JPH06267800A - Manufacture of electrolytic capacitor - Google Patents

Manufacture of electrolytic capacitor

Info

Publication number
JPH06267800A
JPH06267800A JP7764293A JP7764293A JPH06267800A JP H06267800 A JPH06267800 A JP H06267800A JP 7764293 A JP7764293 A JP 7764293A JP 7764293 A JP7764293 A JP 7764293A JP H06267800 A JPH06267800 A JP H06267800A
Authority
JP
Japan
Prior art keywords
titanium oxide
pipe
plasma
gas
aluminum foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7764293A
Other languages
Japanese (ja)
Inventor
Kunio Yomo
邦夫 四方
Nobuyuki Yamaji
信幸 山地
Jun Okada
順 岡田
Hidehisa Tachibana
秀久 橘
Hiroyasu Murata
裕康 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP7764293A priority Critical patent/JPH06267800A/en
Publication of JPH06267800A publication Critical patent/JPH06267800A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To form a titanium oxide coating film on the surface of aluminum at a low price, which excels in spreadability and relative permittirrty by melting a titanium oxide powder by heating by use of the plasma flame of induction plasma for thermal spraying to form a titanium oxide coating film on the surface of aluminum foil. CONSTITUTION:Alumminn foil 14 is arranged. A plasma gas such as argon gas is supplied from a plasma gas supplying pipe 5 between a carrier gas introducing pipe 4 and an intermediate pipe 3, and a sheath gas such as argon gas is supplied from a sheath gas supplying pipe 6 between the intermediate pipe 3 and an outside pipe 2, and a titanium oxide fine powder is supplied from the carrier gas introducing pipe 4. When high-frequency electric power is applied to a high-frequency induction coil 11, normal plasma flame 12 which is balanced on both left and right sides is generated, and the titanium oxide fine powder supplied together with the carrier gas is melted by heating, so that a thermal spray coating film 15 of a titanium oxide layer may be obtained on the aluminum foil 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解コンデンサの形成
方法に係り、電解コンデンサの陽極を形成するアルミニ
ウム箔の表面に比誘電率の優れた酸化チタン皮膜を生成
し、低廉かつ高性能な電解コンデンサを製作する方法で
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an electrolytic capacitor, which produces a titanium oxide film having an excellent relative permittivity on the surface of an aluminum foil forming the anode of the electrolytic capacitor, thereby providing an inexpensive and high-performance electrolytic capacitor. This is a method of manufacturing a capacitor.

【0002】[0002]

【従来の技術】電解コンデンサはアルミニウム,タンタ
ル等のようにその表面が緻密で絶縁性に富んだ酸化皮膜
を形成する金属が選ばれ、価格等からアルミニウムが用
いられている。従来、アルミニウム箔を用いた電解コン
デンサは、塩酸等によって表面にエッチングを施した
後、ホウ酸又はホウ酸アンモニウムの水溶液を電解液と
して、陽極酸化を行い、誘電体皮膜としての酸化アルミ
ニウム皮膜を形成させている。そして、陽極酸化を施し
た陽極箔と陽極酸化を施さない陰極箔との間に電解質を
入れこれを封止している。
2. Description of the Related Art In electrolytic capacitors, metals such as aluminum and tantalum that form a dense oxide film with a dense surface and are highly insulating are selected, and aluminum is used because of its price. Conventionally, electrolytic capacitors using aluminum foil are subjected to anodic oxidation by using an aqueous solution of boric acid or ammonium borate as an electrolytic solution after etching the surface with hydrochloric acid or the like to form an aluminum oxide film as a dielectric film. I am letting you. An electrolyte is put between the anodized anode foil and the anodized cathode foil to seal it.

