic layer is too smooth, sliding noise may be increased, or the friction and wear characteristics of the magnetic head and the guide member may be deteriorated.
【0003】このため、磁性層表面の形状を精密に計測
し、解析して、平滑でなお微細な凹凸形状を有するよう
に制御する試みが行われており、このような磁性層の表
面形状計測方法として、たとえば、ランクテ−ラホブソ
ン社製;タリステップおよびタリサ−フ、東京精密社
製;サ−フコムなどの触針式表面形状測定機、ディジタ
ルインストゥルメント社製;NanoscopeIIなど
の走査型トンネル顕微鏡、エリオニクス社製;ERA−
3000などの電子顕微鏡等を用いることが行われてい
る。For this reason, attempts have been made to precisely measure and analyze the shape of the surface of the magnetic layer and control it so that it has a smooth and fine uneven shape. Examples of the method include a stylus type surface profile measuring instrument such as Tallystep and Tallysurf manufactured by Rank-Tera-Hobson, Tokyo Seimitsu Co., Ltd .; Surfcom, and a scanning tunneling microscope such as Digitalscope II; Nanoscope II. Manufactured by Elionix; ERA-
An electron microscope such as 3000 is used.
【0004】[0004]
【発明が解決しようとする課題】ところが、これら従来
の表面形状測定機は、すべて大気中あるいは真空中にて
試料片を固定しその表面を無接触状態で計測するもので
あるため、磁性層表面が磁気ヘッド等と接触した状態で
の表面形状を測定することができない。そして、実用に
際しての磁性層表面は、磁気ヘッド等と接触しているた
め、これら従来の表面形状測定機により計測される無接
触力状態での表面形状に比べ、接触力による弾塑性変形
を生じている。また、磁気テ−プ、フロッピ−ディスク
等の軟質材料、あるいはその複合材料では、接触力によ
る表面凹凸中特に凸部の変形が大きく、そのため、従来
の表面形状計測結果では磁気記録媒体の諸特性を充分に
解明することができないという問題があった。However, all of these conventional surface shape measuring instruments are for measuring the surface of a magnetic layer in a non-contact state by fixing a sample piece in the atmosphere or in a vacuum. Is unable to measure the surface shape when it is in contact with the magnetic head or the like. Since the surface of the magnetic layer in practical use is in contact with the magnetic head, etc., elasto-plastic deformation due to contact force occurs compared with the surface shape in the non-contact force state measured by these conventional surface shape measuring machines. ing. Also, in soft materials such as magnetic tapes and floppy disks, or in composite materials thereof, the deformation of the convex portion is particularly large among the surface irregularities due to the contact force, so the conventional surface profile measurement results show various characteristics of the magnetic recording medium. There was a problem that could not be fully clarified.
【0005】[0005]
【課題を解決するための手段】この発明はかかる欠点を
改善するため種々検討を行った結果なされたもので、被
測定物の表面に光線を当て、その反射光を利用して光学
的手法により被測定物の表面形状を計測する計測方法に
おいて、被測定物の表面の少なくとも一部に測定用光線
を透過する光透過性当接体を接触または 0.1mm以内の
距離に近接させると同時に、被測定物の背面を大気圧以
上に加圧した流体で押圧し、被測定物の表面を光透過性
当接体に押圧しながら光透過性当接体を介し被測定物の
表面に光線を当てて、光学的手法により被測定物の表面
形状を計測することによって、実用状態に近い接触条件
下における被測定物の表面形状を計測できるようにした
ものである。The present invention has been made as a result of various studies for improving such a drawback, and a light beam is applied to the surface of an object to be measured, and the reflected light is utilized to perform an optical method. In a measuring method for measuring the surface shape of an object to be measured, at least a part of the surface of the object to be measured is brought into contact with or brought close to a distance of 0.1 mm or less at the same time with a light-transmitting contact body that transmits a measuring ray. The back surface of the object to be measured is pressed with a fluid pressurized to atmospheric pressure or higher, and while the surface of the object to be measured is pressed against the light-transmitting contact body, a light beam is applied to the surface of the object to be measured through the light-transmitting contact body. By measuring the surface shape of the object to be measured by an optical method, the surface shape of the object to be measured can be measured under a contact condition close to a practical state.
