JPH06299315A - Surface modifying method for aluminum and titanium - Google Patents

Surface modifying method for aluminum and titanium

Info

Publication number
JPH06299315A
JPH06299315A JP5112316A JP11231693A JPH06299315A JP H06299315 A JPH06299315 A JP H06299315A JP 5112316 A JP5112316 A JP 5112316A JP 11231693 A JP11231693 A JP 11231693A JP H06299315 A JPH06299315 A JP H06299315A
Authority
JP
Japan
Prior art keywords
aluminum
plasma
titanium
pipe
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5112316A
Other languages
Japanese (ja)
Inventor
Kunio Yomo
邦夫 四方
Nobuyuki Yamaji
信幸 山地
Jun Okada
順 岡田
Emirio Fujiwara
エミリオ 藤原
Hidehisa Tachibana
秀久 橘
Hiroyasu Murata
裕康 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP5112316A priority Critical patent/JPH06299315A/en
Publication of JPH06299315A publication Critical patent/JPH06299315A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To easily form a film of metal oxides excellent in various kinds of properties on the surface of AN or Ti by thermally spraying metal oxides on the surface of Al or Ti by an induction plasma torch. CONSTITUTION:An induction plasma thermal spraying device consists of a support body 1, an outside pipe 2 and an intermediate pipe 3 made of a boron nitride sintered compact and is equipped with a high frequency induction heating coil 11. Below it, an At foil to be treated 14 is put on a holder 13 made of a ceramic plate and gas, such as Ar is fed to it from a plasma gas feeding introducing pipe 4 and a seal gas feeding pipe 6 and also TiO2 powder in the shape of fine particles is fed together with carrier gas from a carrier gas introducing pipe 4 and high frequency power is applied to the high frequency induction coil 11 to generate a plasma flame 12. The TiO2 powder is melted by the plasma flame 12 to stably form a TiO2 film 15 excellent in chemical resistance, hardness, etc., on the surface of the Al foil 14 on the holder 13 moving in the X-Y direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム叉はチタ
ニウムの表面にアルミニウム叉はチタニウム酸化物以外
の皮膜を形成し、表面改質する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a film other than aluminum or titanium oxide on the surface of aluminum or titanium and modifying the surface.

【0002】[0002]

【従来の技術】従来からアルミニウム叉はチタニウムの
表面を表面改質する方法にめっきによって異種金属を被
覆するか、あるいは陽極酸化法によってアルミニウム叉
はチタニウム酸化皮膜を形成する方法があり、これらが
採用されている。
2. Description of the Related Art Conventionally, as a method of surface-modifying the surface of aluminum or titanium, there is a method of coating a dissimilar metal by plating or a method of forming an aluminum or titanium oxide film by an anodic oxidation method. Has been done.

【0003】[0003]

【発明が解決しようとする課題】しかし、めっきによる
表面改質方法では、被覆する皮膜の材質は溶液中で電離
する物質に限定され、また、アルミニウム叉はチタニウ
ムを基材とするめっきは甚だ困難であった。また、陽極
酸化による表面改質方法では、皮膜は基材のアルミニウ
ム叉はチタニウムの酸化物皮膜に限定され、異種物質に
よる皮膜を形成することはできなかった。
However, in the surface modification method by plating, the material of the coating film is limited to the substance which is ionized in the solution, and the plating based on aluminum or titanium is very difficult. Met. Further, in the surface modification method by anodic oxidation, the film is limited to the aluminum or titanium oxide film of the base material, and it is not possible to form a film of a different substance.

【0004】たとえば、アルミニウム箔表面にアルミニ
ウム酸化物以外の特性をもった酸化皮膜、例えばチタン
皮膜,酸化ストロンチウム皮膜を形成しようとしても上
記の表面改質方法では不可能であった。
For example, even if it is attempted to form an oxide film having characteristics other than aluminum oxide, such as a titanium film or a strontium oxide film, on the surface of an aluminum foil, it is impossible with the above surface modification method.

【0005】[0005]

【課題を解決するための手段】この発明は、金属又は金
属酸化物の微粉粒体をインダクションプラズマトーチ内
にて加熱溶融し、このインダクションプラズマトーチ下
方に配置したアルミニウム叉はチタニウム表面に上記加
熱溶融した上記金属又は上記金属酸化物の微粉粒体を溶
射しアルミニウム叉はチタニウムの表面改質するもので
ある。
The present invention is directed to heating and melting fine particles of metal or metal oxide in an induction plasma torch, and heating and melting the aluminum or titanium surface arranged below the induction plasma torch. The fine particles of the above metal or the above metal oxide are sprayed to modify the surface of aluminum or titanium.