【0003】[0003]

【発明が解決しようとする課題】電解コンデンサの容量
を大きくする方法には、表面積を大きくする方法と、比
誘電率を高くする方法がある。ところで、従来アルミニ
ウム箔にエッチングを施し粗面化し、普通20〜50倍
の表面積の拡大を行っているが、ほぼ均一な粗面化が行
われるので、これ以上表面積を拡大できなかった。ま
た、アルミニウム箔を陽性酸化させたとき、アルミニウ
ム箔表面は酸化アルミニウム皮膜しか生成することがで
きないため、陽極酸化による比誘電率を高めるには限界
があった。
As a method of increasing the capacitance of the electrolytic capacitor, there are a method of increasing the surface area and a method of increasing the relative dielectric constant. By the way, conventionally, the surface area of aluminum foil has been increased by etching to increase the surface area by a factor of 20 to 50. However, since the surface is almost uniformly roughened, the surface area cannot be increased any further. Further, when the aluminum foil is positively oxidized, only an aluminum oxide film can be formed on the surface of the aluminum foil, so there is a limit to increase the relative dielectric constant by anodic oxidation.

【0004】一方、酸化アルミニウム皮膜より優れた比
誘電率を有する皮膜に酸化チタン皮膜があることは知ら
れているが、酸化チタンは陽性材料にチタン箔を使用し
なければならない。そして、チタン箔は硬く巻回性が劣
り、チタン箔に陽性酸化するのがアルミニウム箔に比べ
て困難であり高価であるなどの問題があった。
On the other hand, it is known that there is a titanium oxide film as a film having a relative dielectric constant superior to that of an aluminum oxide film, but titanium oxide must use a titanium foil as a positive material. Further, there are problems that the titanium foil is hard and inferior in winding property, and it is more difficult to positively oxidize the titanium foil than the aluminum foil and is expensive.

【0005】本発明は、上記に鑑みて、アルミニウム箔
に比誘電率の優れた酸化チタン皮膜生成を生成方法の改
善によって実現すべく検討の結果、この発明に至ったも
のである。
In view of the above, the present invention has been accomplished as a result of studies to realize the production of a titanium oxide film having an excellent relative dielectric constant on an aluminum foil by improving the production method.

【0006】[0006]

【課題を解決するための手段】すなわち、この発明は酸
化チタン微粒粉体をインダクションプラズマトーチ内に
て加熱溶融し、このインダクションプラズマトーチ下方
に配置したアルミニウム箔表面に上記加熱溶融した酸化
チタン微粒粉末を溶射することによって、アルミニウム
箔に酸化チタン皮膜を生成し、電解コンデンサを生成す
るものである。
Means for Solving the Problems That is, according to the present invention, a titanium oxide fine particle powder is heated and melted in an induction plasma torch, and the heat-melted titanium oxide fine particle powder is formed on the surface of an aluminum foil arranged below the induction plasma torch. By spraying, a titanium oxide film is formed on the aluminum foil to form an electrolytic capacitor.

【0007】[0007]

【作用】この発明は、酸化チタン微粉粒体がインダクシ
ョンプラズマトーチ内のプラズマによって加熱溶融され
る。このインダクションプラズマは流速が小さく、加熱
溶融された酸化チタンがエッチングされたアルミニウム
箔表面にゆるやかに溶射され、アルミニウム箔表面に酸
化チタン皮膜が生成される。
In the present invention, fine particles of titanium oxide are heated and melted by the plasma in the induction plasma torch. The induction plasma has a low flow rate, and the titanium oxide that has been heated and melted is slowly sprayed onto the etched aluminum foil surface, and a titanium oxide film is formed on the aluminum foil surface.

