JP3103946B2 - Surface shape measuring method and surface shape measuring device - Google Patents

Surface shape measuring method and surface shape measuring device

Info

Publication number
JP3103946B2
JP3103946B2 JP03341876A JP34187691A JP3103946B2 JP 3103946 B2 JP3103946 B2 JP 3103946B2 JP 03341876 A JP03341876 A JP 03341876A JP 34187691 A JP34187691 A JP 34187691A JP 3103946 B2 JP3103946 B2 JP 3103946B2
Authority
JP
Japan
Prior art keywords
light
surface shape
transmissive
measured
abutment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03341876A
Other languages
Japanese (ja)
Other versions
JPH05149732A (en
Inventor
尚登 赤羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP03341876A priority Critical patent/JP3103946B2/en
Publication of JPH05149732A publication Critical patent/JPH05149732A/en
Application granted granted Critical
Publication of JP3103946B2 publication Critical patent/JP3103946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は磁気テ−プ、フロッピ
−ディスク、プラスチックフィルム、研磨シ−ト等の軟
質材料およびその複合材料の表面形状を計測する方法と
その装置に関し、さらに詳しくは、磁気ヘッド等に摺接
させて使用されるこれらの材料の表面形状を、当接体を
接触させながら実用状態に近い接触条件下において計測
する方法とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a surface shape of a soft material such as a magnetic tape, a floppy disk, a plastic film, a polished sheet and the like and a composite material thereof. The present invention relates to a method and apparatus for measuring the surface shape of these materials used in sliding contact with a magnetic head or the like under contact conditions close to practical use while contacting a contact body.

【0002】[0002]

【従来の技術】磁気テ−プ、フロッピ−ディスク等の高
密度磁気記録媒体では、記録再生出力の向上、高S/N
比のため、磁性層表面を可及的に平滑にすることが望ま
しい。しかしながら、磁性層表面を平滑にしすぎると摺
動ノイズを増加させたり、磁気ヘッドおよびガイド部材
等に対する摩擦・摩耗特性を劣化させたりすることがあ
る。このため、磁性層表面の形状を精密に計測し、解析
して、平滑でなお微細な凹凸形状を有するように制御す
る試みが行われており、このような磁性層の表面形状計
測方法として、たとえば、ランクテ−ラホブソン社製;
タリステップおよびタリサ−フ、東京精密社製;サ−フ
コムなどの触針式表面形状測定機、WYKO社製;TO
PO−3Dなどの光干渉式表面形状測定機、小坂研究所
社製;ET−30HKなどの光焦点エラ−検出式表面形
状測定機、ディジタルインストゥルメント社製;Nan
oscopeIIなどの走査型トンネル顕微鏡、エリオニ
クス社製;ERA−3000などの電子顕微鏡等を用い
ることが行われている。
2. Description of the Related Art In a high-density magnetic recording medium such as a magnetic tape or a floppy disk, the recording / reproducing output is improved and the S / N ratio is increased.
Due to the ratio, it is desirable to make the surface of the magnetic layer as smooth as possible. However, if the surface of the magnetic layer is made too smooth, the sliding noise may increase, or the friction and wear characteristics with respect to the magnetic head and the guide member may deteriorate. For this reason, the shape of the magnetic layer surface is precisely measured and analyzed, and an attempt has been made to control it so as to have a smooth and fine irregular shape. As a method for measuring the surface shape of such a magnetic layer, For example, manufactured by Rankella Hobson;
Taristep and Tarisurf, manufactured by Tokyo Seimitsu Co., Ltd .; Stylus type surface profile measuring machine such as Surfcom; WYKO; TO
Optical interference type surface shape measuring device such as PO-3D, manufactured by Kosaka Laboratory Co., Ltd .; Optical focus error detecting type surface shape measuring device such as ET-30HK, manufactured by Digital Instruments; Nan
Scanning tunneling microscopes such as oscope II and electron microscopes such as ERA-3000 manufactured by Elionix are used.