【0006】また、アルミニウム叉はチタニウムが、厚
さ40〜1000μmのアルミニウム箔叉はチタニウム
箔であり、上記微粒粉体が金属酸化物であるアルミニウ
ム叉はチタニウムの表面改質するものである。
Further, aluminum or titanium is an aluminum foil or titanium foil having a thickness of 40 to 1000 μm, and the fine powder is a metal oxide for surface-modifying aluminum or titanium.

【作用】[Action]

【0007】この発明、金属又は金属酸化物の微粉粒体
がインダクションプラズマトーチ内のプラズマによって
加熱溶融される。このインダクションプラズマは、流速
が小さく、加熱溶融された金属又は金属酸化物の微粉粒
体が箔状のアルミニウム叉はチタニウムでもその表面に
ゆるやかに溶射され、アルミニウム叉はチタニウムに金
属又は金属酸化物皮膜が形成される。
According to the present invention, fine particles of metal or metal oxide are heated and melted by the plasma in the induction plasma torch. This induction plasma has a low flow velocity, and fine particles of metal or metal oxide that have been heated and melted are slowly sprayed onto the surface of foil-shaped aluminum or titanium, and aluminum or titanium is coated with a metal or metal oxide film. Is formed.

【0008】[0008]

【実施例】以下、この発明を実施例により詳細に説明す
るが、それに先立ってこの発明の方法を実施するに使用
する図1に示すインダクションプラズマ溶射装置につい
て説明する。図において、1は窒化ほう素焼結体を加工
して得た円筒形状の支持体であり、この支持体1の内部
には1a〜1eの多段の挿着孔が支持体1を旋盤等で孔
加工、ネジ切りを繰り返すことにより同心円状に設けら
れており、これらの挿着孔にキャリアガス導入管4、中
間管3、外側管2が嵌合螺着により固定されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to embodiments, but prior to this, the induction plasma spraying apparatus shown in FIG. 1 used for carrying out the method of the present invention will be described. In the figure, 1 is a cylindrical support obtained by processing a boron nitride sintered body, and inside this support 1, multi-stage insertion holes 1a to 1e are formed. It is provided concentrically by repeating machining and threading, and the carrier gas introducing pipe 4, the intermediate pipe 3, and the outer pipe 2 are fixed to the insertion holes by fitting screws.

【0009】この同心円状の支持体1に対する挿着孔の
形状は、まずキャリアガス導入管4を貫通挿着するため
の挿着孔1aを支持体1に貫通形成し、次に中間管3の
挿着孔1bを支持体1のほぼ中間の位置に挿着孔1aと
同心形状に形成し、その後外側管2の挿着孔1cを挿着
する。次いで、中間管3支持用挿着孔1bの上方に中間
管3の内径と同じか又は若干小径の挿着孔1dを、また
外側管2支持用挿着孔1cの上方に外側管2の内径と同
じか叉は若干小径の挿着孔1eを形成する。
The shape of the insertion hole for the concentric support body 1 is such that the insertion hole 1a for inserting the carrier gas introduction pipe 4 through is first formed through the support body 1, and then the intermediate pipe 3 is formed. The insertion hole 1b is formed at a position approximately in the middle of the support 1 so as to be concentric with the insertion hole 1a, and then the insertion hole 1c of the outer tube 2 is inserted. Next, an insertion hole 1d having the same or slightly smaller diameter as the inner diameter of the intermediate tube 3 is provided above the intermediate tube 3 supporting insertion hole 1b, and an inner diameter of the outer tube 2 is provided above the outer tube 2 supporting insertion hole 1c. An insertion hole 1e having the same diameter as or a slightly smaller diameter is formed.