【0008】[0008]

【実施例】以下、この考案を実施例により詳細に説明す
るが、それに先立ってこの発明方法を実施するに使用す
る図1に示すインダクションプラズマ溶射装置について
説明する。図において、1は窒化ほう素焼結体を加工し
て得た円筒形状の支持体であり、この支持体1の内部に
は1a〜1eの多段の挿着孔が支持体1を旋盤等で孔加
工、ネジ切りを繰り返すことにより同心円状に設けられ
ており、これらの挿着孔にキャリアガス導入管4、中間
管3、外側管2が嵌合螺着により固定されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to embodiments. Prior to that, the induction plasma spraying apparatus shown in FIG. 1 used for carrying out the method of the present invention will be described. In the figure, 1 is a cylindrical support obtained by processing a boron nitride sintered body, and inside this support 1, multi-stage insertion holes 1a to 1e are formed. It is provided concentrically by repeating machining and threading, and the carrier gas introducing pipe 4, the intermediate pipe 3, and the outer pipe 2 are fixed to the insertion holes by fitting screws.

【0009】この同心円状の支持体1に対する挿着孔の
形状は、まずキャリアガス導入管4を貫通挿着するため
の挿着孔1aを支持体1に貫通形成し、次に中間管3の
挿着孔1bを支持体1のほぼ中間の位置に挿着孔1aと
同心形状に形成し、その後外側管2の挿着孔1cを挿着
する。次いで、中間管3支持用挿着孔1bの上方に中間
管3の内径と同じか又は若干小径の挿着孔1bを、また
外側管2支持用挿着孔1cの上方に外側管2の内径と同
じか叉は若干小径の挿着孔1eを形成する。
The shape of the insertion hole for the concentric support body 1 is such that the insertion hole 1a for inserting the carrier gas introduction pipe 4 through is first formed through the support body 1, and then the intermediate pipe 3 is formed. The insertion hole 1b is formed at a position approximately in the middle of the support 1 so as to be concentric with the insertion hole 1a, and then the insertion hole 1c of the outer tube 2 is inserted. Next, an insertion hole 1b having the same diameter as or slightly smaller than the inner diameter of the intermediate tube 3 is provided above the intermediate tube 3 supporting insertion hole 1b, and an inner diameter of the outer tube 2 is provided above the outer tube 2 supporting insertion hole 1c. An insertion hole 1e having the same diameter as or a slightly smaller diameter is formed.

【0010】このようにして内部に同心円状の1a〜1
eの挿着孔を形成した窒化ほう素焼結体製の円筒形状の
支持体1に、同じく窒化ほう素焼結体を用いてそれぞれ
円筒状に作った外側管2、中間管3、キャリアガス導入
管4およびプラズマガス供給管5、シースガス供給管6
を取り付けるには、まず挿着孔1aに下方からキャリア
ガス導入管4を貫通させ、ネジ9を固定用ボルト7で螺
着固定する。その後、同様にして挿着孔1bに中間管3
を、挿着孔1cに外側管2を順次螺着し、次いでプラズ
マガス供給管5、シースガス供給管6を夫々挿着孔1
d,1eに接線方向に設けたネジ部1f,1gに挿着し
螺着する。なお、外側管2の内周面と中間管3の外周面
との間は、供給するガスの速度を増して冷却効率を高め
るため約1mmの小間隙となっている。11は外側管2
の下方外周に設けた高周波誘導コイルであり、図示して
いないが高周波電源装置に接続されている。12はプラ
ズマ炎である。
In this way, concentric circles 1a to 1 are formed inside.
An outer tube 2, an intermediate tube 3, and a carrier gas introduction tube, which are each formed in a cylindrical shape by using a boron nitride sintered body, on a cylindrical support body 1 made of a boron nitride sintered body in which an insertion hole of e is formed. 4 and plasma gas supply pipe 5, sheath gas supply pipe 6
In order to attach, the carrier gas introduction pipe 4 is first passed through the insertion hole 1a from below, and the screw 9 is screwed and fixed by the fixing bolt 7. After that, similarly, the intermediate pipe 3 is inserted into the insertion hole 1b.
The outer tube 2 is sequentially screwed into the insertion hole 1c, and then the plasma gas supply pipe 5 and the sheath gas supply pipe 6 are respectively inserted into the insertion hole 1c.
The threaded portions 1f and 1g provided tangentially to d and 1e are inserted and screwed. A small gap of about 1 mm is provided between the inner peripheral surface of the outer tube 2 and the outer peripheral surface of the intermediate tube 3 in order to increase the speed of the supplied gas and enhance the cooling efficiency. 11 is the outer tube 2
Is a high frequency induction coil provided on the lower outer periphery of, and is connected to a high frequency power supply (not shown). 12 is a plasma flame.