【0003】[0003]

【発明が解決しようとする課題】ところが、これら従来
の表面形状測定機は、すべて大気中あるいは真空中にて
磁性層表面を無接触状態で固定した後に計測が行えるよ
うにしたものであるため、磁性層表面が磁気ヘッド等と
接触するときの表面形状を測定することができず、実用
に際しての磁性層表面は、磁気ヘッド等と接触している
ため、これら従来の表面形状測定機により計測される状
態に比べ、接触力による弾塑性変形を生じている。そし
て、磁気テ−プ、フロッピ−ディスク等の軟質材料、あ
るいはその複合材料では、接触力による表面凹凸中特に
凸部の変形が大きく、そのため、従来の表面形状計測結
果では磁気記録媒体の諸特性を充分に解明することがで
きないという問題があった。
However, since all of these conventional surface shape measuring instruments are capable of performing measurement after fixing the magnetic layer surface in a non-contact state in the air or in a vacuum, The surface shape of the magnetic layer surface when it comes into contact with a magnetic head or the like cannot be measured.Since the magnetic layer surface in practical use is in contact with a magnetic head or the like, it can be measured with these conventional surface shape measuring instruments. Elasto-plastic deformation due to the contact force has occurred compared to the state where In the case of a soft material such as a magnetic tape or a floppy disk, or a composite material thereof, deformation of a convex portion in the surface irregularities due to a contact force is particularly large. Therefore, according to the conventional surface shape measurement results, various characteristics of the magnetic recording medium are obtained. There was a problem that was not able to sufficiently elucidate.

【0004】[0004]

【課題を解決するための手段】この発明はかかる欠点を
改善するため種々検討を行った結果なされたもので、被
測定物の表面に光線を当て、その反射光を利用して光学
的手法により被測定物の表面形状を計測する計測方法に
おいて、被測定物の表面に測定用光線を透過する光透過
性当接体を接触させるとともに、光透過性当接体と被測
定物の表面間に光透過性当接体に対する屈折率の差が
0.3以下の液状充填剤を充填し、これら光透過性当接体
と液状充填剤を介し、被測定物の表面に光線を当てて光
学的手法により被測定物の表面形状を計測することによ
って、実用状態に近い接触条件下における被測定物の表
面形状を計測できるようにしたものである。
SUMMARY OF THE INVENTION The present invention has been made as a result of conducting various studies to improve the above drawbacks. The present invention is directed to irradiating a light beam on the surface of an object to be measured and using an optical method by utilizing the reflected light. In a measurement method for measuring the surface shape of an object to be measured, a light-transmissive abutment that transmits a measuring light beam is brought into contact with the surface of the object to be measured, and between the light-transmissive abutment and the surface of the object to be measured. The difference in the refractive index with respect to the light transmissive abutment is
By filling a liquid filler of 0.3 or less, through these light-transmissive abutment and liquid filler, by irradiating a light beam on the surface of the measured object and measuring the surface shape of the measured object by an optical method, This enables measurement of the surface shape of an object under contact conditions close to practical use.

【0005】[0005]

【実施例】以下、この発明に係る表面形状計測装置の一
実施例を示す図1に基づいて説明する。図1において、
1は被測定物であって裏当て2上に支持され、試料押さ
え3で上昇不能に支持された光透過性当接体4をその表
面に当接している。そして、光透過性当接体4と凹凸の
ある被測定物1の表面との間に液状充填剤5を充填して
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a surface profile measuring apparatus according to the present invention will be described below with reference to FIG. In FIG.
Reference numeral 1 denotes an object to be measured, which is supported on a backing 2, and is in contact with a light-transmissive contact body 4 which is supported by a sample holder 3 so as not to be lifted. The liquid filler 5 is filled between the light transmissive contact body 4 and the surface of the DUT 1 having irregularities.

【0006】裏当て2は微動台6の揺動支持板7上に設
置されたロ−ドセル8上の弾性体9によって支持され、
微動台6は試料ステ−ジ10上に配設されている。11
は微動台6に取りつけられた調整撮みで、この調整撮み
11の回動によりピン12で揺動自在に枢支された揺動
支持板7が揺動され、ロ−ドセル8、弾性体9、裏当て
2を介して光透過性当接体4に当接された被測定物1の
表面に任意の接触力が加えられる。そして、この接触力
はロ−ドセル8によって検出される。
The backing 2 is supported by an elastic body 9 on a load cell 8 installed on a swing support plate 7 of a fine moving table 6,
The fine moving table 6 is provided on the sample stage 10. 11
Is an adjustment photograph attached to the fine movement table 6, and the swing of the adjustment photograph 11 causes the rocking support plate 7 pivotally supported by the pin 12 to swing, thereby loading the load cell 8 and the elastic body. 9. An arbitrary contact force is applied to the surface of the DUT 1 that is in contact with the light-transmissive contact member 4 via the backing 2. This contact force is detected by the load cell 8.

