JP3067784B2 - Electrostatic accelerator - Google Patents

Electrostatic accelerator

Info

Publication number
JP3067784B2
JP3067784B2 JP2143809A JP14380990A JP3067784B2 JP 3067784 B2 JP3067784 B2 JP 3067784B2 JP 2143809 A JP2143809 A JP 2143809A JP 14380990 A JP14380990 A JP 14380990A JP 3067784 B2 JP3067784 B2 JP 3067784B2
Authority
JP
Japan
Prior art keywords
electrode
electrostatic
electrostatic accelerator
acceleration
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2143809A
Other languages
Japanese (ja)
Other versions
JPH0437000A (en
Inventor
祥裕 小原
誠 水野
Original Assignee
日本原子力研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本原子力研究所 filed Critical 日本原子力研究所
Priority to JP2143809A priority Critical patent/JP3067784B2/en
Publication of JPH0437000A publication Critical patent/JPH0437000A/en
Application granted granted Critical
Publication of JP3067784B2 publication Critical patent/JP3067784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、静電加速器に関するものである。Description: TECHNICAL FIELD The present invention relates to an electrostatic accelerator.

さらに詳しくは、この発明は、大電流で、収束性の良
好な高輝度の荷電粒子ビームを発生させることのできる
静電加速器に関するものである。
More particularly, the present invention relates to an electrostatic accelerator capable of generating a high-current charged particle beam with high convergence and high current.

(従来の技術) 従来より、荷電粒子ビームを数10keVから数MeV程度の
高エネルギー領域に静電的に加速する静電加速器につい
ては、たとえば第6図に例示したような単一電極孔
(ア)を有する複数の加速電極(イ)を多段配備した構
造のものが知られている。
(Prior Art) Conventionally, for an electrostatic accelerator that electrostatically accelerates a charged particle beam to a high energy region of about several tens keV to several MeV, for example, a single electrode hole (A) as illustrated in FIG. ) Are known in which a plurality of accelerating electrodes (a) are arranged in multiple stages.

このような静電加速器においては、加速電極(イ)間
に加速電極(ウ)から静電界を印加し、イオン源(エ)
に設けたプラズマ生成電源(オ)からの印加電圧により
供給ガス(カ)をプラズマ(キ)励起した荷電粒子ビー
ム(ク)を加速している。荷電粒子ビーム(ク)の収束
は、各々の加速電極(イ)の電極孔(ア)を通過する際
に静電界より受ける静電レンズ作用により行っていた。
In such an electrostatic accelerator, an electrostatic field is applied between the accelerating electrodes (a) from the accelerating electrodes (c), and an ion source (d) is applied.
The charged particle beam (h), in which the supply gas (f) is plasma (g) excited by the applied voltage from the plasma generation power supply (e) provided in the above, is accelerated. The convergence of the charged particle beam (h) has been performed by an electrostatic lens effect received from an electrostatic field when passing through the electrode hole (a) of each acceleration electrode (a).

(発明が解決しようとする課題) 一般的に、荷電粒子ビーム(ク)を加速する場合、荷
電粒子ビーム(ク)の電流値が大きくなるにつれてビー
ム自身のもつ空間電荷により発散力が強まり、ビームの
収束性が悪化する。これを防止し、荷電粒子ビーム
(ク)の収束性を向上させるためには、静電加速器の加
速電極(イ)間に印加する電界強度を大きくし、レンズ
作用を強くする必要がある。
(Problems to be Solved by the Invention) Generally, when accelerating a charged particle beam (h), the diverging force is increased by the space charge of the beam itself as the current value of the charged particle beam (h) increases, and the beam The convergence of is deteriorated. In order to prevent this and improve the convergence of the charged particle beam (h), it is necessary to increase the intensity of the electric field applied between the accelerating electrodes (a) of the electrostatic accelerator to increase the lens action.

しかしながら、加速電極(イ)間に印加できる電界強
度は真空耐電圧上の制約を受けるため、従来では、収束
性の良好な大電流ビームの生成には限界があるのが実情
であった。
However, since the electric field strength that can be applied between the accelerating electrodes (a) is restricted by the withstand voltage of the vacuum, the generation of a large current beam with good convergence has been limited in the past.