【0011】上記の溶射装置にて、この発明の電解コン
デンサの生成は次のように行われる。まず、該装置の下
方であって、該装置で発生するプラズマ炎12の下部に
ホルダ基材13を配置し、その上にエッチングされた4
0〜200μmのアルミニウム箔14を配置する。そし
てプラズマガス供給管5からキャリアガス導入管4と中
間管3との間にアルゴンガスなどのプラズマガスを5リ
ッター/分で供給し、シースガス供給管6から中間管3
と外側管2との間にアルゴンガスなどのシースガスを2
0リッター/分で供給し、キャリアガス導入管4から2
リッター/分のキャリアガスとともに、粒径が1〜2μ
mの酸化チタン微粉粒体を1〜2g/分供給する状態
で、高周波誘導コイル11に3kW.13.56MHz
の高周波電力を印加すると、左右にバランスのとれた正
常なプラズマ炎12が発生して、キャリアガスとともに
供給された酸化チタン微粉粒体が加熱溶融され、アルミ
ニウム箔14上に厚み1〜2μmの酸化チタン層の溶射
皮膜15が得られた。
In the above thermal spraying apparatus, the electrolytic capacitor of the present invention is produced as follows. First, the holder base material 13 is arranged below the apparatus and below the plasma flame 12 generated in the apparatus, and the holder base material 13 is etched on the holder base material 13.
An aluminum foil 14 having a thickness of 0 to 200 μm is arranged. Then, a plasma gas such as argon gas is supplied from the plasma gas supply pipe 5 between the carrier gas introduction pipe 4 and the intermediate pipe 3 at 5 liters / minute, and the sheath gas supply pipe 6 supplies the intermediate pipe 3 with the plasma gas.
A sheath gas such as argon gas is placed between the outer tube 2 and the outer tube 2.
Supply at 0 liters / minute, from carrier gas inlet pipe 4 to 2
Particle size is 1-2μ with carrier gas / liter
m of the titanium oxide fine particles is supplied to the high frequency induction coil 11 at a rate of 3 kW. 13.56MHz
When a high-frequency power is applied, a well-balanced normal plasma flame 12 is generated, the fine particles of titanium oxide supplied together with the carrier gas are heated and melted, and the aluminum foil 14 is oxidized to a thickness of 1 to 2 μm. A sprayed coating 15 of titanium layer was obtained.

【0012】このようにして、酸化チタン皮膜が生成さ
れたアルミニウム箔をホウ酸又はホウ酸アンモニウムの
水溶液を電解液として陽極酸化を行う。そして、陽性酸
化を施した陽極箔と陽極酸化を施していない陰極箔との
間に電解質を設けこれを封止する。
In this way, the aluminum foil on which the titanium oxide film is formed is anodized by using an aqueous solution of boric acid or ammonium borate as an electrolytic solution. Then, an electrolyte is provided between the positively-oxidized anode foil and the non-anodized cathode foil, and the electrolyte is sealed.

【0013】このようにして形成された電解コンデンサ
は、図2の拡大断面図で示すように陽性酸化されたアル
ミニウム箔14の表面に酸化チタン皮膜15が形成され
ており、表面積が酸化チタン皮膜15の分増加すること
になる。また、皮膜が比誘電率の高い酸化チタンで構成
されているので、電解コンデンサの容量を高めることが
できる。さらにインダクションプラズマ溶射はプラズマ
流速がDCプラズマ溶射に比較してゆるやかで、かつ短
時間に溶射されるので溶射によってアルミニウム箔の過
熱による損傷は認められなかった。
In the electrolytic capacitor thus formed, the titanium oxide film 15 is formed on the surface of the positively oxidized aluminum foil 14 as shown in the enlarged sectional view of FIG. Will be increased by the amount. Further, since the film is made of titanium oxide having a high relative dielectric constant, the capacity of the electrolytic capacitor can be increased. Further, since the plasma velocity of the induction plasma spraying is slower than that of the DC plasma spraying and the spraying is performed in a short time, no damage due to overheating of the aluminum foil was observed due to the spraying.

