JPH06267700A - Alpha-undulator - Google Patents

Alpha-undulator

Info

Publication number
JPH06267700A
JPH06267700A JP5373893A JP5373893A JPH06267700A JP H06267700 A JPH06267700 A JP H06267700A JP 5373893 A JP5373893 A JP 5373893A JP 5373893 A JP5373893 A JP 5373893A JP H06267700 A JPH06267700 A JP H06267700A
Authority
JP
Japan
Prior art keywords
magnetic field
magnet
undulator
magnetic
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5373893A
Other languages
Japanese (ja)
Inventor
Toru Okazaki
徹 岡▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5373893A priority Critical patent/JPH06267700A/en
Publication of JPH06267700A publication Critical patent/JPH06267700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To provide a simple structural undulator for emitting radiation light by deflecting electron beams in a short cycle. CONSTITUTION:Magnetic fields B1 and B2 having the same magnetic flux direction and located perpendicular to the traveling direction of electron beams are generated at the locations, d apart from each other, by positioning a magnet 1 and a magnet 2 in parallel. Under this state, an electron e<-> enters the first magnetic field B1 at an incident angle of theta to deflect the electron e<-> by (180-theta) deg. degrees at this point. The deflected electron e enters the second magnetic field B2 to the deflect the electron e<-> by (180+2theta) deg. degrees at this point. The electron e<-> again enters the first magnetic field B1 at an angle of theta. Repeating this process forms an electron movement locus as shown in the diagram to reduce a wave pitch (cyclic length) lambdaw. Small size and simplified structure are available due to the low number of used magnets. theta is freely changed. Thus, advantages such as variable lambdaw are available.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子ビームをその移動
軌跡がα文字の繰り返しとなるような状態に偏向して放
射光を取出すαアンジュレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an .alpha.-undulator for deflecting an electron beam into a state in which its locus of movement is .alpha.

【0002】[0002]

【従来の技術】従来のアンジュレータは、電子ビームの
進路上に交番磁界を発生させ、この交番磁界により電子
の運動にうねりを生じさせて電磁波を発生させている。
このようなアンジュレータの具体例としては、例えば、
月刊フィジクスVo11.4No.5、1983に自由
電子レーザ用アンジュレータについての詳しい記述があ
る。
2. Description of the Related Art A conventional undulator generates an alternating magnetic field on the path of an electron beam, and the alternating magnetic field causes undulations in the movement of electrons to generate an electromagnetic wave.
As a specific example of such an undulator, for example,
Monthly Physics Vo11.4 No. 5, 1983 has a detailed description of undulators for free electron lasers.

【0003】この文献に示されているアンジュレータを
図8に示す。同図(a)に示すように、極性の異なる磁
石Mを交互に上下2段に配列すると上下の対向磁極面間
に発生する磁界が交互に逆向きになり、同図(b)に示
すように、電子e- がY軸〔図8(a)参照〕に対して
垂直な面内でX軸方向に振れて蛇行し、シンクロトロン
軌道放射と同じ理屈で放射光が発生する。
The undulator shown in this document is shown in FIG. As shown in FIG. 7A, when the magnets M having different polarities are alternately arranged in the upper and lower two stages, the magnetic fields generated between the upper and lower opposed magnetic pole faces are alternately reversed, and as shown in FIG. In addition, the electron e swings in the direction of the X axis in a plane perpendicular to the Y axis (see FIG. 8A) and meanders, and synchrotron radiation is generated in the same reason as the synchrotron orbital radiation.

【0004】なお、このアンジュレータの原理は、現在
も図8のものと基本的には大して変わっていない。例え
ば、本出願人が特願平4−207917号で提案してい
るものも交番磁界を用いて電子ビーム波打たせる方法を
採っている。
The principle of the undulator is basically the same as that of FIG. 8 at present. For example, the one proposed by the present applicant in Japanese Patent Application No. 4-207917 also employs a method of waving an electron beam using an alternating magnetic field.