一方、加速電極(イ)間においては、第7図にも示し
たように、ビーム粒子と周囲のガス分子との衝突によっ
て生じる低速の電子(ケ)やイオン(コ)等の二次粒子
が、電界方向に加速され、電極孔(ア)を順次通過する
にしたがって高エネルギーに加速されることとなる。こ
の加速した高エネルギーの電子(ケ)やイオン(コ)
は、一般に下流側の加速電極(イ)に衝突する軌道を取
りやすく、ひとたび加速電極(イ)に衝突すると、X線
(サ)や二次電子(シ)が発生し、これによって、加速
器の耐電圧特性を劣化させるという問題があった。加速
器内の真空度が高真空である場合には、二次粒子の発生
は少なく、さほど大きな問題とはならないが、ビーム電
流を増大させるにしたがってイオン源(エ)へ供給する
ガス(カ)の供給量が増大し、加速器内のガス圧が上昇
する場合には、加速電極(イ)間で発生する電子(ケ)
やイオン(コ)等の二次粒子をいかに抑制するかが極め
て重要となる。すなわち、このような二次粒子を高エネ
ルギー状態に加速することなく、低エネルギー状態のう
ちに処理しなければならないという問題があった。
On the other hand, between the accelerating electrodes (a), as shown in FIG. 7, low-speed secondary particles such as electrons (ke) and ions (ko) generated by collision between the beam particles and surrounding gas molecules are generated. Is accelerated in the direction of the electric field, and is accelerated to high energy as it sequentially passes through the electrode holes (A). These accelerated high-energy electrons (ke) and ions (ko)
Is generally easy to take a trajectory that collides with the acceleration electrode (a) on the downstream side, and once colliding with the acceleration electrode (a), X-rays (sa) and secondary electrons (shi) are generated, which causes There is a problem that the withstand voltage characteristics are deteriorated. When the degree of vacuum in the accelerator is high, the generation of secondary particles is small and does not cause a significant problem. However, as the beam current is increased, the gas (f) supplied to the ion source (d) is increased. When the supply amount increases and the gas pressure in the accelerator increases, the electrons generated between the accelerating electrodes (a)
It is extremely important how to suppress secondary particles such as ions and ions (co). That is, there is a problem that such secondary particles must be processed in a low energy state without being accelerated to a high energy state.

この発明は、以上の通りの事情に鑑みてなされたもの
であり、従来の静電加速器の欠点を解消し、大電流で、
かつ収束性の良好な高輝度の荷電粒子ビームを発生させ
ることができる、新しい静電加速器提供することを目的
としている。
The present invention has been made in view of the above circumstances, and solves the drawbacks of the conventional electrostatic accelerator, with a large current,
It is another object of the present invention to provide a new electrostatic accelerator capable of generating a high-intensity charged particle beam with good convergence.

(課題を解決するための手段) この発明は、上記の課題を解決するものとして、加速
電極の電極孔周辺に複数の磁石を配設し、この電極孔内
に磁気四重極磁場を発生させてなることを特徴とする静
電加速器を提供する。
(Means for Solving the Problems) In order to solve the above problems, the present invention arranges a plurality of magnets around an electrode hole of an acceleration electrode and generates a magnetic quadrupole magnetic field in the electrode hole. An electrostatic accelerator characterized by the following.

この発明においては、隣接する電極孔内に互いに極性
の逆の四重極磁場を発生させることを好ましい態様とし
てもいる。
In a preferred embodiment of the present invention, a quadrupole magnetic field having opposite polarities is generated in adjacent electrode holes.

(作 用) この発明の静電加速器においては、加速電極の電極孔
周辺に複数の磁石を配設し、この電極孔内に磁気四重極
磁場を発生させることによって、荷電粒子ビームが電極
孔を通過するたび毎にこの四重極磁場で荷電粒子ビーム
をその断面の垂直方向および水平方向に収束と発散とを
交互に繰り返させ、最終的に収束性の良好な加速荷電粒
子ビームとすることができる。また加速電極間において
粒子ビームと周囲のガス分子との衝突により生じる電子
やイオン等の二次粒子を四重極磁場で偏向させることも
できるため、この二次粒子を高エネルギー状態に加速す
るものを防止でき、しかも加速電極との衝突による加速
電極表面からのX線や二次電子の発生を抑制することが
できる。
(Operation) In the electrostatic accelerator of the present invention, a plurality of magnets are arranged around the electrode hole of the accelerating electrode, and a magnetic quadrupole magnetic field is generated in the electrode hole, so that the charged particle beam is Each time the light passes through, the charged particle beam is alternately converged and diverged in the vertical and horizontal directions of its cross section with this quadrupole magnetic field, and finally becomes an accelerated charged particle beam with good convergence Can be. In addition, secondary particles such as electrons and ions generated by the collision of a particle beam and surrounding gas molecules between the accelerating electrodes can be deflected by a quadrupole magnetic field, so that these secondary particles are accelerated to a high energy state. And the generation of X-rays and secondary electrons from the surface of the acceleration electrode due to collision with the acceleration electrode can be suppressed.