【0014】上記実施例では、アルミニウム箔をエッチ
ングした後、酸化チタンをインダクションプラズマで溶
射しこの後陽極酸化させていたが、アルミニウム箔をエ
ッチングした後、陽極酸化を施しこの陽極酸化を施した
アルミニウム箔の表面に酸化チタンをインダクションプ
ラズマにより溶射し、酸化チタン皮膜を生成させてもよ
い。また、上記インダクションプラズマ溶射は大気中で
行っているが、減圧中でインダクションプラズマ溶射を
行うこともできる。
In the above embodiment, after etching the aluminum foil, titanium oxide was sprayed by induction plasma and then anodized. However, after etching the aluminum foil, the anodized aluminum was anodized. Titanium oxide may be sprayed onto the surface of the foil by induction plasma to form a titanium oxide film. Further, although the above-mentioned induction plasma spraying is performed in the atmosphere, the induction plasma spraying may be performed under reduced pressure.

【0015】[0015]

【特許の効果】以上説明したように、この発明は酸化チ
タン粉体をインダクションプラズマのプラズマ炎で加熱
溶融させて溶射して、アルミニウム箔表面に酸化チタン
皮膜を形成することによって、展延性に富みかつ安価に
アルミニウム表面に比誘電率の優れた酸化チタン皮膜を
形成させることができ、さらにその表面積を増加させる
ことができ、低廉かつ高性能の電解コンデンサを得るこ
とができる。また、従来の生成による電解コンデンサと
比較して、同じ容量は小型化することができる。
As described above, according to the present invention, the titanium oxide powder is heated and melted by the plasma flame of the induction plasma and sprayed to form the titanium oxide film on the aluminum foil surface. In addition, a titanium oxide film having an excellent relative dielectric constant can be formed on the aluminum surface at low cost, and the surface area can be increased, so that an inexpensive and high-performance electrolytic capacitor can be obtained. Also, the same capacitance can be miniaturized as compared to conventional electrolytic capacitors produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明で用いるインダクションプラズマ溶射
装置の一例を示す縦断面図である。
FIG. 1 is a vertical sectional view showing an example of an induction plasma spraying apparatus used in the present invention.

【図2】この発明で得られた酸化チタン皮膜を生成した
アルミニウム箔の拡大断面図である。
FIG. 2 is an enlarged cross-sectional view of an aluminum foil having a titanium oxide film produced by the present invention.

【符号の説明】[Explanation of symbols]