【0007】13は発光体13a,レンズ13b,レン
ズ13c,アパ−チュアストップ13d,レンズ13
e,フィ−ルドストップ13f,レンズ13gで構成さ
れた光源であり、この光源13からの光は、スペクトラ
ルフィルタ14を透過した後、光源ビ−ムスプリッタ1
5により反射されて下方に向かう。
Reference numeral 13 denotes a light emitting body 13a, a lens 13b, a lens 13c, an aperture stop 13d, and a lens 13.
e, a field stop 13f, and a lens 13g. The light from the light source 13 passes through the spectral filter 14 and then passes through the light source beam splitter 1.
5 is reflected downward.

【0008】この下方に向かう反射光の一部は、リニッ
ク干渉計16の干渉計ビ−ムスプリッタ17を透過して
試料側対物レンズ18に至り、この試料側対物レンズ1
8により、光透過性当接体4および液状充填剤5を通し
て被測定物1の凹凸を有する表面で焦点が結ばれる。そ
して、被測定物1の表面で反射された光は、再度液状充
填剤5および光透過性当接体4を経て、試料側対物レン
ズ18に戻り、さらに干渉計ビ−ムスプリッタ17を透
過して上方に向かう。
A part of the downward reflected light passes through the interferometer beam splitter 17 of the linic interferometer 16 and reaches the sample side objective lens 18, where the sample side objective lens 1
8 focuses on the uneven surface of the DUT 1 through the light transmissive abutment 4 and the liquid filler 5. Then, the light reflected on the surface of the DUT 1 passes through the liquid filler 5 and the light-transmitting abutment 4 again, returns to the sample-side objective lens 18, and further passes through the interferometer beam splitter 17. And head upward.

【0009】また、リニック干渉計16に入射された光
の一部は干渉計ビ−ムスプリッタ17により反射されて
参照面側対物レンズ19に至り、この参照面側対物レン
ズ19により、光路長補正板20を通して参照面21に
焦点が結ばれる。そして、参照面21からの反射光は、
光路長補正板20を経て、参照面側対物レンズ19に戻
り、さらに干渉計ビ−ムスプリッタ17で反射されて上
方へ向かう。
A part of the light incident on the linic interferometer 16 is reflected by the interferometer beam splitter 17 and reaches the reference surface side objective lens 19, which corrects the optical path length. The focus is focused on the reference plane 21 through the plate 20. Then, the reflected light from the reference surface 21 is
The light returns to the reference surface side objective lens 19 via the optical path length correction plate 20, and is further reflected upward by the interferometer beam splitter 17 and travels upward.

【0010】この時、この干渉計ビ−ムスプリッタ17
で反射されて上方へ向かう反射光と、前記の被測定物1
の表面で反射され、干渉計ビ−ムスプリッタ17を透過
して上方に向かう反射光が重なって干渉し、被測定物1
の表面の凹凸に対応した干渉縞が発生する。そして、こ
の干渉縞はカメラ側対物レンズ22を介してカメラ23
に至り、カメラ23にて電気映像信号に変換される。
At this time, the interferometer beam splitter 17
The reflected light reflected upward and reflected upward, and the object to be measured 1
The reflected light that is reflected by the surface of the device 1 and transmitted through the interferometer beam splitter 17 and upwards interferes, and interferes with each other.
An interference fringe corresponding to the unevenness of the surface is generated. The interference fringes are transmitted to the camera 23 via the camera-side objective lens 22.
And the camera 23 converts it into an electric video signal.