【0010】このようにして内部に同心円状の1a〜1
eの挿着孔を形成した窒化ほう素焼結体製の円筒形状の
支持体1に、同じく窒化ほう素焼結体を用いてそれぞれ
円筒状に作った外側管2、中間管3、キャリアガス導入
管4及びプラズマガス供給管5、シースガス供給管6を
取り付けるには、まず挿着孔1aに下方からキャリアガ
ス導入管4を貫通させ、ネジ9を固定用ボルト7で螺着
固定する。その後、同様にして挿着孔1bに中間管3
を、挿着孔1cに外側管2を順次螺着し、次いでプラズ
マガス供給管5、シースガス供給管6を夫々挿着孔1
d,1eに接線方向に設けたネジ部1f,1gに挿着し
螺着する。なお、外側管2の内周面と中間管3の外周面
との間は、供給するガスの速度を増して冷却効率を高め
るため約1mmの小間隙となっている。11は外側管2
の下方外周に設けた高周波誘導コイルであり、図示して
いないが高周波電源装置に接続されている。12はプラ
ズマ炎である。
In this way, concentric circles 1a to 1 are formed inside.
An outer tube 2, an intermediate tube 3, and a carrier gas introduction tube, which are each formed in a cylindrical shape by using a boron nitride sintered body, on a cylindrical support body 1 made of a boron nitride sintered body in which an insertion hole of e is formed. 4 and the plasma gas supply pipe 5 and the sheath gas supply pipe 6 are attached, first, the carrier gas introduction pipe 4 is passed through the insertion hole 1a from below, and the screw 9 is screwed and fixed by the fixing bolt 7. After that, similarly, the intermediate pipe 3 is inserted into the insertion hole 1b.
The outer tube 2 is sequentially screwed into the insertion hole 1c, and then the plasma gas supply pipe 5 and the sheath gas supply pipe 6 are respectively inserted into the insertion hole 1c.
The threaded portions 1f and 1g provided tangentially to d and 1e are inserted and screwed. A small gap of about 1 mm is provided between the inner peripheral surface of the outer tube 2 and the outer peripheral surface of the intermediate tube 3 in order to increase the speed of the supplied gas and enhance the cooling efficiency. 11 is the outer tube 2
Is a high frequency induction coil provided on the lower outer periphery of, and is connected to a high frequency power supply (not shown). 12 is a plasma flame.

【0011】上記の溶射装置にて、この発明のアルミニ
ウムの表面改質方法は次のように行われる。まず、該装
置の下方約50mmであって、該装置で発生するプラズ
マ炎12の下部に厚さ5mmのセラミックス板のホルダ
基材13を配置し、その上に厚み40〜1000μm、
200mm角のアルミニウム箔を密着する。そしてプラ
ズマガス供給管5からキャリアガス導入管4と中間管3
との間にアルゴンガスなどのプラズマガスを5リッター
/分で供給し、シースガス供給管6から中間管3と外側
管2との間にアルゴンガスなどのシースガスを20リッ
ター/分で供給し、キャリアガス導入管4から2リッタ
ー/分のキャリアガスとともに、粒径が2〜30μmの
酸化チタン微粉粒体を1〜2g/分供給する状態で、高
周波誘導コイル11に3kW、13.56MHzの高周
波電力を印加すると、左右にバランスのとれた正常なプ
ラズマ炎12が発生して、キャリアガスとともに供給さ
れた酸化チタン微粉粒体が加熱溶融され、ホルダ基材を
X−Y方向に移動すると、アルミニウム箔14上に厚み
10〜100μmの酸化チタン層の溶射皮膜15が得ら
れた。
In the above thermal spraying apparatus, the aluminum surface modification method of the present invention is carried out as follows. First, a holder base material 13 of a ceramic plate having a thickness of 5 mm is arranged below the plasma flame 12 generated in the apparatus by about 50 mm below the apparatus, and the holder base material 13 having a thickness of 40 to 1000 μm is provided thereon.
A 200 mm square aluminum foil is closely attached. Then, from the plasma gas supply pipe 5 to the carrier gas introduction pipe 4 and the intermediate pipe 3
And a plasma gas such as argon gas at a rate of 5 liters / minute between them and a sheath gas such as argon gas at a rate of 20 liters / minute between the sheath gas supply tube 6 and the intermediate tube 3 and the outer tube 2. High-frequency power of 3 kW and 13.56 MHz is supplied to the high-frequency induction coil 11 in a state of supplying fine particles of titanium oxide having a particle size of 2 to 30 μm with 1 to 2 g / min from the gas introduction pipe 4 together with a carrier gas of 2 liters / min. When a normal plasma flame 12 that is well-balanced to the left and right is generated, the titanium oxide fine powder particles that are supplied together with the carrier gas are heated and melted, and the holder base material is moved in the XY directions. A sprayed coating 15 of titanium oxide layer having a thickness of 10 to 100 μm was obtained on the surface 14.