【0006】[0006]
【実施例】以下、この発明に係る表面形状計測装置の一
実施例を示す図1に基づいて説明する。図1において、
1は被測定物であって押圧容器2上にパッキングリング
3を介して密封状態に支持され、試料押さえ4で上昇不
能に支持された光透過性当接体5の表面に接触または
0.1mm以内の距離に近接するように、スペ−サ−リン
グ6を介して挟持されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the surface shape measuring apparatus according to the present invention will be described below with reference to FIG. In FIG.
Reference numeral 1 denotes an object to be measured, which is supported in a sealed state on the pressing container 2 via a packing ring 3 and is brought into contact with the surface of a light-transmissive abutting body 5 which is supported by a sample holder 4 so as not to rise.
It is sandwiched via a spacer ring 6 so as to be close to a distance within 0.1 mm.
【0007】押圧容器2は圧力チュ−ブ7で圧力調整機
8に連通連結され、圧力調整機8で大気圧以上に加圧し
た気体あるいは液体などの押圧流体9が供給されると、
この押圧容器2に供給される押圧流体9により被測定物
1の背面が矢印で示すように押圧されて、被測定物1の
表面が光透過性当接体5に押圧される。このときの押圧
力は圧力チュ−ブ7に取りつけられた圧力計10によっ
て検出される。The pressure vessel 2 is connected to a pressure regulator 8 by a pressure tube 7, and when a pressure fluid 9 such as gas or liquid pressurized to atmospheric pressure or higher is supplied by the pressure regulator 8,
The back surface of the DUT 1 is pressed by the pressing fluid 9 supplied to the pressing container 2 as indicated by an arrow, and the surface of the DUT 1 is pressed against the light-transmitting contact member 5. The pressing force at this time is detected by the pressure gauge 10 attached to the pressure tube 7.
【0008】なお、スペ−サ−リング6は押圧流体9に
より被測定物1の表面が光透過性当接体5に押圧される
とき、被測定物1と光透過性当接体5との間の空気が密
封されて押圧力を相殺することがないように、空気抜き
用の間隙が設けられている。When the spacer ring 6 presses the surface of the DUT 1 against the light-transmissive abutment body 5 by the pressing fluid 9, the space between the DUT 1 and the light-transmissive abutment body 5 is reduced. An air venting gap is provided so that the air therebetween is not sealed to cancel the pressing force.
【0009】11は発光体11a,レンズ11b,レン
ズ11c,アパ−チュアストップ11d,レンズ11
e,フィ−ルドストップ11f,レンズ11gで構成さ
れた光源であり、この光源11からの光は、スペクトラ
ルフィルタ12を透過した後、光源ビ−ムスプリッタ1
3により反射されて下方に向かう。Reference numeral 11 denotes a light emitter 11a, a lens 11b, a lens 11c, an aperture stop 11d, and a lens 11.
e, a field stop 11f, and a lens 11g. The light from the light source 11 passes through the spectral filter 12 and then the light source beam splitter 1
It is reflected by 3 and goes downward.
【0010】この下方に向かう反射光の一部は、リニッ
ク干渉計14の干渉計ビ−ムスプリッタ15を透過して
被測定物側対物レンズ16に至り、この被測定物側対物
レンズ16により、光透過性当接体5を通して被測定物
1の凹凸を有する表面で焦点が結ばれる。そして、被測
定物1の表面で反射された光は、再度光透過性当接体5
を経て、被測定物側対物レンズ16に戻り、さらに干渉
計ビ−ムスプリッタ15を透過して上方に向かう。A part of the reflected light traveling downward is transmitted through the interferometer beam splitter 15 of the lnic interferometer 14 to reach the object-to-be-measured side objective lens 16, and this object-to-be-measured side objective lens 16 causes The light-transmitting abutment body 5 is used to focus on the uneven surface of the DUT 1. Then, the light reflected on the surface of the DUT 1 is again transmitted through the light-transmitting contact body 5.
After that, it returns to the object-side objective lens 16 and further passes through the interferometer beam splitter 15 and goes upward.