【0011】しかして、この干渉縞から、たとえば、K
atherine Creath:COMPARISO
N OF PHASE−MEASUREMENTALG
ORITHMS,SPIE Vol(1986)に記載
された縞走査法を用いて被測定物1の表面形状を求める
ことができ、被測定物1の表面に光透過性当接体4を接
触させた状態で、被測定物1の表面形状を計測すること
ができる。従って、この方法および装置によれば、磁気
ヘッド等に摺接して使用される磁気記録媒体のように、
被測定物1が接触状態で使用される場合、実用状態に近
い接触条件下における被測定物1の表面形状を計測する
ことができる。
From this interference fringe, for example, K
another Creat: COMPARISO
N OF PHASE-MEASUREMENTALG
The surface shape of the DUT 1 can be obtained by using the fringe scanning method described in ORITHMS, SPIE Vol (1986), and the light-transmissive abutment 4 is brought into contact with the surface of the DUT 1. The surface shape of the DUT 1 can be measured. Therefore, according to this method and apparatus, like a magnetic recording medium used in sliding contact with a magnetic head or the like,
When the DUT 1 is used in a contact state, the surface shape of the DUT 1 can be measured under a contact condition close to a practical state.

【0012】ここで、光透過性当接体4としては、被測
定物1の表面に実用状態に近い接触条件を与えるような
種々の形状、材質の物をもちいることができるが、その
材質は表面形状計測のための測定用光線を最小限透過す
るものを選定する必要がある。また、光透過性当接体4
は被測定物1の表面に接触させて用いられる他、非接
触、無応力状態との比較計測を可能とするため、適当に
離して放置することも可能にするのが好ましく、この場
合、液状充填剤5に気泡が発生すると計測に不都合が生
じることから、被測定物1の表面との離間距離は 0.1mm
以内とするのが好ましい。
Here, as the light-transmissive abutment 4, various shapes and materials that can provide a contact condition close to a practical condition to the surface of the DUT 1 can be used. It is necessary to select a material that transmits the measuring light beam for measuring the surface shape at a minimum. Further, the light transmissive contact member 4
In addition to being used in contact with the surface of the object 1 to be measured, it is preferable that the device can be appropriately separated and left in order to enable comparative measurement with a non-contact and stress-free state. If bubbles occur in the filler 5, the measurement will be inconvenient. Therefore, the separation distance from the surface of the DUT 1 is 0.1 mm.
It is preferably within the range.

【0013】また、液状充填剤5は、光透過性当接体4
の被測定物1の表面に向かい会う面が測定用光線を反射
し、表面形状計測時に、ノイズ、誤差、エラ−等を発生
するのを防ぐために設けたものである。そのため、でき
るだけ光透過性当接体4の屈折率に近いものが望まし
く、離れても光透過性当接体4との屈折率の差が 0.3以
下のものであることが好ましい。具体例としては、たと
えば、水や液浸法顕微鏡観察に用いられる液体などがあ
げられ、被測定物1の表面形状を変化させないような化
学的性質を有するものであれば、特に限定することなく
使用できる。
Further, the liquid filler 5 contains the light-transmitting abutment 4
The surface facing the surface of the DUT 1 is provided in order to prevent the measurement light beam from being reflected and to prevent noise, error, error, and the like from being generated when measuring the surface shape. Therefore, it is desirable that the refractive index is as close as possible to the refractive index of the light transmissive abutment 4, and it is preferable that the difference in the refractive index from the light transmissive abutment 4 is 0.3 or less even when separated. Specific examples include, for example, water and liquids used for immersion microscope observation, and are not particularly limited as long as they have chemical properties that do not change the surface shape of the DUT 1. Can be used.