【0012】上記実施例では、アルミニウムの表面に酸
化チタン微粉粒体を溶射しているが、他の金属酸化物の
酸化ストロンチアム、あるいは酸化アルミニウムの微粉
粒体を溶射してもよく、また、銅などの金属微粉粒体を
溶射してもよい。さらに上記実施例では大気中で溶射し
ていたが、減圧中で溶射してもよい。
In the above embodiment, titanium oxide fine particles are sprayed on the surface of aluminum, but strontium oxide of another metal oxide or fine particles of aluminum oxide may be sprayed. You may spray the metal fine particles such as. Further, although thermal spraying is performed in the atmosphere in the above-mentioned embodiment, thermal spraying may be performed under reduced pressure.

【0013】上記実施例ではアルミニウムを基材にして
いたが、アルミニウムにほぼ等価なチタニウムを基材に
してもよい。
Although aluminum is used as the base material in the above embodiment, titanium, which is almost equivalent to aluminum, may be used as the base material.

【0014】[0014]

【発明の効果】以上説明したように、この発明はアルミ
ニウム叉はチタニウム表面をめっき,陽極酸化以外のイ
ンダクションプラズマによる溶射によって、異種金属又
は異種金属酸化物による皮膜を形成することができ、表
面に要求されていた特性、例えば耐薬品特性,硬度,接
触抵抗,誘電率,美観などの向上を、溶射する金属及び
金属酸化物によって行うことができることが期待され
る。さらに、インダクションプラズマ溶射はプラズマ流
速がDCプラズマに比較してゆるやかで、かつその溶射
が短時間に行われるのでアルミニウム叉はチタニウムが
箔の場合でも加熱によって損傷することはない。
As described above, according to the present invention, it is possible to form a film of a different metal or a different metal oxide on the surface of aluminum or titanium by plating or spraying with induction plasma other than anodic oxidation. It is expected that the required properties such as chemical resistance, hardness, contact resistance, dielectric constant and aesthetics can be improved by the sprayed metal and metal oxide. Furthermore, since the plasma velocity of the induction plasma spraying is gentler than that of the DC plasma and the spraying is performed in a short time, even if aluminum or titanium is a foil, it is not damaged by heating.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明で用いるインダクションプラズマ溶射
装置の一例を示す縦断面図である。
FIG. 1 is a vertical sectional view showing an example of an induction plasma spraying apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

1 支持体 2 外側管 3 中間管 4 キャリアガス導入管 5 プラズマガス供給管 6 シースガス供給管 11 高周波誘導コイル 12 プラズマ炎 13 ホルダ基材 14 アルミニウム箔 15 酸化チタン皮膜 1 Support 2 Outer Tube 3 Intermediate Tube 4 Carrier Gas Introducing Tube 5 Plasma Gas Supply Tube 6 Sheath Gas Supply Tube 11 High Frequency Induction Coil 12 Plasma Flame 13 Holder Base Material 14 Aluminum Foil 15 Titanium Oxide Film

フロントページの続き (72)発明者 藤原 エミリオ 大阪府大阪市東淀川区淡路2丁目14番3号 株式会社三社電機製作所内 (72)発明者 橘 秀久 大阪府大阪市東淀川区淡路2丁目14番3号 株式会社三社電機製作所内 (72)発明者 村田 裕康 大阪府大阪市東淀川区淡路2丁目14番3号 株式会社三社電機製作所内Front page continued (72) Inventor Emilio Fujiwara 2-14-3 Awaji, Higashiyodogawa-ku, Osaka City, Osaka Prefecture Sansha Electric Manufacturing Co., Ltd. (72) Hidehisa Tachibana 2-14-3 Awaji, Higashiyodogawa-ku, Osaka City, Osaka Prefecture No.3 Sansha Electric Co., Ltd. (72) Inventor Hiroyasu Murata 2-14-3 Awaji, Higashiyodogawa-ku, Osaka-shi, Osaka Sansha Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属又は金属酸化物の微粉粒体をインダ
クションプラズマトーチ内にて加熱溶融し、このインダ
クションプラズマトーチ下方に配置したアルミニウム叉
はチタニウム表面に上記加熱溶融した上記金属又は上記
金属酸化物の微粉粒体を溶射することを特徴とするアル
ミニウムの表面改質方法。
1. A metal or a metal oxide obtained by heating and melting a fine powder of a metal or a metal oxide in an induction plasma torch, and heating and melting the aluminum or titanium surface disposed below the induction plasma torch. 2. A method for modifying the surface of aluminum, which comprises spraying fine particles of
【請求項2】 請求項1の上記アルミニウム叉はチタニ
ウムが、厚さ40〜1000μmのアルミニウム箔叉は
チタニウム箔であり、上記微粉粒体が金属酸化物である
アルミニウム及びチタニウムの表面改質方法。
2. A surface modification method for aluminum and titanium, wherein the aluminum or titanium of claim 1 is an aluminum foil or titanium foil having a thickness of 40 to 1000 μm, and the fine particles are a metal oxide.
JP5112316A 1993-04-14 1993-04-14 Surface modifying method for aluminum and titanium Pending JPH06299315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5112316A JPH06299315A (en) 1993-04-14 1993-04-14 Surface modifying method for aluminum and titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5112316A JPH06299315A (en) 1993-04-14 1993-04-14 Surface modifying method for aluminum and titanium