【0005】[0005]

【発明が解決しようとする課題】従来のアンジュレータ
は、交番磁界を作るために電子ビームの進路上に図8に
示すように異極性の磁石を一定ピッチで交互に並べてい
る。このため、電子の波のピッチλ0 〔図8(b)〕を
短かくするには物理的限界があり、なおかつそのλ0
磁石の配列ピッチと同じ値に固定されると云う問題があ
った。
In the conventional undulator, magnets of opposite polarities are alternately arranged at a constant pitch on the path of the electron beam in order to create an alternating magnetic field, as shown in FIG. Therefore, there is a physical limit to shortening the electron wave pitch λ 0 [FIG. 8 (b)], and there is a problem that λ 0 is fixed to the same value as the magnet arrangement pitch. It was

【0006】また、多数の磁石を使用するため、磁石の
保持構造なども非常に複雑になっている。本発明は、こ
れ等の問題点を無くすことを課題としている。
Further, since a large number of magnets are used, the structure for holding the magnets is very complicated. An object of the present invention is to eliminate these problems.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
め、本発明においては、2組の対向磁極面間に磁束の向
きが同一であり、かつ、電子ビームの進行方向に対して
共に垂直である第1磁場と第2磁場を発生させる。そし
て、第1磁場に入射角θで進入させた電子ビームを第1
磁場中で(180−2)°偏向して第2磁場に向かわ
せ、さらに、この第2磁場にθの角度で進入した電子ビ
ームを(180+2θ)°偏向して1つ手前の第1磁場
への進入点からλw離れた位置で第1磁場にθの角度で
再進入させ、この動作を繰り返して放射光を取出す構成
にする。
In order to solve the above-mentioned problems, in the present invention, the directions of magnetic flux are the same between two sets of opposed magnetic pole faces, and both are perpendicular to the traveling direction of the electron beam. To generate a first magnetic field and a second magnetic field. Then, the electron beam that has entered the first magnetic field at the incident angle θ is
In the magnetic field, it is deflected by (180-2) ° toward the second magnetic field, and the electron beam entering this second magnetic field at an angle of θ is deflected by (180 + 2θ) ° to the first magnetic field one before. The first magnetic field is re-entered at an angle of θ at a position λw away from the entry point, and the operation is repeated to extract the emitted light.

【0008】なお、このαアンジュレータにおける2組
の対向磁極面は、2組の磁石を用いてそれぞれの磁石に
別々に形成してもよいし、1つの磁石に一体的に形成し
てもよい。また、1つの磁石に形成する場合には、1組
の対向磁極面間に電子ビームの通路を有する磁気シール
ド材を配置し、この磁気シールド材の左右に前記対向磁
極面の一部を張り出させる方法でも作り出すことができ
る。
The two sets of opposing magnetic pole surfaces in this α undulator may be formed separately for each magnet by using two sets of magnets, or may be formed integrally with one magnet. In the case of forming one magnet, a magnetic shield material having an electron beam path is arranged between a pair of opposed magnetic pole surfaces, and a part of the opposed magnetic pole surface is projected to the left and right of this magnetic shield material. It can also be created by the method of making.

【0009】また、本発明のαアンジュレータは、第2
磁場の電子ビーム入射点における第1磁場からの離反量
を階段状に変化させる構成のものも考えられる。その階
段状変化は、第1、第2磁石を用いて前者で第1磁場
を、後者で第2磁場を各々発生させる場合には、第2磁
石を電子ビームの進路方向に複数に分割することができ
るので、分割磁石に位置調整機構を付随させて変化量を
可変にすることが可能である。
The α undulator of the present invention is the second
A configuration in which the amount of separation of the magnetic field from the first magnetic field at the electron beam incident point is changed stepwise can also be considered. The stepwise change is that when the first magnetic field is generated by the former and the second magnetic field is generated by the latter by using the first and second magnets, the second magnet is divided into a plurality of paths in the direction of the electron beam. Therefore, it is possible to change the amount of change by attaching a position adjusting mechanism to the split magnet.

【0010】このほか、本発明で使用する磁石は、永久
磁石、電磁石のどちらかであってもよい。
In addition, the magnet used in the present invention may be either a permanent magnet or an electromagnet.

【0011】[0011]

【作用】電子ビームは、第1磁場中で(180−2θ)
°、第2磁場中で(180−2θ)°偏向され、1周期
の合計偏向角が180°になる。そのため、電子の飛行
軌跡はαの文字を繰り返して画くような形になり、これ
によって短周期のアンジュレータが実現される。
Operation: The electron beam is (180-2θ) in the first magnetic field.
Deflection is performed by (180-2θ) ° in the second magnetic field, and the total deflection angle of one cycle becomes 180 °. Therefore, the flight trajectory of the electron becomes a shape in which the character of α is repeatedly drawn, which realizes a short-cycle undulator.