【0014】さらに、リニック干渉計16の参照面21
前面に設けた光路長補正板20は、試料側の測定用光線
の光路長が、光透過性当接体4の内部を透過する際、通
常の大気中計測に比べ屈折率倍長くなる分、参照面21
側の光路長を補正するために設けたものである。そのた
め、光透過性当接体4とほぼ同じ材料、厚み、仕上げ加
工のものを用いるのが好ましい。しかしながら、光路長
補正板20と光透過性当接体4とは必ずしも同一材料で
ある必要はなく、厚みを調整して光路長を補正すること
も可能である。また光路長補正板20を参照面21から
適当に離してもよく、さらには、干渉計ビ−ムスプリッ
タ17と参照面対物レンズ19の間に挿入しても同等の
効果が得られる。
Further, the reference surface 21 of the linic interferometer 16
The optical path length correction plate 20 provided on the front surface has an optical path length of the measuring light beam on the sample side, which is twice as long as the refractive index when compared with ordinary atmospheric measurement, when transmitting through the inside of the light transmissive abutment 4. Reference surface 21
This is provided to correct the optical path length on the side. Therefore, it is preferable to use a material having substantially the same material, thickness, and finish as the light transmissive contact member 4. However, the optical path length correction plate 20 and the light transmissive contact body 4 do not necessarily need to be made of the same material, and the optical path length can be corrected by adjusting the thickness. Further, the optical path length correction plate 20 may be appropriately separated from the reference surface 21, and the same effect can be obtained by inserting the optical path length correction plate 20 between the interferometer beam splitter 17 and the reference surface objective lens 19.

【0015】なお、干渉縞から面形状を求める方法とし
て、縞走査法を用いるときは、参照面側対物レンズ1
9、光路長補正板20、参照面21を一体構造化し、ピ
エゾ素子により光軸方向に微動できるよう構成するのが
好ましい。
When a fringe scanning method is used as a method for obtaining a surface shape from interference fringes, the reference surface side objective lens 1 is used.
9. It is preferable that the optical path length correction plate 20 and the reference surface 21 are integrally formed so that they can be finely moved in the optical axis direction by a piezo element.

【0016】また、以上の実施例では光学式の表面形状
計測方法として光干渉方式を用いたが、光干渉方式に限
定されるものではなく、たとえば、光焦点エラ−検出方
式など他の方法を用いても構わない。
In the above embodiment, the optical interference method is used as the optical surface shape measuring method. However, the present invention is not limited to the optical interference method. For example, other methods such as an optical focus error detection method may be used. You may use it.

【0017】以下、図1に示す表面形状計測装置を用い
て、ビデオテ−プの磁性層表面の表面形状を計測した試
験例について説明する。 試験例1 強磁性金属鉄粉末(保磁力1600エルステッド、飽和磁 100重量部 化量120emu/g、長軸径0.18μm、軸比10) 水酸基含有塩化ビニル系樹脂 10 〃 熱可塑性ポリウレタン樹脂 7 〃 アルミナ(粒径 0.2μm) 8 〃 ミリスチン酸 2 〃 ベンガラ(粒径 0.8μm) 2 〃 シ−スト5H(東海カ−ボン社製;カ−ボンブラック、粒 2 〃 径20mμ) シクロヘキサノン 70 〃 トルエン 70 〃 この組成物をボ−ルミル中で96時間混合分散した後、
さらに、三官能性ポリイソシアネ−ト化合物を5重量部
加え、5分間撹拌して磁性塗料を調製した。この磁性塗
料を厚み10μmの二軸配向ポリエチレンテレフタレ−
トフィルム上に、乾燥後の厚さが 2.5μmとなるよう塗
布、乾燥し、カレンダ処理を行った後、所定の幅に裁断
してビデオテ−プをつくった。なお、表面形状計測装置
の効果を確認しやすくするためカレンダ処理は弱めに調
整し、磁性層表面を市販のメタルビデオテ−プよりは粗
面とした。
Hereinafter, a test example in which the surface shape of the magnetic layer surface of a video tape was measured using the surface shape measuring apparatus shown in FIG. 1 will be described. Test Example 1 Ferromagnetic metal iron powder (1600 Oe, coercive force, 100 parts by weight of saturated magnetism, 120 emu / g, major axis diameter: 0.18 μm, axis ratio: 10) Hydroxyl group-containing vinyl chloride resin 10 {thermoplastic polyurethane resin 7} alumina (Particle size: 0.2 μm) 8 {myristinic acid 2} Bengala (particle size: 0.8 μm) 2 〃 Seat 5H (manufactured by Tokai Carbon Co., Ltd .; carbon black, particle size: 2 mm 20 μm) cyclohexanone 70 〃 toluene 70 〃 After this composition was mixed and dispersed in a ball mill for 96 hours,
Further, 5 parts by weight of a trifunctional polyisocyanate compound was added, and the mixture was stirred for 5 minutes to prepare a magnetic paint. This magnetic paint was coated on a biaxially oriented polyethylene terephthalate having a thickness of 10 μm.
The film was applied to a thickness of 2.5 μm after drying, dried, calendered, and cut into a predetermined width to produce a video tape. In order to make it easier to confirm the effect of the surface shape measuring apparatus, the calendering treatment was adjusted slightly, and the surface of the magnetic layer was made rougher than a commercially available metal video tape.

【0018】次いで、図1に示す表面形状計測装置にお
いて、下記に対応して示す各部材 裏当て2 :ポリエチレンテレフタレ−トフィ
ルム(縦1mm×横1mm×厚み 0.075mm) 光透過性当接体4 :顕微鏡用のカバ−グラス(屈折率
1.52) 液状充填剤5 :水(屈折率1.33) 微動台6 :中央精機社製;TS−201 ロ−ドセル8 :TMI社製;T7 弾性体9 :シリコンゴム板(縦1mm×横1mm
×厚み2mm) 試料ステ−ジ10 :WYKO社製;チップチルトステ
−ジTT−100 計測光学系 :WYKO社製;TOPO−3D リニック干渉計16:WYKO社製;対物ヘッドLX−
40を一部改造し光路長補正板20を挿入したもの 光路補正板20 :顕微鏡用のカバ−グラス(屈折率
1.52) をそれぞれ用いて、ロ−ドセル8の出力電圧から読み取
った荷重が0gおよび25gの時のビデオテ−プの表面
形状を計測し、表面粗さとしてRa(中心線平均粗さ)
およびP−V(Peak to Valley)を求め
た。なお、この試験例では被測定物1の表面形状を水中
で光学的に計測したため、大気中での計測に比べ水の屈
折率倍大きな値となる。そこで、実測値を1/1.33倍し
て表面粗さを計算した。
Next, in the surface shape measuring device shown in FIG. 1, each member shown below corresponds to the backing 2: polyethylene terephthalate film (length 1 mm × width 1 mm × thickness 0.075 mm) Light transmitting abutment 4 : Cover glass for microscope (refractive index)
1.52) Liquid filler 5: water (refractive index: 1.33) Fine movement table 6: Chuo Seiki Co., Ltd .; TS-201 Load cell 8: TMI Co .; T7 Elastic body 9: Silicon rubber plate (length 1 mm × width 1 mm)
× thickness 2 mm) Sample stage 10: WYKO; Tip tilt stage TT-100 Measurement optical system: WYKO; TOPO-3D Linic interferometer 16: WYKO; Objective head LX-
40 partially modified and optical path length correction plate 20 inserted Optical path correction plate 20: Cover glass for microscope (refractive index)
1.52), the surface shape of the video tape when the load read from the output voltage of the load cell 8 was 0 g and 25 g was measured, and Ra (center line average roughness) was used as the surface roughness.
And PV (Peak to Valley) were determined. In this test example, since the surface shape of the DUT 1 was optically measured in water, the value of the refractive index of the water was twice as large as that in the atmosphere. Thus, the surface roughness was calculated by multiplying the measured value by 1 / 1.33.

【0019】試験例2 試験例1で用いたビデオテ−プを、オプチカルフラット
にしわが発生しないように裏面を水でぬらして貼り付
け、WYKO社製;TOPO−3Dにリニック干渉計L
X−40(光路長補正板なし)を取りつけて、大気中に
てその表面形状を計測し、表面粗さRaおよびP−Vを
求めた。下記表1はその結果である。
Test Example 2 The videotape used in Test Example 1 was attached to the optical flat with the back side wet with water so as not to cause wrinkles, and manufactured by WYKO; TOPO-3D;
X-40 (without an optical path length correction plate) was attached, and its surface shape was measured in the air to determine the surface roughness Ra and PV. Table 1 below shows the results.

【0020】 [0020]

【0021】上記表1から明らかなように、この発明に
よる表面形状計測方法(試験例1)では、接触力を示す
荷重を0gとしたときは通常の表面形状計測方法の試験
例2による結果とほぼ同等の結果が得られた。また、接
触力を示す荷重を25gとした場合、荷重0gに比べて
特にP−Vが減少し、これにより、ビデオテ−プ表面の
凸部が接触力により弾性変形してつぶれていることがわ
かる。
As is clear from Table 1 above, in the surface shape measuring method according to the present invention (Test Example 1), when the load indicating the contact force is set to 0 g, the result obtained by the normal surface shape measuring method according to Test Example 2 is obtained. Almost equivalent results were obtained. Also, when the load indicating the contact force is 25 g, especially the PV decreases as compared with the load of 0 g, and it can be seen that the convex portion of the video tape surface is elastically deformed and collapsed by the contact force. .

【0022】[0022]

【発明の効果】以上説明したように、この発明の表面形
状計測方法及び表面形状計測装置によれば、磁気ヘッド
等に摺接させて使用される材料の表面形状を、実用状態
に近い接触条件下において計測することができる。
As described above, according to the surface shape measuring method and the surface shape measuring apparatus of the present invention, the surface shape of a material used in sliding contact with a magnetic head or the like is adjusted to a contact condition close to a practical condition. It can be measured below.

【0023】[0023]

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の表面形状計測装置の一実施例を示す
概略説明図である。
FIG. 1 is a schematic explanatory view showing one embodiment of a surface shape measuring device of the present invention.

【符号の説明】[Explanation of symbols]

1 被測定物 2 裏当て 3 試料押さえ 4 光透過性当接体 5 液状充填剤 6 微動台 7 揺動支持板 8 ロ−ドセル 9 弾性体 10 試料ステ−ジ 11 調整撮み 13 光源 14 スペクトラルフィルタ 15 光源ビ−ムスプリッタ 16 リニック干渉計 17 干渉計ビ−ムスプリッタ 18 試料側対物レンズ 19 参照面対物レンズ 20 光路長補正板 21 参照面 23 カメラ REFERENCE SIGNS LIST 1 object to be measured 2 backing 3 sample holder 4 light transmissive abutment 5 liquid filler 6 fine moving table 7 swing support plate 8 load cell 9 elastic body 10 sample stage 11 adjustment shooting 13 light source 14 spectral filter Reference Signs List 15 light source beam splitter 16 linic interferometer 17 interferometer beam splitter 18 sample side objective lens 19 reference plane objective lens 20 optical path length correction plate 21 reference plane 23 camera

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軟質材料およびその複合材料からなる
測定物の表面に光線を当て、その反射光を利用して光学
的手法により被測定物の表面形状を計測する計測方法に
おいて、 被測定物の表面に測定用光線を透過する光透過性当接
体を接触させるとともに、光透過性当接体と被測定物の
表面との間に光透過性当接体に対する屈折率の差が0.
3以下の液状充填剤を充填し、被測定物の表面に対する光透過性当接体の接触力を任意
に調整した状態で、 これら光透過性当接体と液状充填剤
を介し、被測定物の表面に光線を当てて光学的手法によ
、調整された任意の接触力下における被測定物の表面
形状を計測することを特徴とする表面形状計測方法
1. A measuring method for irradiating a light beam on a surface of an object made of a soft material and a composite material thereof and measuring a surface shape of the object by an optical method using reflected light, on the surface of, with contacting the light transmitting abutting member which transmits the measurement light beam, between the surface of the light-transmitting contact member and the object to be measured, the difference in refractive index with respect to light transmitting abutment body 0.
Fill up to 3 liquid fillers and set the contact force of the light transmissive contact body to the surface of the object
The surface shape of the object under arbitrary contact force adjusted by an optical method by irradiating a light beam on the surface of the object through these light-transmissive abutting bodies and the liquid filler in an adjusted state Surface shape measuring method characterized by measuring the surface
【請求項2】 軟質材料およびその複合材料からなる被
測定物の表面に光線を当て、その反射光を利用して光学
的手法により被測定物の表面形状を計測する光学的計測
手段と、 被測定物の表面に対して0.1mm以内の離間距離を以て配
置され、測定用光線を透過する光透過性当接体と、 光透過性当接体と被測定物の表面との間に充填され、光
透過性当接体に対する屈折率の差が0.3以下に設定され
た液状充填剤と、 被測定物の表面に、光透過性当接体を液状充填剤を介し
て任意の接触力に可変調整して接触させる手段と、 被測定物の表面に対する光透過性当接体の接触力を検出
する手段とを備え、 被測定物の表面に光線を当てて光学的手法により、調整
された任意の接触力下における被測定物の表面形状を計
測する表面形状計測装置
2. A material comprising a soft material and a composite material thereof.
Light is applied to the surface of the measurement object, and the reflected light
Measurement that measures the surface shape of the object to be measured by a statistical method
Means and a distance of 0.1 mm or less from the surface of the DUT.
A light-transmissive abutment that is placed and transmits the measurement light beam, and is filled between the light-transmissive abutment and the surface of the object to be measured.
The difference of the refractive index with respect to the transmissive abutment is set to 0.3 or less.
Liquid filler, and a light-transmissive abutment on the surface of the object to be measured via the liquid filler.
Means for variably adjusting the contact force to an arbitrary contact force and detecting the contact force of the light-transmissive contact body against the surface of the object to be measured
And means for, by an optical method by applying a light beam on the surface of the object to be measured, adjusted
The surface shape of the object under arbitrary contact force
Surface profile measuring device to measure
JP03341876A 1991-11-29 1991-11-29 Surface shape measuring method and surface shape measuring device Expired - Fee Related JP3103946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03341876A JP3103946B2 (en) 1991-11-29 1991-11-29 Surface shape measuring method and surface shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03341876A JP3103946B2 (en) 1991-11-29 1991-11-29 Surface shape measuring method and surface shape measuring device

Publications (2)

Publication Number Publication Date
JPH05149732A JPH05149732A (en) 1993-06-15
JP3103946B2 true JP3103946B2 (en) 2000-10-30

Family

ID=18349435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03341876A Expired - Fee Related JP3103946B2 (en) 1991-11-29 1991-11-29 Surface shape measuring method and surface shape measuring device

Country Status (1)

Country Link
JP (1) JP3103946B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2718232B1 (en) * 1994-03-31 1996-05-24 Saint Gobain Vitrage Method and device for measuring the optical quality of the surface of a transparent object.
WO2006090593A1 (en) * 2005-02-24 2006-08-31 Sii Nanotechnology Inc. Displacement detection mechanism for scanning probe microscope and scanning probe microscope

Also Published As

Publication number Publication date
JPH05149732A (en) 1993-06-15

Similar Documents

Publication Publication Date Title
US10515660B2 (en) Magnetic tape having controlled surface properties of the back coating layer and magnetic layer
US8659291B2 (en) Magneto-optical detection of a field produced by a sub-resolution magnetic structure
EP0209140B1 (en) A method of measuring a minute flying height of an object and a magnetic disk apparatus
US20040013077A1 (en) Optical pickup device and recording/reproducing device
JP3103946B2 (en) Surface shape measuring method and surface shape measuring device
US20170074733A1 (en) Surface force apparatus based on a spherical lens
US5552884A (en) Calibration standard for flying height tester having a head mounted on a multilevel surface transparent disc
US20100020324A1 (en) Micro-distance measuring method and device
US6473385B1 (en) Optical head, and optical recording and/or reproducing apparatus
JPH0626832A (en) Method and apparatus for measuring surface shape
JP3634985B2 (en) Optical surface inspection mechanism and optical surface inspection apparatus
Goldade et al. Measurement and origin of tape edge damage in a linear tape drive
CN1327412C (en) System and method for hard disc drive magnetic head flying height tester calibration
JPH08105723A (en) Method and apparatus for measurement of face shape of tape
JPH0626831A (en) Method and apparatus for measuring surface shape
JPH07239304A (en) Detector for detecting defect of surface layer
US6317210B1 (en) Apparatus for recording fly height measurement
US5365333A (en) Apparatus for analyzing tracking error in magnetic tapes
KR20010041003A (en) Method and apparatus to determine fly height of a recording head
EP1052629A1 (en) Optical recording medium
Brown et al. Industrial applications of an optical profilometer
JP3492446B2 (en) Stamper inspection machine for optical disks
Fukuzawa et al. Measurement of thickness distribution of molecularly thin lubricant films on head sliders using ellipsometric microscopy
JPH07286967A (en) Inspecting method and inspecting device for optical disk
JP2821517B2 (en) How to measure minute intervals

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000705

LAPS Cancellation because of no payment of annual fees