【0011】また、リニック干渉計14に入射された光
の一部は干渉計ビ−ムスプリッタ15により反射されて
参照面側対物レンズ17に至り、この参照面側対物レン
ズ17により、光路長補正板18を通して参照面19に
焦点が結ばれる。そして、参照面19からの反射光は、
光路長補正板18を経て、参照面側対物レンズ17に戻
り、さらに干渉計ビ−ムスプリッタ15で反射されて上
方へ向かう。A part of the light incident on the lnic interferometer 14 is reflected by the interferometer beam splitter 15 and reaches the reference surface side objective lens 17, which corrects the optical path length. A reference surface 19 is focused through the plate 18. Then, the reflected light from the reference surface 19 is
After passing through the optical path length correction plate 18, it returns to the reference surface side objective lens 17 and is reflected by the interferometer beam splitter 15 to travel upward.
【0012】この時、この干渉計ビ−ムスプリッタ15
で反射されて上方へ向かう反射光と、前記の被測定物1
の表面で反射され、干渉計ビ−ムスプリッタ15を透過
して上方に向かう反射光が重なって干渉し、被測定物1
の表面の凹凸に対応した干渉縞が発生する。そして、こ
の干渉縞はカメラ側対物レンズ20を介してカメラ21
に至り、カメラ21にて電気映像信号に変換される。At this time, the interferometer beam splitter 15
And the reflected light reflected upward by the object to be measured 1
Light reflected by the surface of the object, transmitted through the interferometer beam splitter 15, and reflected upwards to overlap and interfere with each other.
Interference fringes corresponding to the unevenness of the surface of the. Then, this interference fringe is transmitted through the camera-side objective lens 20 to the camera 21.
Then, it is converted into an electric image signal by the camera 21.
【0013】しかして、この干渉縞から、たとえば、K
atherine Creath:COMPARISO
N OF PHASE−MEASUREMENT AL
GORITHMS,SPIE Vol(1986)に記
載された縞走査法を用いて被測定物1の表面形状を求め
ることができ、被測定物1の表面に光透過性当接体5を
接触させた状態で、被測定物1の表面形状を計測するこ
とができる。From this interference fringe, for example, K
aterine Cream: COMPARISO
N OF PHASE-MEASUREMENT AL
The surface shape of the DUT 1 can be obtained by using the fringe scanning method described in GORITHMS, SPIE Vol (1986), and the surface of the DUT 1 is in contact with the light-transmitting contact body 5. The surface shape of the DUT 1 can be measured.
【0014】従って、この方法および装置によれば、磁
気ヘッド等に摺接して使用される磁気記録媒体のよう
に、被測定物1が接触状態で使用される場合、実用状態
に近い接触条件下における被測定物1の表面形状を計測
することができる。Therefore, according to this method and apparatus, when the DUT 1 is used in a contact state such as a magnetic recording medium used in sliding contact with a magnetic head or the like, contact conditions close to a practical state are used. The surface shape of the DUT 1 can be measured.
【0015】ここで、光透過性当接体5としては、被測
定物1の表面に実用状態に近い接触条件を与えるような
種々の形状、材質の物を用いることができるが、その材
質は表面形状計測のための測定用光線を最小限透過する
ものを選定する必要がある。また、光透過性当接体5は
被測定物1の表面の少なくとも一部に接触させるか、あ
るいは被測定物1の表面との離間距離が 0.1mm以内と
なるように近接させるのが好ましい。Here, as the light-transmitting contact member 5, various shapes and materials that give the surface of the object to be measured 1 a contact condition close to a practical state can be used. It is necessary to select the one that transmits the measurement light beam for surface shape measurement to the minimum. Further, it is preferable that the light-transmitting contact member 5 is brought into contact with at least a part of the surface of the DUT 1, or is brought close to the surface of the DUT 1 within a distance of 0.1 mm.
【0016】なお、被測定物1を押圧流体9で光透過性
当接体5に押圧する場合、被測定物側対物レンズ16等
の高さ方向の測定範囲を越えないように注意し、表面形
状計測デ−タに対し被測定物1が曲面状となるエラ−を
補正する必要がある。When the object to be measured 1 is pressed against the light transmissive abutting body 5 with the pressing fluid 9, care must be taken not to exceed the measurement range in the height direction of the object side objective lens 16 and the like, and the surface It is necessary to correct the error in which the DUT 1 has a curved shape with respect to the shape measurement data.