(実施例) 以下、図面に沿って実施例を示し、この発明の静電加
速器についてさらに詳しく説明する。
(Example) Hereinafter, an example is shown along with a drawing and an electrostatic accelerator of the present invention is explained in more detail.

第1図(a)(b)は、各々、この発明の静電加速器
の一実施例を模式的に示した要部断面図および要部正面
図である。
FIGS. 1 (a) and 1 (b) are a cross-sectional view and a front view, respectively, of an essential part schematically showing an embodiment of the electrostatic accelerator of the present invention.

この例においては、荷電粒子ビームを単一の電極孔
(1)を通過させて加速する静電加速系(2)におい
て、多段配置した加速電極(3)の各々に、一対の四重
極磁場(4a)(4b)を発生させる磁石(5)を上下左右
に一つずつ配設している。通常、一対の等しい四重極磁
場(4a)(4b)を用いることによって、荷電粒子ビーム
をその断面の垂直方向と水平方向との両方向に収束させ
ることができる。四重極磁場(4a)(4b)を発生させる
磁石(5)の種類については特に制限はなく、たとえば
永久磁石、電磁石等とすることができる。
In this example, in an electrostatic acceleration system (2) for accelerating a charged particle beam through a single electrode hole (1), a pair of quadrupole magnetic fields is applied to each of the multistagely arranged acceleration electrodes (3). (4a) The magnets (5) for generating (4b) are arranged one by one at the top, bottom, left and right. Usually, by using a pair of equal quadrupole magnetic fields (4a) and (4b), the charged particle beam can be converged in both the vertical and horizontal directions of its cross section. The type of the magnet (5) that generates the quadrupole magnetic fields (4a) and (4b) is not particularly limited, and may be, for example, a permanent magnet, an electromagnet, or the like.

またこの例においては、隣接する電極孔(1)内の四
重極磁場が互いに逆の極性となるように、隣接する磁石
(5A)(5B)をその極性を逆にして配設してもいる。
Further, in this example, adjacent magnets (5A) and (5B) are arranged with the polarities reversed so that the quadrupole magnetic fields in the adjacent electrode holes (1) have opposite polarities. I have.

この第1図に示した例の場合には、荷電粒子ビームが
下流側の四重極磁場(4A)に入射する時に、そのビーム
のエネルギーはこれより下流側の時よりも増大している
ため、上流側の四重極磁場(4B)の強度を四重極磁場
(4A)よりも強くすることによって、水平方向にも垂直
方向にも収束した荷電粒子ビームとすることができる。
In the example shown in FIG. 1, when the charged particle beam is incident on the quadrupole magnetic field (4 A) on the downstream side, the energy of the beam is higher than on the downstream side. By making the intensity of the quadrupole magnetic field (4B) on the upstream side stronger than that of the quadrupole magnetic field (4A), a charged particle beam converged in both the horizontal and vertical directions can be obtained.

第2図(a)(b)は、この発明の別の例を模式的に
示した要部断面図および要部正面図である。
FIGS. 2A and 2B are a cross-sectional view and a front view of a main part schematically showing another example of the present invention.

この例においては、一つの加速電極(3)に互いに極
性の逆の一対の磁石(5a)(5b)を配設している。ま
た、第1図(a)に示した例と同様に、隣接する単一の
電極孔(1)内の四重極磁場の極性をも互いに逆となる
ように、磁石(5)をその極性を逆にして配設してもい
る。
In this example, a pair of magnets (5a) and (5b) having opposite polarities are arranged on one accelerating electrode (3). Similarly to the example shown in FIG. 1 (a), the magnet (5) is polarized so that the polarities of the quadrupole magnetic fields in the adjacent single electrode hole (1) are also opposite to each other. They are arranged in reverse.