1 支持体 2 外側管 3 中間管 4 キャリアガス導入管 5 プラズマガス供給管 6 シースガス供給管 11 高周波誘導コイル 12 プラズマ炎 13 ホルダ基材 14 アルミニウム箔 15 酸化チタン皮膜 1 Support 2 Outer Tube 3 Intermediate Tube 4 Carrier Gas Introducing Tube 5 Plasma Gas Supply Tube 6 Sheath Gas Supply Tube 11 High Frequency Induction Coil 12 Plasma Flame 13 Holder Base Material 14 Aluminum Foil 15 Titanium Oxide Film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橘 秀久 大阪府大阪市東淀川区淡路2丁目14番3号 株式会社三社電機製作所内 (72)発明者 村田 裕康 大阪府大阪市東淀川区淡路2丁目14番3号 株式会社三社電機製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hidehisa Tachibana, 2-14-3 Awaji, Higashiyodogawa-ku, Osaka, Osaka Prefecture Sansha Electric Manufacturing Co., Ltd. (72) Hiroyasu Murata 2-chome, Awaji, Higashiyodogawa, Osaka-shi, Osaka No.14-3 Sansha Electric Manufacturing Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化チタン微粉粒体をインダクションプ
ラズマトーチ内にて加熱溶融し、このインダクションプ
ラズマトーチ下方に配置したアルミニウム箔表面に上記
加熱溶融した酸化チタン微粉粒体を溶射することを特徴
とする電解コンデンサの生成方法。
1. The titanium oxide fine particles are heated and melted in an induction plasma torch, and the heat-melted titanium oxide fine particles are sprayed onto the surface of an aluminum foil arranged below the induction plasma torch. Method for producing electrolytic capacitor.
JP7764293A 1993-03-10 1993-03-10 Manufacture of electrolytic capacitor Pending JPH06267800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7764293A JPH06267800A (en) 1993-03-10 1993-03-10 Manufacture of electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7764293A JPH06267800A (en) 1993-03-10 1993-03-10 Manufacture of electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH06267800A true JPH06267800A (en) 1994-09-22

Family

ID=13639552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7764293A Pending JPH06267800A (en) 1993-03-10 1993-03-10 Manufacture of electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH06267800A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091318A1 (en) * 2004-03-24 2005-09-29 Showa Denko K.K. Electrode sheet for capacitors, method for manufacturing the same, and electrolytic capacitor
WO2006038740A1 (en) * 2004-10-08 2006-04-13 Showa Denko K.K. Electrode sheet for capacitors, method of manufacturing the same, and electrolytic capacitor
JP2008205112A (en) * 2007-02-19 2008-09-04 Fujitsu Ltd Electrolytic capacitor and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091318A1 (en) * 2004-03-24 2005-09-29 Showa Denko K.K. Electrode sheet for capacitors, method for manufacturing the same, and electrolytic capacitor
WO2006038740A1 (en) * 2004-10-08 2006-04-13 Showa Denko K.K. Electrode sheet for capacitors, method of manufacturing the same, and electrolytic capacitor
JP2008205112A (en) * 2007-02-19 2008-09-04 Fujitsu Ltd Electrolytic capacitor and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5749769B2 (en) High frequency antenna unit and plasma processing apparatus
JP5372149B2 (en) Method and equipment for depositing a film on a support
SG185744A1 (en) Reduction of copper or trace metal contaminants in plasma electrolytic oxidation coatings
US7410509B2 (en) Sputtered ruthenium oxide coatings in electrolytic capacitor
Nishimura et al. A new PBIID processing system supplying RF and HV pulses through a single feed-through
JP2006135310A (en) Electrode sheet for capacitor and its manufacturing method, and electrolytic capacitor
US20050136786A1 (en) Hollow cathodes with getter layers on inner and outer surfaces
JP4874488B2 (en) High frequency matching network
JPH06267800A (en) Manufacture of electrolytic capacitor
GB2317265A (en) Radio frequency plasma generator
JPS6215813A (en) Anode material for electrolytic capacitor
JPH06299315A (en) Surface modifying method for aluminum and titanium
US3356912A (en) Porous electrode
JPH05190400A (en) High capacitance electrolytic capacitor electrode material and its manufacturing method
JPH0782918B2 (en) Induction plasma torch
KR20060135831A (en) Electrode sheet for capacitors, method for manufacturing the same, and electrolytic capacitor
JP2004211122A (en) Highly voltage resistant member
CN1103900A (en) Synthesis of diamond film with double cathode glow discharge
JPS5937564B2 (en) Method for forming end face electrodes of electronic components
JP2592025B2 (en) Induction plasma torch for decompression
JPH03131014A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH03131013A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH0782917B2 (en) Induction plasma torch
JPH0330410A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH0414809A (en) Manufacture of aluminum electrode for electrolytic capacitor use