【0017】また、被測定物1の裏面を押圧する押圧流
体9は、大気圧以上に加圧した気体あるいは液体である
ことが好ましく、空気、窒素ガス、炭酸ガス、アルゴン
ガスなどの気体や水、オイルなどの液体が用いられる。Further, the pressing fluid 9 for pressing the back surface of the DUT 1 is preferably a gas or a liquid pressurized to atmospheric pressure or more, and a gas such as air, nitrogen gas, carbon dioxide gas, argon gas or water. Liquids such as oil are used.
【0018】さらに、リニック干渉計14の参照面19
前面に設けた光路長補正板18は、試料側の測定用光線
の光路長が、光透過性当接体5の内部を透過する際、通
常の大気中計測に比べ屈折率倍長くなる分、参照面19
側の光路長を補正するために設けたものである。そのた
め、光透過性当接体5とほぼ同じ材料、厚み、仕上げ加
工のものを用いるのが好ましい。しかしながら、光路長
補正板18と光透過性当接体5とは必ずしも同一材料で
ある必要はなく、厚みを調整して光路長を補正すること
も可能である。また光路長補正板18を参照面19から
適当に離してもよく、さらには、干渉計ビ−ムスプリッ
タ15と参照面対物レンズ17の間に挿入しても同等の
効果が得られる。Further, the reference surface 19 of the lnic interferometer 14
The optical path length correction plate 18 provided on the front side is such that, when the optical path length of the measuring light beam on the sample side is transmitted through the inside of the light transmissive abutting body 5, the optical path length is twice as long as the refractive index as compared with normal atmospheric measurement. Reference plane 19
It is provided to correct the optical path length on the side. Therefore, it is preferable to use a material having substantially the same material, thickness, and finish as that of the light-transmitting contact member 5. However, the optical path length correction plate 18 and the light transmissive abutting body 5 do not necessarily have to be made of the same material, and the optical path length can be corrected by adjusting the thickness. Further, the optical path length correction plate 18 may be appropriately separated from the reference surface 19, and further, the same effect can be obtained by inserting it between the interferometer beam splitter 15 and the reference surface objective lens 17.
【0019】なお、干渉縞から面形状を求める方法とし
て、縞走査法を用いるときは、参照面側対物レンズ1
7、光路長補正板18、参照面19を一体構造化し、ピ
エゾ素子により光軸方向に微動できるよう構成するのが
好ましい。When the fringe scanning method is used as a method for obtaining the surface shape from the interference fringes, the reference surface side objective lens 1 is used.
It is preferable that the optical path length correction plate 18 and the reference surface 19 are integrally structured so that the piezoelectric element can finely move in the optical axis direction.
【0020】また、以上の実施例では光学式の表面形状
計測方法として光干渉方式を用いたが、光干渉方式に限
定されるものではなく、たとえば、小坂研究所社製;E
T−30HKなどの光焦点エラ−検出式表面形状測定機
を用いた光焦点エラ−検出方式など他の方法を用いても
よく、特に、小坂研究所社製;ET−30HKなどの光
焦点エラ−検出式表面形状測定機を用ると、光路長補正
板などを必要とせず、そのまま利用できるため、光焦点
エラ−検出方式に適用するのがより好ましい。In the above embodiments, the optical interference method is used as the optical surface shape measuring method. However, the optical surface shape measuring method is not limited to the optical interference method.
Other methods such as an optical focus error detection method using an optical focus error detection type surface profile measuring instrument such as T-30HK may be used. -When the detection type surface profile measuring instrument is used, it can be used as it is without the need for an optical path length correction plate and the like, so it is more preferable to apply it to the optical focus error detection method.