この第2図に示した例の場合には、第1図の例とは異
なって、各電極(3)間の四重極磁場相互の間での荷電
粒子ビームのエネルギー増大は起こらないために、各電
極(3)の磁場強度を電極孔(1)を通過するビームの
エネルギーに応じて増大させる必要はない。
In the case of the example shown in FIG. 2, unlike the example of FIG. 1, the energy of the charged particle beam does not increase between the quadrupole magnetic fields between the electrodes (3). It is not necessary to increase the magnetic field strength of each electrode (3) according to the energy of the beam passing through the electrode hole (1).

第3図は、この発明のまた別の例を模式的に示した要
部正面図である。
FIG. 3 is a front view of a main part schematically showing another example of the present invention.

加速電極(3)に形成した多孔状の電極孔(1)の隣
接する電極孔(1)内に、互いに極性が逆の四重極磁場
を発生させる磁石(5)を配設し、この多孔状の電極孔
(1)に荷電粒子ビームを通過させて加速する。この第
3図に示した例の場合には、磁石(5)により発生する
磁場が加速電極(3)外に洩れることはないために、イ
オン源に悪影響を及ぼさずにすむという利点がある。
A magnet (5) for generating quadrupole magnetic fields having opposite polarities is disposed in an electrode hole (1) adjacent to the porous electrode hole (1) formed in the acceleration electrode (3). The charged particle beam is accelerated by passing through the electrode hole (1) in the shape of a circle. In the case of the example shown in FIG. 3, since the magnetic field generated by the magnet (5) does not leak out of the acceleration electrode (3), there is an advantage that the ion source is not adversely affected.

たとえば以上のように例示することのできるこの発明
の静電加速器による荷電粒子ビームの加速作用について
例示したものが第4図(a)(b)および第5図であ
る。
For example, FIGS. 4 (a), (b) and 5 show examples of the acceleration action of the charged particle beam by the electrostatic accelerator of the present invention which can be exemplified as described above.

第4図(a)(b)に示したように、荷電粒子ビーム
(6)は、加速電極(3)の電極孔(1)を通過する毎
に、一対の四重極磁場(4a)(4b)により第5図に示し
たようにビーム断面の垂直方向および水平方向に収束作
用(7)と発散作用(8)とを交互に繰り返し受け、強
収束の原理により最終的に収束性の良好なブームとな
る。加速電極(3)間に印加する電界強度を強くしなく
とも、すなわち静電レンズの強度を強くしなくても、収
束性の良好な大電流ビームを生成することができる。
As shown in FIGS. 4 (a) and 4 (b), each time the charged particle beam (6) passes through the electrode hole (1) of the accelerating electrode (3), a pair of quadrupole magnetic fields (4a) ( According to 4b), as shown in FIG. 5, the convergence function (7) and the divergence function (8) are alternately repeated in the vertical and horizontal directions of the beam cross section, and finally the convergence is good by the principle of strong convergence. It becomes a boom. A large current beam with good convergence can be generated without increasing the intensity of the electric field applied between the accelerating electrodes (3), that is, without increasing the intensity of the electrostatic lens.

加速電極(3)間において、ビーム粒子と周囲のガス
との衝突によって生ずる二次電子は、荷電粒子に比べて
質量が1/1800程度と小さいために、四重極磁場(4a)
(4b)によって大きく偏向し、第4図(a)に示した軌
道(9)を描いて電極(3)に衝突する。一方、ビーム
粒子とガス分子との衝突によって生ずる二次イオンは、
電極孔(1)を通過するまでに得るエネルギーが小さい
ことから、二次電子と同様に、四重極磁場(4a)(4b)
により偏向し、軌道(9)を描いて電極(3)に衝突す
る。このために、二次電子や二次イオン等の二次粒子
が、加速電極(3)の上流側に洩れてさらにエネルギー
を得ることは不可能となり、加速器の耐電特性を劣化さ
せるX線や二次電子の電極(3)表面からの発生を抑制
することができる。また、二次粒子の高エネルギーへの
加速を大幅に減少できることから、加速電極(3)の熱
負荷を著しく低減させることもできる。
Secondary electrons generated by collision between the beam particles and the surrounding gas between the accelerating electrodes (3) have a mass about 1/1800 smaller than that of the charged particles, so the quadrupole magnetic field (4a)
The beam is largely deflected by (4b) and collides with the electrode (3) along the trajectory (9) shown in FIG. 4 (a). On the other hand, secondary ions generated by collision between beam particles and gas molecules are:
Since the energy obtained before passing through the electrode hole (1) is small, the quadrupole magnetic field (4a) (4b)
And collides with the electrode (3) in a trajectory (9). For this reason, secondary particles such as secondary electrons and secondary ions leak to the upstream side of the accelerating electrode (3), and it becomes impossible to obtain further energy. Generation of secondary electrons from the surface of the electrode (3) can be suppressed. Further, since the acceleration of the secondary particles to high energy can be greatly reduced, the heat load on the acceleration electrode (3) can be significantly reduced.