Publications (1)

Publication Number Publication Date
JPH06299315A true JPH06299315A (en) 1994-10-25

Family

ID=14583622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5112316A Pending JPH06299315A (en) 1993-04-14 1993-04-14 Surface modifying method for aluminum and titanium

Country Status (1)

Country Link
JP (1) JPH06299315A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302624A (en) * 1997-04-22 1998-11-13 Plansee Ag Manufacture of x-ray tube anode
US6808755B2 (en) 1999-10-20 2004-10-26 Toyota Jidosha Kabushiki Kaisha Thermal spraying method and apparatus for improved adhesion strength
NO344479B1 (en) * 2004-04-30 2020-01-13 Deutsches Zentrum Fuer Luft Und Raumfahrt Ev Procedure for coating a hard substance, and jet rudder.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302624A (en) * 1997-04-22 1998-11-13 Plansee Ag Manufacture of x-ray tube anode
US6808755B2 (en) 1999-10-20 2004-10-26 Toyota Jidosha Kabushiki Kaisha Thermal spraying method and apparatus for improved adhesion strength
US6913207B2 (en) 1999-10-20 2005-07-05 Toyota Jidosha Kabushiki Kaisha Thermal spraying method and apparatus for improved adhesion strength
NO344479B1 (en) * 2004-04-30 2020-01-13 Deutsches Zentrum Fuer Luft Und Raumfahrt Ev Procedure for coating a hard substance, and jet rudder.

Similar Documents

Publication Publication Date Title
CA2482287C (en) An apparatus and process for solid-state deposition and consolidation of high velocity powder particles using thermal plastic deformation
US4982067A (en) Plasma generating apparatus and method
US3839618A (en) Method and apparatus for effecting high-energy dynamic coating of substrates
EP1979101B1 (en) Method and apparatus for low-temperature plasma sintering
US5144110A (en) Plasma spray gun and method of use
US5844192A (en) Thermal spray coating method and apparatus
US20120261391A1 (en) Atmospheric pressure plasma method for producing surface-modified particles and coatings
JP4637819B2 (en) Method and apparatus for manufacturing a sputtering target
JPH07501855A (en) How to create a strong bond between copper layer and ceramic
Nishimura et al. A new PBIID processing system supplying RF and HV pulses through a single feed-through
JPH06299315A (en) Surface modifying method for aluminum and titanium
JP2006520088A (en) Method and apparatus for pretreatment of substrates to be bonded
Khan et al. A new strategy of using dielectric barrier discharge plasma in tubular geometry for surface coating and extension to biomedical application
JP4416402B2 (en) Plasma device for forming functional layer and method for forming functional layer
JPH04214007A (en) Method and apparatus for producing oxide superconducting film
JPH02504291A (en) CVD method for depositing layers on conductive thin layer structures
JP4617480B2 (en) Substrate with minute lines
US6521858B1 (en) Plasma enhanced plate bonding method and device
EP0448098A2 (en) Method of generating a heat-plasma and coating apparatus employing said method
JPH06267800A (en) Manufacture of electrolytic capacitor
JP4769932B2 (en) Substrate with minute dots
US6555778B1 (en) Plasma enhanced sheet bonding method and device
JP4085000B2 (en) How to generate a functional layer
JP2004211122A (en) Highly voltage resistant member
JP4565244B2 (en) Microplasma deposition method and apparatus