【0012】また、第1、第2磁場間の距離、磁場に対
する電子ビーム入射角のどちらかを変えると入射ピッチ
(=周期長)λwが変わり、従って、全体の周期長も可
変になる。
Further, if either the distance between the first and second magnetic fields or the incident angle of the electron beam with respect to the magnetic field is changed, the incident pitch (= period length) λw changes, so that the overall period length also becomes variable.

【0013】さらに、第2磁場の電子ビーム入射点にお
ける第1磁場からの離反量dを階段状に変化させると、
同一アンジュレータ内で部分的に周期長が変化し、その
ため、基本設計を大きく変えずに仕様の異なるアンジュ
レータを作ると云ったことも可能になる。
Further, when the amount of separation d from the first magnetic field at the electron beam incident point of the second magnetic field is changed stepwise,
The period length partially changes within the same undulator, so it is possible to say that undulators with different specifications can be made without significantly changing the basic design.

【0014】このほか、使用する磁石の数が従来のもの
に比べて少なくて済むので保持機構等の複雑化も回避で
きる。なお、作用の詳細は、実施例の項で述べる。
In addition, since the number of magnets used is smaller than that of the conventional one, it is possible to avoid complication of the holding mechanism and the like. The details of the operation will be described in the section of Examples.

【0015】[0015]

【実施例】図1〜図5に本発明のαアンジュレータの実
施例を示す。
1 to 5 show an embodiment of an .alpha. Undulator of the present invention.

【0016】図1のアンジュレータは、2組のC型断面
の磁石1、2を、図のように平行に向かい合わせ、図中
の座標系でX軸方向にd離反させて台3にねじ止めして
いる。各磁石1、2はY軸方向に着磁されており、その
極性は同一である。この磁石1、2が作り出す磁場の強
さは同一である必要はない。
In the undulator of FIG. 1, two sets of magnets 1 and 2 having a C-shaped cross section are opposed to each other in parallel as shown in the figure, and are separated from each other in the X-axis direction by a coordinate system in the figure and screwed to a base 3. is doing. The magnets 1 and 2 are magnetized in the Y-axis direction and have the same polarity. The strengths of the magnetic fields generated by the magnets 1 and 2 do not have to be the same.

【0017】このαアンジュレータは、ここでは磁石1
が第1磁場を作るようにしてあり、従って、ライナック
等の加速器から取出された電子e- は図のように入射さ
れる。θは中心軸Cを基準にした第1磁場への電子入射
角度を示している。なお、実際には電子は真空ダクト内
を飛行するが、図はそのダクトを省略している。
This α undulator is a magnet 1 here.
Generate a first magnetic field, so that the electron e extracted from the accelerator such as a linac is injected as shown in the figure. θ indicates the angle of electron incidence on the first magnetic field with reference to the central axis C. Although the electrons actually fly in the vacuum duct, the duct is omitted in the figure.

【0018】図2のαアンジュレータは、図1のC型断
面の磁石1、2を、それぞれ2個の長方形断面の磁石
4、5に置き換えたものであって、機能は図1のものと
同じである。
The α undulator of FIG. 2 is obtained by replacing the magnets 1 and 2 having the C-shaped cross section of FIG. 1 with two magnets 4 and 5 having the rectangular cross section, respectively, and the function is the same as that of FIG. Is.

【0019】図3のαアンジュレータは、磁石1、2間
の間隔(=第1、第2磁場間の間隔)dを階段状に変化
させたものを示している。ここでは、長手方向途中の間
隔d1 を(d+a)にしてある。この構成にすると、図
1、2のアンジュレータとは異なる効果がもたらされ
る。
The α undulator shown in FIG. 3 shows that the distance d between the magnets 1 and 2 (= the distance between the first and second magnetic fields) d is changed stepwise. Here, the distance d 1 in the middle of the longitudinal direction is (d + a). With this configuration, an effect different from that of the undulator of FIGS.

【0020】間隔dの変化量aは、固定、可変のどちら
にもすることができる。ここでは、台3に設ける固定ボ
ルトの挿入穴(図示せず)をX軸方向の長穴とし、その
長穴の許容範囲で3分割した磁石2をそれぞれX軸方向
に動かして固定できるようにしている。図3は中央の分
割磁石のみをa動かしているが、dの値は電子の入口側
から出口側に向かって段々と変わっていくように設定し
てもよい。変化量aを1つの値に固定にする場合には、
可変調整機構は勿論不要であるし、磁石を分割すること
自体も必須ではなくなる。
The change amount a of the distance d can be fixed or variable. Here, an insertion hole (not shown) of a fixing bolt provided on the base 3 is an elongated hole in the X-axis direction, and the magnets 2 divided into 3 within the allowable range of the elongated hole can be moved and fixed in the X-axis direction. ing. In FIG. 3, only the central split magnet is moved by a, but the value of d may be set to gradually change from the electron inlet side to the electron outlet side. When fixing the variation amount a to one value,
Of course, the variable adjustment mechanism is unnecessary, and dividing the magnet itself is not essential.

【0021】図2のαアンジュレータも、同様にして離
反量dを階段状に変化させることができる。
The α-undulator of FIG. 2 can also change the separation amount d in a stepwise manner in the same manner.

【0022】図4のαアンジュレータは、第1磁場を作
る対向磁極面と第2磁場を作る対向磁極面を1つの磁石
6に一体に形成したものである。このアンジュレータ
は、磁石の保持が簡単であり、第1、第2磁場の平行度
も出し易い。
In the α undulator of FIG. 4, the opposing magnetic pole surface for producing the first magnetic field and the opposing magnetic pole surface for producing the second magnetic field are integrally formed in one magnet 6. In this undulator, the magnet can be easily held and the parallelism of the first and second magnetic fields can be easily obtained.

【0023】図5のαアンジュレータも、同様に1つの
磁石によって第1、第2の磁場を作り出すものである。
磁石7は1組の幅の広い対向磁極面を有し、その磁極面
間の空間に一様な磁場を発生させる。その対向磁極面間
に図のように磁気シールド材8を挿入すると、この磁気
シールド材の左右にはみ出た対向磁極面間に図5(c)
に示す第1磁場B1、第2磁場B2が作り出される。磁
気シールド材8は磁性体で形成されており、その胴部に
は図5(b)に示すようにY軸と直角な面内でX、Zの
2軸方向に延びる貫通穴8aがあけられている。
Similarly, the α-undulator of FIG. 5 also produces the first and second magnetic fields by one magnet.
The magnet 7 has a pair of wide opposing magnetic pole surfaces and generates a uniform magnetic field in the space between the magnetic pole surfaces. When the magnetic shield material 8 is inserted between the opposed magnetic pole surfaces as shown in FIG. 5, the magnetic shield material 8 is inserted between the opposed magnetic pole surfaces protruding to the left and right of the magnetic shield material as shown in FIG.
A first magnetic field B1 and a second magnetic field B2 shown in are generated. The magnetic shield material 8 is made of a magnetic material, and a through hole 8a extending in the two axial directions of X and Z is formed in the body as shown in FIG. 5 (b) in a plane perpendicular to the Y axis. ing.

【0024】貫通穴8aは、電子ビームの通路として利
用するものであり、磁気シールド材8の働きによってこ
の穴内には磁場が形成されない。即ち、図5(c)に示
すように、対向磁極面間に磁気シールド材8を挿入する
と、矢線で示す磁束は磁気シールド材の内部を流れるた
め、貫通穴8a内は図1の磁石1、2間の空間部と同様
に磁場0の空間となり、このため、電子は貫通穴8a内
を直進することができ、図5のものと実質的に差のない
アンジュレータとなる。
The through hole 8a is used as a passage for the electron beam, and a magnetic field is not formed in the hole due to the function of the magnetic shield material 8. That is, as shown in FIG. 5C, when the magnetic shield material 8 is inserted between the opposing magnetic pole faces, the magnetic flux indicated by the arrow flows inside the magnetic shield material, so that the inside of the through hole 8a is in the magnet 1 of FIG. Like the space between the two, the space has a magnetic field of 0. Therefore, the electrons can go straight through the through hole 8a, and the undulator has substantially no difference from that in FIG.

【0025】なお、例示のαアンジュレータに用いた磁
石はいずれも永久磁石であるが、これは電磁石に代えて
もよい。
The magnets used in the illustrated α undulator are all permanent magnets, but they may be replaced by electromagnets.

【0026】以下に、本発明のαアンジュレータの作用
を詳しく述べる。図6は、図1のαアンジュレータにお
いてY軸と直角な平面上をX、Z軸方向に飛行する電子
の動きを示している。ここでは、磁石1、2がそれぞれ
B1、B2なる磁場を発生させているとする。電子e-
偏向半径は磁場の強さBと電子のエネルギーEにより決
まり、それ等の間にはE(GeV)=0.3B(T)×
r(m)なる関係がある。そこで、今、磁石1での偏向
半径をr1 、磁石2ではr2 とする。
The operation of the α undulator of the present invention will be described in detail below. FIG. 6 shows the movement of electrons flying in the X and Z axis directions on a plane perpendicular to the Y axis in the α undulator of FIG. Here, it is assumed that the magnets 1 and 2 generate magnetic fields B1 and B2, respectively. Electronic e -
The deflection radius is determined by the strength B of the magnetic field and the energy E of the electron, and between them, E (GeV) = 0.3B (T) ×
There is a relationship of r (m). Therefore, now, the deflection radius of the magnet 1 is r 1 and that of the magnet 2 is r 2 .

【0027】ライナックなどの加速器から取出された電
子e- は図の左側から先ず、第1磁場B1に角度θで進
入し、同磁場中でr1 の半径により(180−2θ)°
偏向される。そして角度θで第1磁場から出た後、磁石
1、2間の空間を直線的に飛行して第2磁場B2に向か
う。磁石1、2は平行であるので第2磁場B2に対して
もやはり角度θで進入する。この第2磁場B2中ではr
2 の半径で(180+2θ)°の偏向が行われる。その
後、角度θで第2磁場から出て第1磁場B1に向かい、
角度θで第1磁場B1に再進入する。この動作を繰り返
すことにより、第1磁場B1内では図中右向きにピッチ
λwで電子が入射し、同一条件での偏向が何度も行われ
る。
The electron e extracted from an accelerator such as a linac first enters the first magnetic field B1 at an angle θ from the left side of the figure, and in the same magnetic field, the radius of r 1 is (180−2θ) °.
Biased. Then, after exiting the first magnetic field at an angle θ, it flies linearly in the space between the magnets 1 and 2 toward the second magnetic field B2. Since the magnets 1 and 2 are parallel to each other, they also enter the second magnetic field B2 at the angle θ. In this second magnetic field B2, r
Deflection of (180 + 2θ) ° is performed with a radius of 2 . After that, it exits the second magnetic field at an angle θ toward the first magnetic field B1,
Re-enter the first magnetic field B1 at an angle θ. By repeating this operation, in the first magnetic field B1, electrons are incident to the right in the figure at the pitch λw, and the deflection is repeated many times under the same condition.

【0028】電子が偏向される際には接線方向に光を放
射する。その放射光のうち、図中A点で発生する光はB
点で発生する光と重なり合い、従来のアンジュレータと
同様の状態になる。なお、第2磁場B2内では、電子を
左向きにλwの周期で波打たせて進行させるアンジュレ
ータと類似した状態が作り出されるが、この第2磁場B
2では放射光の発生方向が電子の全体的な進行方向とは
異なり、電子の加速、減速の状態が第1磁場側のそれと
は一致しないため、同じ物理現象として解釈することは
できない。
When the electrons are deflected, they emit light tangentially. Of the emitted light, the light generated at point A in the figure is B
It overlaps with the light generated at the point and becomes the same state as the conventional undulator. In the second magnetic field B2, a state similar to that of an undulator in which electrons are undulated with a period of λw to the left and travels is generated.
In 2, the direction of generation of emitted light is different from the general direction of travel of electrons, and the states of acceleration and deceleration of electrons do not match those on the side of the first magnetic field, and therefore cannot be interpreted as the same physical phenomenon.

【0029】本アンジュレータの波の周期長(ピッチ)
λwは、r1 =r2 のとき、即ち、磁場B1、B2の強
さが同じであるなら、下式で表される。
Wave cycle length (pitch) of this undulator
λw is expressed by the following equation when r 1 = r 2 , that is, when the strengths of the magnetic fields B1 and B2 are the same.

【0030】 λw=2×(r1 =r)cos θ+2d×tan (90−θ)……… =2d×tan (90−θ) このように、波の周期長λwは主に磁場間距離d、電子
の入射角θに依存している。このうち、特に、入射角θ
は、磁石形状等による変更制限を受けない。即ち、図1
の磁石間距離dの決定後でも波の周期長λwは入射角θ
を変えることで自由に変化させて任意の値に設定でき
る。
Λw = 2 × (r 1 = r) cos θ + 2d × tan (90−θ) ... = 2d × tan (90−θ) Thus, the period length λw of the wave is mainly the distance d between the magnetic fields. , Depends on the incident angle θ of the electron. Of these, in particular, the incident angle θ
Are not subject to change restrictions due to magnet shape or the like. That is, FIG.
Even after the distance d between the magnets is determined, the period length λw of the wave is
It can be freely changed and set to any value by changing.

【0031】次に、図3の構成、即ち、磁石1に対する
磁石2の離反距離dを階段状に変化させたアンジュレー
タの効果について述べる。
Next, the effect of the undulator having the configuration of FIG. 3, that is, the separation distance d of the magnet 2 from the magnet 1 is changed stepwise will be described.

【0032】図7はY軸と直角な平面内でX、Y軸方向
に飛行する電子の動きを示している。ここでは、第2磁
場B2に電子e- が最初に入射する位置の離反距離d、
次に入射する位置の離反距離をd1 、その次に入射する
位置の離反距離をd2 と次第に大きくしており、これに
伴い、第1磁場B1内での波の周期長λwも2dtan
(90−θ)→2d1 tan (90−θ)→2d2 tan
(90−θ)と次第に大きくなっていくことが判る。こ
れは、上の式でλwがdにも依存していることを利用
したものであって、この機能を利用すれば、オプティカ
ルクライストロンも全体の形状を大きく変更すること無
く形成し得る。
FIG. 7 shows the movement of electrons flying in the X and Y axis directions in a plane perpendicular to the Y axis. Here, the separation distance d at the position where the electron e first enters the second magnetic field B2,
The separation distance at the next incident position is gradually increased to d 1 , and the separation distance at the next incident position is gradually increased to d 2 , and accordingly, the period length λw of the wave in the first magnetic field B1 is also 2 dtan.
(90−θ) → 2d 1 tan (90−θ) → 2d 2 tan
It can be seen that the value gradually increases to (90−θ). This utilizes the fact that λw also depends on d in the above equation, and by utilizing this function, the optical klystron can also be formed without significantly changing the overall shape.

【0033】図2、図4、図5のαアンジュレータも、
図1と同様の磁場分布となるので図6で述べたのと同様
の作用になる。また、これ等のαアンジュレータもdを
部分的に変化させれば図7で述べた周期長可変の効果が
得られる。
The α undulators of FIGS. 2, 4 and 5 are also
Since the magnetic field distribution is the same as in FIG. 1, the same operation as described in FIG. 6 is performed. Further, these α undulators can also obtain the effect of changing the cycle length described in FIG. 7 by partially changing d.

【0034】なお、dを階段状に変化させる場合の入射
角θの自由変更範囲はdを変化させない場合よりも狭く
なる。図5のαアンジュレータも、貫通穴8aの大きさ
による制限が生じるので、入射角θの自由変更範囲が狭
くなる。
The range in which the incident angle θ can be freely changed when d is changed stepwise is narrower than when d is not changed. The α undulator of FIG. 5 also has a limitation due to the size of the through hole 8a, so that the range of freely changing the incident angle θ becomes narrow.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
磁束の向きが同一であり、かつ電子ビームの進行方向に
対して共に垂直である第1磁場と第2磁場を平行位置に
生じさせ、この2つの磁場で電子を1周期の偏向角が1
80°になるように偏向して第1磁場中で放射光を取出
すようにしたので、交番磁界を用いて電子を蛇行させる
従来のアンジュレータと違って波のピッチを短縮する上
での物理的限界がなくなり、短周期のアンジュレータを
実現できる。
As described above, according to the present invention,
A first magnetic field and a second magnetic field, which have the same magnetic flux direction and are both perpendicular to the traveling direction of the electron beam, are generated in parallel positions, and the two magnetic fields generate electrons with a deflection angle of one cycle of 1
Since the emitted light is extracted in the first magnetic field by deflecting it to 80 °, the physical limit in shortening the wave pitch is different from the conventional undulator in which electrons are meandered using an alternating magnetic field. Is eliminated, and a short cycle undulator can be realized.

【0036】また、第1磁石(第1磁場)に対する第2
磁石(第2磁場)の離反距離を変えると同一アンジュレ
ータ内で部分的に周期の変化したアンジュレータが得ら
れ、設計や仕様変更等の自由度も高まる。
The second magnet for the first magnet (first magnetic field)
When the separation distance of the magnet (second magnetic field) is changed, an undulator with a partially changed period can be obtained in the same undulator, and the degree of freedom in designing and changing specifications can be increased.

【0037】さらに、磁場に対する電子入射角を変える
だけで従来存在しなかった全体周期長が可変のアンジュ
レータになるので、使用法等にも自由度が生じる。
Furthermore, since the undulator having a variable total cycle length, which has not existed in the past, can be changed only by changing the angle of incidence of electrons with respect to the magnetic field, the degree of freedom in usage can be increased.

【0038】このほか、多数の磁石を使用する必要がな
く、短周期化も可能なため、全体サイズの小型化や全体
構造の簡素化等も併せて実現できる。
In addition, since it is not necessary to use a large number of magnets and the period can be shortened, the overall size can be reduced and the overall structure can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のαアンジュレータの一例を示す斜視図FIG. 1 is a perspective view showing an example of an α undulator of the present invention.

【図2】第2実施例の斜視図FIG. 2 is a perspective view of a second embodiment.

【図3】第3実施例の斜視図FIG. 3 is a perspective view of a third embodiment.

【図4】第4実施例の斜視図FIG. 4 is a perspective view of a fourth embodiment.

【図5】(a):第5実施例の斜視図 (b):磁気シールド材の詳細を示す斜視図 (c):磁気シールド材の働きを示す斜視図5A is a perspective view of a fifth embodiment. FIG. 5B is a perspective view showing details of the magnetic shield material. FIG. 5C is a perspective view showing the function of the magnetic shield material.

【図6】本発明のαアンジュレータの磁石配列を示す図FIG. 6 is a diagram showing a magnet array of the α undulator of the present invention.

【図7】磁場間の階段状距離変化で波の周期が変化する
様子を示す図
FIG. 7 is a diagram showing how the wave period changes with a stepwise distance change between magnetic fields.

【図8】(a):従来のアンジュレータの磁石配列を示
す図 (b):交番磁界による電子の波を示す図
8A is a diagram showing a magnet array of a conventional undulator. FIG. 8B is a diagram showing an electron wave due to an alternating magnetic field.

【符号の説明】[Explanation of symbols]

1、2 C字断面の磁石 3 台 4、5 長方形断面の磁石 6 2組の対向磁極面をもつ磁石 7 1組の対向磁極面をもつ磁石 8 磁気シールド材 8a 貫通穴 B1 第1磁場 B2 第2磁場 1, 2 C-shaped cross-section magnets 3 units 4, 5 rectangular-section cross-section magnets 6 2 magnets with 2 pairs of opposing magnetic pole surfaces 7 magnets with 1 pair of opposing magnetic pole surfaces 8 magnetic shield material 8a through hole B1 first magnetic field B2 2 magnetic fields

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 磁束の向きが同一であり、かつ、電子ビ
ームの進行方向に対して共に垂直である第1磁場と第2
磁場を各々の対向磁極面間に発生させる2組の磁石を並
行に離して配置し、第1磁石が作る第1磁場に入射角θ
で進入させた電子ビームを第1磁場中で(180−2
θ)°偏向して第2磁石が作る第2磁場に向かわせ、さ
らに、この第2磁場にθの角度で進入した電子ビームを
(180+2θ)°偏向して1つ手前の第1磁場への進
入点からλw離れた位置で第1磁場にθの角度で再進入
させ、この動作を繰り返して放射光を取出すαアンジュ
レータ。
1. A first magnetic field and a second magnetic field which have the same magnetic flux direction and are both perpendicular to the traveling direction of the electron beam.
Two sets of magnets that generate a magnetic field between the opposing magnetic pole faces are arranged in parallel and separated from each other, and the first magnetic field created by the first magnet has an incident angle θ.
The electron beam that entered at (180-2
θ) ° is deflected to the second magnetic field created by the second magnet, and the electron beam entering this second magnetic field at an angle of θ is deflected (180 + 2θ) ° to the first magnetic field one before. An α undulator that re-enters the first magnetic field at an angle of θ at a position λw away from the entry point and repeats this operation to take out emitted light.
【請求項2】 第1磁石に対する第2磁石の第2磁場へ
の電子ビーム入射点における離反量dを階段状に変化さ
せた請求項1記載のαアンジュレータ。
2. The α undulator according to claim 1, wherein the separation amount d at the point of incidence of the electron beam on the second magnetic field of the second magnet with respect to the first magnet is changed stepwise.
【請求項3】 第2磁石を電子ビームの進路方向に複数
に分割し、その分割した磁石に前記離反量dの可変調整
機構を具備させた請求項2記載のαアンジュレータ。
3. The α undulator according to claim 2, wherein the second magnet is divided into a plurality of pieces in the traveling direction of the electron beam, and the divided magnets are provided with a variable adjustment mechanism for the separation amount d.
【請求項4】 第1、第2磁場を作る2組の対向磁極面
を1つの磁石に形成し、この磁石を請求項1記載の2組
の磁石と置き換えてあるαアンジュレータ。
4. An α undulator in which two sets of opposing magnetic pole faces for generating the first and second magnetic fields are formed into one magnet, and the magnets are replaced with the two sets of magnets according to claim 1.
【請求項5】 1つの磁石の対向磁極面間に電子ビーム
の通路を有する磁気シールド材を配置し、この磁気シー
ルド材の左右に張出させた対向磁極面間に第1、第2磁
場を発生させて請求項1記載のαアンジュレータと同様
の作用で放射光を取出すようにしたαアンジュレータ。
5. A magnetic shield material having a passage of an electron beam is arranged between the opposing magnetic pole surfaces of one magnet, and a first magnetic field and a second magnetic field are provided between the opposing magnetic pole surfaces of the magnetic shield material which are extended to the left and right. An α undulator that is generated to extract emitted light by the same action as the α undulator according to claim 1.
JP5373893A 1993-03-15 1993-03-15 Alpha-undulator Pending JPH06267700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5373893A JPH06267700A (en) 1993-03-15 1993-03-15 Alpha-undulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5373893A JPH06267700A (en) 1993-03-15 1993-03-15 Alpha-undulator

Publications (1)

Publication Number Publication Date
JPH06267700A true JPH06267700A (en) 1994-09-22

Family

ID=12951171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5373893A Pending JPH06267700A (en) 1993-03-15 1993-03-15 Alpha-undulator

Country Status (1)

Country Link
JP (1) JPH06267700A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004077457A1 (en) * 2003-02-27 2006-06-08 株式会社Neomax Permanent magnet and magnetic field generator for particle beam accelerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004077457A1 (en) * 2003-02-27 2006-06-08 株式会社Neomax Permanent magnet and magnetic field generator for particle beam accelerator
JP4697961B2 (en) * 2003-02-27 2011-06-08 日立金属株式会社 Permanent magnet and magnetic field generator for particle beam accelerator

Similar Documents

Publication Publication Date Title
US5483129A (en) Synchrotron radiation light-source apparatus and method of manufacturing same
JPH06501334A (en) synchrotron radiation source
US5014028A (en) Triangular section permanent magnetic structure
JP4645424B2 (en) Time-of-flight mass spectrometer
JP6393929B1 (en) Magnet for undulator, undulator and synchrotron radiation generator
JPH0793200B2 (en) Multipolar wiggler
CN116666179B (en) Analyzing magnet structure and wide-range ion source
US3202817A (en) Polyenergetic particle deflecting system
JPH06267700A (en) Alpha-undulator
WO2021260988A1 (en) Particle accelerator and particle beam therapy device
US20110121194A1 (en) Controlled transport system for an elliptic charged-particle beam
JP3956285B2 (en) Wiggle ring
US4737726A (en) Charged particle beam storage and circulation apparatus
JP2813386B2 (en) Electromagnet of charged particle device
JP7497870B2 (en) Charged particle acceleration device and charged particle acceleration method
JP3067784B2 (en) Electrostatic accelerator
JPS62139300A (en) Method of taking out emitted light of cynchrotron and electron wave ring employing the method
US3492531A (en) Non-uniform magnetic field type electron current generating device
JPH0689800A (en) Particle accelerator
JPH08124700A (en) Circularly polarized undulator
JP2700687B2 (en) Wiggler equipment
JPH0753280Y2 (en) Bending electromagnet for SOR device
JP2726920B2 (en) Industrial photon generator
JPH05182799A (en) Charged particle acceleration and storage ring, and charged particle incidence method
JPS61200700A (en) Electronic wave ring