【0021】以下、図1に示す表面形状計測装置を用い
て、ビデオテ−プの磁性層表面の表面形状を計測した試
験例について説明する。 試験例1 強磁性金属鉄粉末(保磁力1600エルステッド、飽和磁 100重量部 化量120emu/g、長軸径0.18μm、軸比10) 水酸基含有塩化ビニル系樹脂 10 〃 熱可塑性ポリウレタン樹脂 7 〃 アルミナ(粒径 0.2μm) 8 〃 ミリスチン酸 2 〃 ベンガラ(粒径 0.8μm) 2 〃 シ−スト5H(東海カ−ボン社製;カ−ボンブラック、粒 2 〃 径20mμ) シクロヘキサノン 70 〃 トルエン 70 〃A test example in which the surface shape of the magnetic layer surface of the video tape is measured by using the surface shape measuring apparatus shown in FIG. 1 will be described below. Test Example 1 Ferromagnetic iron metal powder (coercive force 1600 oersted, saturation magnetic 100 parts by weight 120 emu / g, major axis diameter 0.18 μm, axial ratio 10) Hydroxyl group-containing vinyl chloride resin 10〃 Thermoplastic polyurethane resin 7〃 Alumina (Particle size 0.2 μm) 8 〃 myristic acid 2 〃 red iron oxide (particle size 0.8 μm) 2 〃 cast 5H (Tokai Carbon Co., Ltd .; carbon black, particles 2 〃 diameter 20 mμ) cyclohexanone 70 〃 toluene 70 〃
【0022】この組成物をボ−ルミル中で96時間混合
分散した後、さらに、三官能性ポリイソシアネ−ト化合
物を5重量部加え、5分間撹拌して磁性塗料を調製し
た。この磁性塗料を厚み10μmの二軸配向ポリエチレ
ンテレフタレ−トフィルム上に、乾燥後の厚さが 2.5μ
mとなるよう塗布、乾燥し、カレンダ処理を行った後、
所定の幅に裁断してビデオテ−プをつくった。なお、表
面形状計測装置の効果を確認しやすくするためカレンダ
処理は弱めに調整し、磁性層表面を市販のメタルビデオ
テ−プよりは粗面とした。This composition was mixed and dispersed in a ball mill for 96 hours, and then 5 parts by weight of a trifunctional polyisocyanate compound was added, followed by stirring for 5 minutes to prepare a magnetic paint. This magnetic coating was applied onto a biaxially oriented polyethylene terephthalate film with a thickness of 10 μm and the thickness after drying was 2.5 μm.
m after coating, drying and calendering
A video tape was made by cutting it into a predetermined width. In order to make it easier to confirm the effect of the surface profile measuring device, the calendering process was adjusted weakly, and the surface of the magnetic layer was rougher than that of a commercially available metal video tape.
【0023】次いで、図1に示す表面形状計測装置にお
いて、下記に対応して示す各部材 光透過性当接体5 :顕微鏡用のカバ−グラス(屈折率
1.52) 押圧流体9 :空気 計測光学系 :WYKO社製;TOPO−3D リニック干渉計14:WYKO社製;対物ヘッドLX−
40を一部改造し光路長補正板18を挿入したもの 光路補正板18 :顕微鏡用のカバ−グラス(屈折率
1.52) をそれぞれ用いて、圧力計10の指示値をそれぞれ0g
/mm2 、100g/mm2 、200g/mm2 の3段
階に調整した時のビデオテ−プの表面形状を計測し、表
面粗さとしてRa(中心線平均粗さ)およびRt(最大
高さ)を求めた。Next, in the surface shape measuring apparatus shown in FIG. 1, each member shown in correspondence with the following: Light-transmitting contact member 5: Cover glass for microscope (refractive index
1.52) Pressing fluid 9: Air Measuring optical system: WYKO; TOPO-3D Linic interferometer 14: WYKO; Objective head LX-
40 partially modified and inserted with an optical path length correction plate 18 Optical path correction plate 18: Cover glass for microscope (refractive index
1.52) each, the reading of the pressure gauge 10 is set to 0 g.
/ Mm 2 , 100 g / mm 2 , 200 g / mm 2 The surface shape of the video tape when adjusted in 3 steps was measured, and Ra (center line average roughness) and Rt (maximum height) were measured as the surface roughness. I asked.