もちろんこの発明は、以上の例によって限定されるも
のではない。加速電極の構造およひ構成、磁石の種類や
その配置構成等の細部については様々な態様が可能であ
ることはいうまでもない。
Of course, the present invention is not limited by the above examples. It goes without saying that various aspects are possible for details such as the structure and configuration of the accelerating electrode, the type of magnet and the arrangement thereof.

(発明の効果) 以上詳しく説明した通り、この発明によって、収束性
の良好な大電流ビームを生成することができる。また、
静電加速器の耐電圧特性を向上させることができ、しか
も加速電極の熱負荷を低減させることもできる。この発
明の静電加速器は、イオン注入用または表面処理・表面
改質用の数100keVから数MeV領域の大電流イオン加速
器、核融合実験装置のプラズマ加熱・電流駆動用の大電
流負イオン加速器、耐中性子材料開発用の強力中性子源
あるいは材料試験用の大強度イオン加速器等に用いるこ
ができる。
(Effects of the Invention) As described in detail above, according to the present invention, a large current beam with good convergence can be generated. Also,
The withstand voltage characteristics of the electrostatic accelerator can be improved, and the thermal load on the acceleration electrode can be reduced. The electrostatic accelerator of the present invention is a high-current ion accelerator for ion implantation or surface treatment / surface modification in the range of several hundred keV to several MeV, a large-current negative ion accelerator for plasma heating / current driving of a fusion experimental device, It can be used as a strong neutron source for developing neutron-resistant materials or a high-intensity ion accelerator for material testing.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)(b)は、各々、この発明の静電加速器の
一実施例を模式的に示した要部断面図および要部正面図
である。 第2図(a)(b)は、各々、この発明の別の例を模式
的に示した要部断面図および要部正面図である。 第3図は、この発明のまた別の例を模式的に示した要部
正面図である。 第4図(a)(b)および第5図は、各々、この発明の
静電加速器による荷電粒子ビームの加速作用について模
式的に示した要部断面図、要部正面図および進行方向と
ビーム幅との相関図である。 第6図および第7図は、各々、従来の静電加速器とその
動作状態を模式的に示した断面図である。 1……電極孔 2……静電加速系 3……加速電極 4a,4b,4A,4B……四重極磁場 5,5a,5b,5A,5B……磁石 6……荷電粒子ビーム 7……収束作用 8……発散作用 9……軌道
FIGS. 1 (a) and 1 (b) are a cross-sectional view and a front view, respectively, of an essential part schematically showing an embodiment of the electrostatic accelerator of the present invention. FIGS. 2 (a) and 2 (b) are a main part sectional view and a main part front view schematically showing another example of the present invention. FIG. 3 is a front view of a main part schematically showing another example of the present invention. FIGS. 4 (a), (b) and 5 are a main part sectional view, a main part front view, a traveling direction and a beam, respectively, schematically showing the acceleration action of the charged particle beam by the electrostatic accelerator of the present invention. It is a correlation diagram with a width | variety. 6 and 7 are cross-sectional views schematically showing a conventional electrostatic accelerator and an operation state thereof. DESCRIPTION OF SYMBOLS 1 ... Electrode hole 2 ... Electrostatic acceleration system 3 ... Acceleration electrode 4a, 4b, 4A, 4B ... Quadrupole magnetic field 5,5a, 5b, 5A, 5B ... Magnet 6 ... Charged particle beam 7 ... … Convergence action 8… divergence action 9… orbit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H05H 5/03 H05H 7/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H05H 5/03 H05H 7/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】荷電粒子ビームを、静電界を印加した加速
電極の電極孔を通過させて静電的に加速するようにした
静電加速器であって、加速電極の電極孔周辺に複数の磁
石を配設し、この電極孔内に磁気四重極磁場を発生させ
てなることを特徴とする静電加速器。
1. An electrostatic accelerator for electrostatically accelerating a charged particle beam through an electrode hole of an acceleration electrode to which an electrostatic field is applied, wherein a plurality of magnets are provided around the electrode hole of the acceleration electrode. , And a magnetic quadrupole magnetic field is generated in the electrode hole.
【請求項2】電極板を多段配置した加速電極からなる請
求項(1)記載の静電加速器。
2. The electrostatic accelerator according to claim 1, wherein said electrostatic accelerator comprises acceleration electrodes in which electrode plates are arranged in multiple stages.
【請求項3】隣接する電極孔内に互いに極性の逆の四重
極磁場を発生させる請求項(1)記載の静電加速器。
3. The electrostatic accelerator according to claim 1, wherein quadrupole magnetic fields having opposite polarities are generated in adjacent electrode holes.
【請求項4】格子状の電極孔を有する多孔型加速電極の
電極孔周辺に複数の磁石を配設してなる請求項(1)記
載の静電加速器。
4. The electrostatic accelerator according to claim 1, wherein a plurality of magnets are arranged around the electrode holes of the porous acceleration electrode having grid electrode holes.
JP2143809A 1990-06-01 1990-06-01 Electrostatic accelerator Expired - Fee Related JP3067784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2143809A JP3067784B2 (en) 1990-06-01 1990-06-01 Electrostatic accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2143809A JP3067784B2 (en) 1990-06-01 1990-06-01 Electrostatic accelerator

