JPH0689800A - Particle accelerator - Google Patents

Particle accelerator

Info

Publication number
JPH0689800A
JPH0689800A JP23746792A JP23746792A JPH0689800A JP H0689800 A JPH0689800 A JP H0689800A JP 23746792 A JP23746792 A JP 23746792A JP 23746792 A JP23746792 A JP 23746792A JP H0689800 A JPH0689800 A JP H0689800A
Authority
JP
Japan
Prior art keywords
charged particles
orbit
particle accelerator
vacuum chamber
magnetic poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23746792A
Other languages
Japanese (ja)
Inventor
Mitsuru Ogose
満 生越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP23746792A priority Critical patent/JPH0689800A/en
Publication of JPH0689800A publication Critical patent/JPH0689800A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide possibility of generating SOR beams having a plurality of wavelengths or SOR beams having a large wavelength width simultaneously using the device and conduct a bombard experiment of charged particles with one another bearing different magnitudes of energy by the use of a single particle accelerator. CONSTITUTION:A particle accelerator is equipped with a vacuum chamber 22 in which a charged particles orbit and a deflecting electric magnet 23 (24) which is installed outside of the vacuum chamber 22 and in which magnetic poles 41, 42 having different polarities are arranged opposingly while sandwiching runway where the charged particles orbit. The magnetic pole surface confronting the runway is furnished with a step in the direction perpendicular to the orbiting of charged particles, and with this step, a plurality of particle orbiting tracks 25, 26 are formed between the magnetic poles 41, 42. This permits forming a plurality of particle orbiting tracks in a single particle accelerator and allows charged particles bearing different magnitudes of energy to orbit simultaneously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シンクロトロン等の粒
子加速器に係り、1つの偏向電磁石を用いて複数の荷電
粒子の周回軌道を形成することにより、異なるエネルギ
ーの荷電粒子の周回が可能となる粒子加速器に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle accelerator such as a synchrotron, and it is possible to orbit charged particles having different energies by forming orbits of a plurality of charged particles using one deflecting electromagnet. It is related to the particle accelerator.

【0002】[0002]

【従来の技術】近年、超LSIの製造、医療分野におけ
る診断、分子解析、構造解析等様々な分野において、シ
ンクロトロン放射(Synchrotron Orbital Radiatio
n)光(略してSOR光)を用いたSORリソグラフィ
ー技術が有望視されている。このSOR光は、光速に近
い電子ビームがシンクロトロン等の粒子加速器内を進行
する間にその進行方向を磁場により曲げられる際に発生
するもので、遠赤外からエックス線までの波長の光を含
む連続光で、高いビーム出力を有ししかも指向性が強く
高輝度である等の優れた特徴を有する。このSOR光
は、例えば、超LSI等の半導体工業においては、この
発生したSOR光をビームチャンネルを通して露光装置
等の半導体微細加工装置に送り、超LSIの微細加工用
光源として用いる。
2. Description of the Related Art In recent years, in various fields such as manufacturing of VLSI, diagnosis in the medical field, molecular analysis, structural analysis, etc., synchrotron radiation (Synchrotron Radial Ratio)
n) The SOR lithography technique using light (abbreviated as SOR light) is considered promising. This SOR light is generated when an electron beam close to the speed of light is bent by a magnetic field while traveling in a particle accelerator such as a synchrotron, and includes light with a wavelength from far infrared to X-ray. It has excellent features such as continuous light, high beam output, strong directivity and high brightness. In the semiconductor industry such as VLSI, the generated SOR light is sent to a semiconductor fine processing apparatus such as an exposure apparatus through the beam channel and used as a light source for fine processing of VLSI.

【0003】図3はSOR光を発生するシンクロトロン
(粒子加速器)Sの概要を示すものであって、電子銃等
の電子発生装置1により発生させた電子ビームを線型加
速器(ライナック)2で光速近くまで加速し、該電子ビ
ームを偏向電磁石3により偏向させた後にインフレクタ
4を介して蓄積リングである真空ダクト5内に入射させ
る。該真空ダクト5内に入射された電子ビームは、高周
波加速空洞6によりエネルギーが与えられながら収束電
磁石7により所定の径に収束され、偏向電磁石8で偏向
されて該真空ダクト5内を周回し続ける。そして、偏向
電磁石8により偏向される際にSOR光が発生し、この
SOR光が光取り出しライン9を経由して、例えば、露
光装置10に出射されて所定の用途に用いられる。
FIG. 3 shows an outline of a synchrotron (particle accelerator) S for generating SOR light. An electron beam generated by an electron generator 1 such as an electron gun is accelerated by a linear accelerator (linac) 2 at the speed of light. The electron beam is accelerated to a near position, the electron beam is deflected by the deflection electromagnet 3, and then the electron beam is incident through the inflector 4 into the vacuum duct 5 which is a storage ring. The electron beam that has entered the vacuum duct 5 is converged to a predetermined diameter by the converging electromagnet 7 while being given energy by the high-frequency acceleration cavity 6, is deflected by the deflection electromagnet 8, and continues to circulate in the vacuum duct 5. . Then, SOR light is generated when being deflected by the deflection electromagnet 8, and this SOR light is emitted to, for example, the exposure device 10 via the light extraction line 9 and used for a predetermined purpose.

【0004】一方、高エネルギー物理学の領域において
は、電子−陽電子衝突等のように、衝突リング内におい
て電荷の異なる同じ粒子をそれぞれ相反する方向に周回
させて高エネルギー粒子とし、これらの高エネルギー粒
子同士を該リング内の相互作用領域において正面衝突さ
せることにより、素粒子の内部構造の探索、新素粒子の
探索等、様々な物理的現象を解明する研究が進められて
いる。上記の衝突リングでは、互いに符号の異なる荷電
粒子は反対方向の力を受けるので、例えば電子と陽電子
を1つの共通な磁場で閉じ込めることができ、これら電
子及び陽電子が得るエネルギーの大きさは磁場の強さに
より一義的に決定される。
On the other hand, in the area of high energy physics, like the electron-positron collision, the same particles having different charges are orbited in opposite directions in the collision ring to form high energy particles. Studies have been conducted to elucidate various physical phenomena such as a search for an internal structure of elementary particles and a search for new elementary particles by causing front particles to collide with each other in an interaction region in the ring. In the collision ring described above, charged particles having different signs are subjected to forces in opposite directions, so that electrons and positrons can be confined in one common magnetic field, and the amount of energy obtained by these electrons and positrons depends on the magnetic field. It is uniquely determined by strength.

【0005】[0005]

【発明が解決しようとする課題】ところで、例えば、上
述したSOR光は、光速に近い電子ビームがその進行方
向を磁場により曲げられる際に発生するものであるか
ら、その波長領域は加わる磁場の大きさにより一義的に
決定されてしまい、複数の波長を有するSOR光や波長
幅の広いSOR光を同一の装置を用いて同時に発生させ
ることは極めて困難である。
By the way, for example, the above-mentioned SOR light is generated when an electron beam close to the speed of light is bent in its traveling direction by a magnetic field, and therefore its wavelength region has a large magnetic field applied. Therefore, it is extremely difficult to simultaneously generate SOR light having a plurality of wavelengths and SOR light having a wide wavelength width by using the same device.

【0006】また、電子−陽電子衝突等のように、様々
な物理現象を研究する場合には、これらの粒子のエネル
ギーの大きさを様々に変化させて衝突させ、これらの相
互作用を調べることは極めて重要である。しかしなが
ら、上述した衝突リングにおいては、1つの共通な磁場
内で電荷の異なる同じ粒子をそれぞれ相反する方向に周
回させるものであるから、これらの粒子が得るエネルギ
ーの大きさは磁場の強さで決ってしまい、これらの粒子
のエネルギーを別々に変化させることは不可能である。
そこで、エネルギーの大きさの異なる粒子同士を衝突さ
せる場合、これらの粒子をそれぞれ別の衝突リング内で
周回させて高エネルギー粒子としなければならず、複数
の粒子加速器が必要になる。また、これらの粒子加速器
は当然広いスペースが必要となり、設置場所が限られて
しまうという問題もある。
In the case of studying various physical phenomena such as electron-positron collision, it is not possible to investigate the interaction between these particles by varying the energy magnitudes of the particles. Extremely important. However, in the above-mentioned collision ring, the same particles having different charges are circulated in opposite directions in one common magnetic field. Therefore, the magnitude of energy obtained by these particles is determined by the strength of the magnetic field. It is impossible to change the energy of these particles separately.
Therefore, when particles having different energies collide with each other, these particles must be orbited in different collision rings to form high-energy particles, and a plurality of particle accelerators are required. Further, these particle accelerators naturally require a large space, and there is a problem that the installation place is limited.

【0007】本発明は、上記の事情に鑑みてなされたも
のであって、1つの粒子加速器に複数の荷電粒子の周回
軌道を形成することにより、異なるエネルギーの荷電粒
子を同時に周回させることが可能な粒子加速器を提供す
ることにある。
The present invention has been made in view of the above circumstances. It is possible to orbit charged particles of different energies at the same time by forming orbits of a plurality of charged particles in one particle accelerator. To provide a simple particle accelerator.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明は次の様な粒子加速器を採用した。すなわ
ち、荷電粒子が周回する真空チェンバーと、該真空チェ
ンバーの外部に設けられ、互いに極性の異なる磁極が前
記荷電粒子の周回する軌道面を挟んで対向配置される偏
向電磁石とを備え、前記磁極が発生する磁場により前記
荷電粒子を偏向させる粒子加速器において、前記軌道面
と対向する磁極面に、荷電粒子の周回方向と直交する方
向に沿って段差が形成され、この段差により前記磁極間
に複数の荷電粒子の周回軌道が形成されてなることを特
徴としている。
To solve the above problems, the present invention employs the following particle accelerator. That is, a vacuum chamber in which charged particles circulate, and a deflection electromagnet provided outside the vacuum chamber and having polarities different from each other and opposed to each other with a circulating orbital surface of the charged particles interposed therebetween are provided. In a particle accelerator that deflects the charged particles by a generated magnetic field, a step is formed on a magnetic pole surface facing the orbital surface along a direction orthogonal to the circulating direction of the charged particles, and the step causes a plurality of steps between the magnetic poles. It is characterized in that a circular orbit of charged particles is formed.

【0009】[0009]

【作用】本発明の粒子加速器では、前記軌道面と対向す
る磁極面に、荷電粒子の周回方向と直交する方向に沿っ
て段差が形成される。この段差により前記磁極間の磁極
間隔が荷電粒子の周回方向と直交する方向に沿って段階
的に変化することとなり、これらの磁極間隔に対応して
複数の磁場領域が形成され、これらの領域がそれぞれ荷
電粒子の周回軌道を規制することとなる。これより、1
つの粒子加速器に複数の荷電粒子の周回軌道を形成する
ことが可能となり、したがって、異なるエネルギーの荷
電粒子を同時に周回させることが可能となる。
In the particle accelerator of the present invention, a step is formed on the magnetic pole surface facing the orbital surface along the direction orthogonal to the circulating direction of the charged particles. Due to this step, the magnetic pole spacing between the magnetic poles changes stepwise along the direction orthogonal to the circulating direction of the charged particles, and a plurality of magnetic field regions are formed corresponding to these magnetic pole spacings, and these regions are formed. The orbits of charged particles are regulated respectively. From this, 1
It is possible to form orbits of a plurality of charged particles in one particle accelerator, and thus it is possible to orbit charged particles of different energies at the same time.

【0010】[0010]

【実施例】図1は本発明の一実施例のシンクロトロン
(粒子加速器)の蓄積リング21を示す全体構成図であ
り、図2はその偏向電磁石部分の部分断面図である。こ
の蓄積リング21は、電子(荷電粒子)が周回する真空
チェンバー22と、該真空チェンバー22の両端部の外
側にそれぞれ設けられた偏向電磁石23,24とから概
略構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an overall configuration diagram showing a storage ring 21 of a synchrotron (particle accelerator) according to an embodiment of the present invention, and FIG. 2 is a partial sectional view of a deflecting electromagnet portion thereof. The storage ring 21 is roughly composed of a vacuum chamber 22 around which electrons (charged particles) circulate, and deflection electromagnets 23 and 24 respectively provided outside both ends of the vacuum chamber 22.

【0011】真空チェンバー22内には、電子が周回す
る2つの軌道である内側軌道25及び外側軌道26が設
けられ、内側軌道25には電子の軌道を変えるキッカー
(軌道変更装置)27が配置されている。また、外側軌
道26には電子の軌道を変える軌道変更磁石28,2
9、入射ビームライン31からの電子を外側軌道26に
入射する入射装置32、出射ビームライン33に電子を
出射する出射装置34がそれぞれ設けられている。
Inside the vacuum chamber 22, there are provided an inner orbit 25 and an outer orbit 26, which are two orbits around which electrons circulate, and a kicker (orbit changing device) 27 for changing the orbit of the electrons is arranged in the inner orbit 25. ing. Further, the outer orbit 26 has orbit changing magnets 28, 2 for changing the orbit of electrons.
9. An injection device 32 for injecting electrons from the incident beam line 31 to the outer orbit 26 and an emission device 34 for emitting electrons to the emission beam line 33 are respectively provided.

【0012】偏向電磁石23(24)は、図2に示す様
に、互いに極性の異なる磁極41,42が真空チェンバ
ー22内の内側軌道25及び外側軌道26を挟んで対向
配置され、これら磁極41,42には、前記内側軌道2
5及び外側軌道26と直交する方向(図2中、左右方
向)に、内側軌道25を挟む方の面間隔が外側軌道26
を挟む方の面間隔より狭いように段差が形成され、この
段差により磁極41,42の間隔が狭い領域R1と広い
領域R2に区分され、これらの領域R1,R2がそれぞれ
強い磁場領域H1と弱い磁場領域H2に対応している。こ
こでは、内側軌道25及び外側軌道26のそれぞれの電
子が得るべきエネルギーの大きさ、すなわち内側軌道2
5及び外側軌道26それぞれが必要とする磁場の強さに
基づいて、磁極41,42間の面間隔がそれぞれ決定さ
れ、適宜変更可能である。
As shown in FIG. 2, the deflecting electromagnet 23 (24) has magnetic poles 41 and 42 having different polarities, which are arranged to face each other with the inner orbit 25 and the outer orbit 26 in the vacuum chamber 22 interposed therebetween. 42 includes the inner track 2
5 and the outer raceway 26 in a direction orthogonal to the outer raceway 26 (the horizontal direction in FIG. 2), the surface spacing on the inner raceway 25 side is the outer raceway 26.
A step is formed so as to be narrower than the surface spacing on the one side of the two sides, and this step divides the magnetic poles 41 and 42 into a narrow region R 1 and a wide region R 2 , and these regions R 1 and R 2 respectively have strong magnetic fields. The region H 1 corresponds to the weak magnetic field region H 2 . Here, the amount of energy that each electron of the inner orbit 25 and the outer orbit 26 should obtain, that is, the inner orbit 2
The surface spacing between the magnetic poles 41 and 42 is determined based on the strength of the magnetic field required by each of the magnetic poles 5 and the outer track 26, and can be changed as appropriate.

【0013】次に、蓄積リング21の作用について説明
する。磁極41,42には、前記内側軌道25及び外側
軌道26と直交する方向(図2中、左右方向)に、内側
軌道25を挟む方の面間隔が外側軌道26を挟む方の面
間隔より狭いように段差が形成されていることにより、
磁極41,42の間隔が狭い領域R1と広い領域R2に段
階的に変化することとなる。したがって、間隔が狭い領
域R1(広い領域R2)に対応して強い磁場領域H1(弱
い磁場領域H2)が形成され、この強い磁場領域H1(弱
い磁場領域H2)が電子の周回軌道である内側軌道25
(外側軌道26)を規制することとなる。
Next, the operation of the storage ring 21 will be described. In the magnetic poles 41 and 42, in the direction orthogonal to the inner orbit 25 and the outer orbit 26 (the left-right direction in FIG. 2), the surface spacing on the inner track 25 side is narrower than the surface spacing on the outer track 26 side. Because the step is formed like
The gap between the magnetic poles 41 and 42 changes stepwise to a narrow region R 1 and a wide region R 2 . Therefore, a strong magnetic field region H 1 (weak magnetic field region H 2 ) is formed corresponding to the region R 1 (wide region R 2 ) having a small interval, and this strong magnetic field region H 1 (weak magnetic field region H 2 ) is Inner orbit 25 which is an orbit
(Outer track 26) will be regulated.

【0014】これより、1つのシンクロトロンに複数の
電子の周回軌道(内側軌道25及び外側軌道26)を形
成することが可能となり、内側軌道25及び外側軌道2
6のそれぞれの電子が得るべきエネルギーの大きさを適
宜変更することが可能になり、したがって、異なるエネ
ルギーの電子を同時に周回させることが可能となる。
As a result, it becomes possible to form a plurality of circular orbits (inner orbit 25 and outer orbit 26) of electrons in one synchrotron, and the inner orbit 25 and the outer orbit 2 are formed.
It is possible to appropriately change the magnitude of the energy that each of the electrons of 6 should obtain, and therefore it is possible to orbit the electrons of different energies at the same time.

【0015】以上説明した様に、本実施例のシンクロト
ロンによれば、偏向電磁石23(24)は、互いに極性
の異なる磁極41,42が真空チェンバー22内の内側
軌道25及び外側軌道26を挟んで対向配置され、これ
ら磁極41,42には、内側軌道25を挟む方の面間隔
が外側軌道26を挟む方の面間隔より狭いように段差が
形成されているので、1つのシンクロトロンに2つの電
子の周回軌道(内側軌道25及び外側軌道26)を形成
することができ、したがって、異なるエネルギーの電子
を同時に周回させることができる。
As described above, according to the synchrotron of this embodiment, in the deflection electromagnet 23 (24), the magnetic poles 41 and 42 having different polarities sandwich the inner orbit 25 and the outer orbit 26 in the vacuum chamber 22. Since the magnetic poles 41 and 42 are formed so as to face each other and the gap between the inner track 25 and the outer track 26 is narrower than that of the outer track 26, a step is formed in one synchrotron. Orbits of two electrons (inner orbit 25 and outer orbit 26) can be formed, and thus electrons of different energies can orbit simultaneously.

【0016】以上により、複数の波長を有するSOR光
や波長幅の広いSOR光を同一の装置を用いて同時に発
生させることができ、また、エネルギーの大きさの異な
る電子を同一の真空チェンバー22内で同時に周回させ
ることができ、1つのシンクロトロンを用いてエネルギ
ーの大きさの異なる電子同士の衝突実験が可能になる等
の優れた効果を奏することができる。
As described above, SOR light having a plurality of wavelengths and SOR light having a wide wavelength width can be simultaneously generated using the same device, and electrons having different energy levels can be generated in the same vacuum chamber 22. Thus, it is possible to achieve an excellent effect such as a collision test between electrons having different energies using one synchrotron.

【0017】[0017]

【発明の効果】以上説明した様に、本発明の粒子加速器
によれば、荷電粒子が周回する真空チェンバーと、該真
空チェンバーの外部に設けられ、互いに極性の異なる磁
極が前記荷電粒子の周回する軌道面を挟んで対向配置さ
れる偏向電磁石とを備え、前記磁極が発生する磁場によ
り前記荷電粒子を偏向させる粒子加速器において、前記
軌道面と対向する磁極面に、荷電粒子の周回方向と直交
する方向に沿って段差が形成され、この段差により前記
磁極間に複数の荷電粒子の周回軌道が形成されてなるこ
ととしたので、1つの粒子加速器に複数の荷電粒子の周
回軌道を形成することができ、したがって、異なるエネ
ルギーの荷電粒子を同時に周回させることができる。
As described above, according to the particle accelerator of the present invention, a vacuum chamber in which charged particles orbit, and magnetic poles having different polarities provided outside the vacuum chamber orbit the charged particles. In a particle accelerator provided with a deflecting electromagnet arranged opposite to each other with the orbital surface sandwiched therebetween, wherein the charged particle is deflected by a magnetic field generated by the magnetic pole, the magnetic pole surface facing the orbital surface is orthogonal to the orbiting direction of the charged particle. Since a step is formed along the direction and a plurality of orbits of charged particles are formed between the magnetic poles by the step, it is possible to form a plurality of orbits of charged particles in one particle accelerator. Yes, and therefore charged particles of different energies can orbit simultaneously.

【0018】以上により、複数の波長を有するSOR光
や波長幅の広いSOR光を同一の装置を用いて同時に発
生させることができ、また、エネルギーの大きさの異な
る荷電粒子を同一の真空チェンバー内で同時に周回させ
ることができ、1つの粒子加速器を用いてエネルギーの
大きさの異なる荷電粒子同士の衝突実験が可能になる等
の優れた効果を奏することができる。
As described above, SOR light having a plurality of wavelengths and SOR light having a wide wavelength range can be simultaneously generated by using the same device, and charged particles having different energies can be generated in the same vacuum chamber. Thus, it is possible to achieve an excellent effect such as a collision experiment between charged particles having different energies using a single particle accelerator.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のシンクロトロン(粒子加速
器)の蓄積リングを示す全体構成図である。
FIG. 1 is an overall configuration diagram showing a storage ring of a synchrotron (particle accelerator) according to an embodiment of the present invention.

【図2】本発明の一実施例のシンクロトロン(粒子加速
器)の偏向電磁石部分を示す部分断面図である。
FIG. 2 is a partial cross-sectional view showing a bending electromagnet portion of a synchrotron (particle accelerator) according to an embodiment of the present invention.

【図3】従来のシンクロトロン(粒子加速器)を示す全
体構成図である。
FIG. 3 is an overall configuration diagram showing a conventional synchrotron (particle accelerator).

【符号の説明】[Explanation of symbols]

21 蓄積リング 22 真空チェンバー 23,24 偏向電磁石 25 内側軌道(荷電粒子の周回軌道) 26 外側軌道(荷電粒子の周回軌道) 27 キッカー(軌道変更装置) 28,29 軌道変更磁石 31 入射ビームライン 32 入射装置 33 出射ビームライン 34 出射装置 41,42 磁極 R1 磁極間隔が狭い領域 R2 磁極間隔が広い領域 H1 強い磁場領域 H2 弱い磁場領域21 Storage Ring 22 Vacuum Chamber 23, 24 Bending Electromagnet 25 Inner Orbit (Orbit of Charged Particle) 26 Outer Orbit (Orbit of Charged Particle) 27 Kicker (Orbit Change Device) 28, 29 Orbit Change Magnet 31 Incident Beamline 32 Incident Device 33 Output beam line 34 Output device 41, 42 Magnetic pole R 1 Region with narrow magnetic pole spacing R 2 Region with wide magnetic pole spacing H 1 Strong magnetic field region H 2 Weak magnetic field region

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 荷電粒子が周回する真空チェンバーと、
該真空チェンバーの外部に設けられ、互いに極性の異な
る磁極が前記荷電粒子の周回する軌道面を挟んで対向配
置される偏向電磁石とを備え、前記磁極が発生する磁場
により前記荷電粒子を偏向させる粒子加速器において、 前記軌道面と対向する磁極面に、荷電粒子の周回方向と
直交する方向に沿って段差が形成され、この段差により
前記磁極間に複数の荷電粒子の周回軌道が形成されてな
ることを特徴とする粒子加速器。
1. A vacuum chamber in which charged particles orbit,
And a deflection electromagnet provided outside the vacuum chamber, the magnetic poles having mutually different polarities face each other with the orbital plane of the charged particles facing each other, and the magnetic particles generated by the magnetic poles deflect the charged particles. In the accelerator, a step is formed on a magnetic pole surface facing the orbital surface along a direction orthogonal to the orbiting direction of the charged particles, and the step forms a circular orbit of the charged particles between the magnetic poles. Particle accelerator characterized by.
JP23746792A 1992-09-04 1992-09-04 Particle accelerator Withdrawn JPH0689800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23746792A JPH0689800A (en) 1992-09-04 1992-09-04 Particle accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23746792A JPH0689800A (en) 1992-09-04 1992-09-04 Particle accelerator

Publications (1)

Publication Number Publication Date
JPH0689800A true JPH0689800A (en) 1994-03-29

Family

ID=17015769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23746792A Withdrawn JPH0689800A (en) 1992-09-04 1992-09-04 Particle accelerator

Country Status (1)

Country Link
JP (1) JPH0689800A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323627A (en) * 2013-06-20 2013-09-25 中国空间技术研究院 Single-particle test sample cap opening protective device
JP5854518B2 (en) * 2010-12-20 2016-02-09 国立大学法人広島大学 Charged particle trajectory control device, charged particle accelerator, charged particle storage ring and deflection electromagnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854518B2 (en) * 2010-12-20 2016-02-09 国立大学法人広島大学 Charged particle trajectory control device, charged particle accelerator, charged particle storage ring and deflection electromagnet
CN103323627A (en) * 2013-06-20 2013-09-25 中国空间技术研究院 Single-particle test sample cap opening protective device

Similar Documents

Publication Publication Date Title
JPH06181100A (en) Microtron electron accelerator
Nakajima et al. Plasma wake-field accelerator experiments at KEK
JP2782076B2 (en) Charged particle beam cooling method
Franzen et al. Transport beam line for ultraslow monoenergetic antiprotons
JPH0689800A (en) Particle accelerator
KR20030051762A (en) Mechanism for prevention of neutron radiation in ion implanter beamline
US3202817A (en) Polyenergetic particle deflecting system
US5631526A (en) Hydrogen ion accelerator
US5617443A (en) Method and apparatus for generating gamma-ray laser
SE8303501L (en) RACE-TRACK MICROTRON FOR STORING AN ENERGY-rich ELECTRON RADIATION
US3390293A (en) High energy particle generator
US3349335A (en) Electron accelerator means with means for repeatedly passing the initial electrons through the accelerator
RU2058676C1 (en) Method for cooling charge-particle beam
JPH0711999B2 (en) Method and apparatus for generating free positronium synchrotron radiation
US4737726A (en) Charged particle beam storage and circulation apparatus
US6937698B2 (en) X-ray generating apparatus having an emitter formed on a semiconductor structure
JPS62139300A (en) Method of taking out emitted light of cynchrotron and electron wave ring employing the method
Pozwolski A compact laser-driven accelerator of macroparticles
JP2935082B2 (en) Normal conducting magnet type electron storage ring
JP3067784B2 (en) Electrostatic accelerator
JPH056799U (en) SOR device
JP2600075B2 (en) X-ray generator
JPH02299200A (en) Apparatus for generating synchrotron radiant light
Nexsen et al. Minimal interference beam size/profile measurement techniques applicable to the Collider
JPH02295100A (en) Synchrotron radiation generator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130