【0024】試験例2 試験例1で用いたビデオテ−プを、オプチカルフラット
にしわが発生しないように裏面を水でぬらして貼り付
け、WYKO社製;TOPO−3Dにリニック干渉計L
X−40(光路長補正板なし)を取りつけて、大気中に
てその表面形状を計測し、表面粗さRaおよびRtを求
めた。下記表1はその結果である。Test Example 2 The video tape used in Test Example 1 was adhered to an optical flat surface by wetting the back surface with water so that wrinkles did not occur, and was made by WYKO; TOPO-3D on a Linic interferometer L.
An X-40 (without an optical path length correction plate) was attached, the surface shape was measured in the atmosphere, and the surface roughness Ra and Rt were obtained. Table 1 below shows the results.
【0025】 [0025]
【0026】上記表1から明らかなように、この発明に
よる表面形状計測方法(試験例1)では、圧力計10の
指示値を0g/mm2 としたときは通常の表面形状計測
方法の試験例2による結果とほぼ同等の結果が得られ
た。また、圧力計10の指示値を100g/mm2 およ
び200g/mm2 とした場合、0g/mm2 としたと
きに比べて特にRtが減少し、これにより、ビデオテ−
プ表面の凸部が接触力により弾性変形してつぶれている
ことがわかる。As is clear from Table 1 above, in the surface profile measuring method according to the present invention (Test Example 1), when the indicated value of the pressure gauge 10 was set to 0 g / mm 2 , a test example of a normal surface profile measuring method was obtained. The result almost equal to the result of 2 was obtained. Further, when the indicated value of the pressure gauge 10 is 100 g / mm 2 and 200 g / mm 2 , Rt is particularly decreased as compared with the case of 0 g / mm 2.
It can be seen that the convex portion on the surface of the tape is elastically deformed and collapsed by the contact force.
【0027】[0027]
【発明の効果】以上説明したように、この発明の表面形
状計測方法及び表面形状計測装置によれば、磁気ヘッド
等に摺接させて使用される材料の表面形状を、実用状態
に近い接触条件下において計測することができる。As described above, according to the surface shape measuring method and the surface shape measuring apparatus of the present invention, the surface shape of the material to be used in sliding contact with the magnetic head or the like is set to a contact condition close to a practical state. It can be measured below.
【図1】この発明の表面形状計測装置の一実施例を示す
概略説明図である。FIG. 1 is a schematic explanatory view showing an embodiment of a surface shape measuring apparatus of the present invention.
1 被測定物 2 圧力容器 3 パッキングリング 4 試料押さえ 5 光透過性当接体 6 スペ−サ−リング 7 圧力チュ−プ 8 圧力調整機 9 押圧流体 10 圧力計 11 光源 12 スペクトラルフィルタ 13 光源ビ−ムスプリッタ 14 リニック干渉計 15 干渉計ビ−ムスプリッタ 16 被測定物側対物レンズ DESCRIPTION OF SYMBOLS 1 Measured object 2 Pressure container 3 Packing ring 4 Sample holder 5 Light transmissive abutment body 6 Spacer ring 7 Pressure tube 8 Pressure regulator 9 Pressurizing fluid 10 Pressure gauge 11 Light source 12 Spectral filter 13 Light source beer Beam splitter 14 Linic interferometer 15 Interferometer beam splitter 16 Object to be measured side objective lens
Claims (2)
光を利用して光学的手法により被測定物の表面形状を計
測する計測方法において、被測定物の表面の少なくとも
一部に測定用光線を透過する光透過性当接体を接触また
は 0.1mm以内の距離に近接させると同時に、被測定物
の背面を大気圧以上に加圧した流体で押圧し、被測定物
の表面を光透過性当接体に押圧しながら光透過性当接体
を介し被測定物の表面に光線を当てて、光学的手法によ
り被測定物の表面形状を計測することを特徴とする表面
形状計測方法1. A measuring method in which a surface of an object to be measured is irradiated with a light beam and the reflected light is used to measure the surface shape of the object to be measured. The light-transmitting abutting body that transmits the working light is brought into contact with or brought close to a distance within 0.1 mm, and at the same time, the back surface of the measured object is pressed by a fluid pressurized to atmospheric pressure or higher, and the surface of the measured object is exposed to light. A surface shape measuring method characterized by measuring the surface shape of an object to be measured by an optical method by irradiating a light beam on the surface of the object to be measured through the transparent object while pressing the transparent object.
光を利用して光学的手法により被測定物の表面形状を計
測する光学的計測手段と、被測定物の表面の少なくとも
一部に測定用光線を透過する光透過性当接体を接触また
は 0.1mm以内に近接させる手段と、被測定物の背面に
流体を接触させて押圧する流体押圧手段とを備え、被測
定物の表面を光透過性当接体に押圧しながら光透過性当
接体を介し被測定物の表面に光線を当てて、光学的手法
により被測定物の表面形状を計測する表面形状計測装置2. An optical measuring means for irradiating a surface of an object to be measured with a light beam and measuring the surface shape of the object to be measured by an optical method using the reflected light, and at least a part of the surface of the object to be measured. The surface of the object to be measured is provided with means for bringing a light-transmitting contact body that transmits the measuring light beam into contact with the object or bringing the object into contact with the object within 0.1 mm and a fluid pressing means for bringing the fluid into contact with the back surface of the object to be pressed. A surface shape measuring device for measuring the surface shape of an object to be measured by an optical method by irradiating a light beam on the surface of the object to be measured through the optically transparent contact body while pressing the light-transmitting contact body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20443592A JPH0626831A (en) | 1992-07-07 | 1992-07-07 | Method and apparatus for measuring surface shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20443592A JPH0626831A (en) | 1992-07-07 | 1992-07-07 | Method and apparatus for measuring surface shape |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0626831A true JPH0626831A (en) | 1994-02-04 |
Family
ID=16490493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20443592A Withdrawn JPH0626831A (en) | 1992-07-07 | 1992-07-07 | Method and apparatus for measuring surface shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0626831A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010528316A (en) * | 2007-05-30 | 2010-08-19 | フィブロ システム アーベー | Method and apparatus for measuring surface condition of material surface |
-
1992
- 1992-07-07 JP JP20443592A patent/JPH0626831A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010528316A (en) * | 2007-05-30 | 2010-08-19 | フィブロ システム アーベー | Method and apparatus for measuring surface condition of material surface |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0800170B1 (en) | Optical system for recording and/or reproducing an optical information recording medium | |
JPH0573980A (en) | Optical head for optical disk drive device | |
Bhushan et al. | Friction and wear studies of various head materials and magnetic tapes in a linear mode accelerated test using a new nano-scratch wear measurement technique | |
JPH0626831A (en) | Method and apparatus for measuring surface shape | |
JPH06187689A (en) | Magneto-optical driving device | |
US6473385B1 (en) | Optical head, and optical recording and/or reproducing apparatus | |
Goldade et al. | Measurement and origin of tape edge damage in a linear tape drive | |
JP3103946B2 (en) | Surface shape measuring method and surface shape measuring device | |
JPH0626832A (en) | Method and apparatus for measuring surface shape | |
JPH08105723A (en) | Method and apparatus for measurement of face shape of tape | |
US5365333A (en) | Apparatus for analyzing tracking error in magnetic tapes | |
US1886540A (en) | Film sound recording | |
US1951198A (en) | Sound recording | |
JP3450660B2 (en) | Objective lens tilt adjustment device | |
KR20010041003A (en) | Method and apparatus to determine fly height of a recording head | |
JP3095418B2 (en) | Apparatus for determining dynamic position and orientation of a transducing head with respect to a storage medium | |
JP2000146830A (en) | Infrared microscopic ft-ir device and analyzing method of recording medium | |
JP2869675B2 (en) | How to measure minute intervals | |
JP3338474B2 (en) | Optical disc manufacturing method | |
Eastman | The scanning Fizeau interferometer: an automated instrument for characterizing optical surfaces | |
US5724134A (en) | Calibration standard for optical gap measuring tools | |
JPH01262445A (en) | Surface inspection device | |
JP2624241B2 (en) | Magneto-optical disk device | |
US5490129A (en) | Optical head and optical information reading apparatus | |
JPS6093618A (en) | Plate magnetic recording body and detection of signal inputting condition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991005 |