Publications (2)

Publication Number Publication Date
JPH0437000A JPH0437000A (en) 1992-02-06
JP3067784B2 true JP3067784B2 (en) 2000-07-24

Family

ID=15347478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2143809A Expired - Fee Related JP3067784B2 (en) 1990-06-01 1990-06-01 Electrostatic accelerator

Country Status (1)

Country Link
JP (1) JP3067784B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5575963B1 (en) * 2013-09-06 2014-08-20 株式会社京都ニュートロニクス Charged particle accelerator and neutron generator equipped with the charged particle accelerator
CN105103264B (en) * 2014-03-12 2017-04-05 株式会社爱发科 Ion irradiating device, ion exposure method

Also Published As

Publication number Publication date
JPH0437000A (en) 1992-02-06

Similar Documents

Publication Publication Date Title
JPH0360139B2 (en)
US3713967A (en) Energetic neutral particle injection system for controlled fusion reactor
Wang et al. Mechanism of electron cloud clearing in the accumulator ring of the Spallation Neutron Source
JP3067784B2 (en) Electrostatic accelerator
US4349505A (en) Neutral beamline with ion energy recovery based on magnetic blocking of electrons
US7015661B2 (en) Method and apparatus for accelerating charged particles
US4434131A (en) Neutral beamline with improved ion energy recovery
US3376469A (en) Positive ion-source having electron retaining means
JPS62502023A (en) energy conversion system
Bryzgunov et al. Efficiency improvement of an electron collector intended for electron cooling systems using a Wien filter
JPS63248978A (en) Cusp magnetic field type ion engine
JPS61183900A (en) Fast atomic beam source
JP4013377B2 (en) Mass separation type ion source
US3375401A (en) Source of negatively charged particles having positively charged particle retaining means
JPH01264151A (en) Multiple-beam generator for charged particle beam device
JP3099905B2 (en) Charged particle generator
Reiser Comparison of Gabor lens, gas focusing, and electrostatic quadrupole focusing for low-energy ion beams
JPH01209645A (en) Ion source and electron gun
JPH0668961B2 (en) Fast atom beam source
JP3341497B2 (en) High frequency type charged particle accelerator
JP2627420B2 (en) Fast atom beam source
JPH0758639B2 (en) Ion beam acceleration / deceleration device
JPH01161699A (en) High-speed atomic beam source
JP2671219B2 (en) Fast atom beam source
JPH04181636A (en) Metal ion source

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees