JPH01209645A - Ion source and electron gun - Google Patents

Ion source and electron gun

Info

Publication number
JPH01209645A
JPH01209645A JP3186388A JP3186388A JPH01209645A JP H01209645 A JPH01209645 A JP H01209645A JP 3186388 A JP3186388 A JP 3186388A JP 3186388 A JP3186388 A JP 3186388A JP H01209645 A JPH01209645 A JP H01209645A
Authority
JP
Japan
Prior art keywords
electrode
electrons
ion source
lowermost
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3186388A
Other languages
Japanese (ja)
Inventor
Kiyoshi Hashimoto
清 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3186388A priority Critical patent/JPH01209645A/en
Publication of JPH01209645A publication Critical patent/JPH01209645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To prevent the flowing-in of positive ions or electrons to an accelerator by providing permanent magnets to an electrode at the lowermost downstream, and making the potential of the electrode at the immediately upper side of the lowermost electrode higher than that of the lowermost electrode. CONSTITUTION:Of plural acceleration electrodes 3-5, to the electrode 5 at the lowermost downstream along the advancing direction of the negative ions or electrons, permanent magnets 7 and 8 are arranged, while the potential of the electrode 4 (deceleration electrode) immediately upper side from the lowermost electrode 5 is made higher than that of the lowermost electrode 5. As a result, the reverse flow of the positive ions can be prevented by the electrostatic barrier, and the electrons generated at a drift 6 can be prevented from flowing in the deceleration electrode 4 by a magnetic field produced by the permanent magnets 7 and 8. The flowing-in of the positive ions or the electrons to the accelerator can be prevented consequently.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、イオンや電子を静電的lζ加速し高エネルギ
ビームとして利用するイオン源、電子銃−ζ関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an ion source and an electron gun-ζ that electrostatically accelerate ions and electrons and utilize them as a high-energy beam.

(従来の技術) イオン源は、イオン生成部と加速部からなる。(Conventional technology) The ion source consists of an ion generation section and an acceleration section.

正イオンを加速するイオン源を例にとり、第6図を使っ
て従来例を説明する。
A conventional example will be explained using FIG. 6, taking as an example an ion source that accelerates positive ions.

lはイオン生成部で、ガス放電など−こよってイオンを
生成する。2へ5が加速用の電極で、2と5の間に加速
に必要な電圧を加える。3.4は電圧を分割印加するた
めの電極で、使用方法によってその電極数は増減する。
Reference numeral 1 denotes an ion generation section which generates ions through gas discharge or the like. 2 and 5 are electrodes for acceleration, and a voltage necessary for acceleration is applied between 2 and 5. Reference numeral 3.4 is an electrode for applying voltage in divided parts, and the number of electrodes increases or decreases depending on the method of use.

このうち4は後述のように、電圧を分割する目的以外の
役目をもっており、5よりも低い電位におかれている。
Of these, 4 has a role other than dividing the voltage, as will be described later, and is placed at a lower potential than 5.

各電極の中心軸に沿った電位分布を同図1こ示す。同図
では5を接地電位とした。1からひき出されたイオンは
加速をうけたのち、電場のないドリフト部6を通過する
。この領域では、バックグランドのガスとイオンビーム
との衝突によって、イオンや電子が生まれる。このうち
、電子などの負の荷電粒子は、正イオンと逆方向に加速
され大きなエネルギをもって1#こ入射する。この電子
等の逆流を防ぐために、正イオン源では前述のように4
を5よりも低い電位におき、電子の流入を防いでいる。
The potential distribution along the central axis of each electrode is shown in FIG. In the figure, 5 is set to the ground potential. After being accelerated, the ions extracted from 1 pass through the drift section 6 where there is no electric field. In this region, ions and electrons are created by collisions between the background gas and the ion beam. Among these, negatively charged particles such as electrons are accelerated in the opposite direction to positive ions and enter the particle with large energy. In order to prevent this backflow of electrons, etc., the positive ion source uses 4
is placed at a potential lower than 5 to prevent the inflow of electrons.

4を低電位−ζおくため6ζ、6からは正のイオンなど
が4Iこ流入するが、通常あまり重にな問題fζならな
い〇 負イオン源では、第6図の正負を反転した構成となる。
In order to place 4 at a low potential -ζ, positive ions and the like flow in from 6ζ and 6, but this usually does not pose a serious problem fζ. In a negative ion source, the configuration shown in FIG. 6 is reversed.

第7図に示すように、1が最も低電位になる。このとき
には6から正イオンが流入し、加速されて1#こ流入す
る。正イオンの流入を防ぐために、第6図と同様に4を
5よりも高電位fこし、正イオンに対し静電障壁を設け
るようにすればよいようにみえるが、今度は6から電子
が4に向って流入する。第2図の場合には、6から4へ
の正イオンの流入はさして問題にならないと述べたが第
7図では、4への電子流入はイオンの場合よりも大幅に
ふえる。その比はイオンと電子の質量の比の平方根に比
例するため、4に流入する電子電流は、第6図の場合の
41こ流入するイオン電流の数10倍から数百倍に達し
、4の熱負荷は大きくなりすぎる。そのため、負イオン
源の場合には、4の電極を除き、正イオンの逆流を覚悟
した電極構成をとることが多い。この場合には、6の値
域の圧力を下げ、正イオンの発生をおさえるような前述
のように、従来装置では加速を極部への不要の電子イオ
ンの流入を防ぐことが困難であった。
As shown in FIG. 7, 1 is the lowest potential. At this time, positive ions flow from #6, are accelerated, and flow from #1. In order to prevent the influx of positive ions, it seems possible to put 4 at a higher potential f than 5, as in Figure 6, and create an electrostatic barrier against positive ions, but this time, the electrons from 6 are transferred to 4. flows towards. In the case of FIG. 2, it was stated that the influx of positive ions from 6 to 4 is not much of a problem, but in FIG. 7, the influx of electrons to 4 increases significantly compared to the case of ions. Since the ratio is proportional to the square root of the mass ratio of ions and electrons, the electron current flowing into 4 is several tens to hundreds of times as large as the ion current flowing into 41 in the case of Fig. 6. The heat load becomes too large. Therefore, in the case of a negative ion source, except for electrode 4, an electrode configuration is often adopted in which the backflow of positive ions is prepared. In this case, as mentioned above, it is difficult to reduce the pressure in the range of 6 and suppress the generation of positive ions, but with the conventional apparatus, it is difficult to prevent unnecessary electron ions from flowing into the extreme part of the acceleration.

本発明では、負イオン源において電子の流入を防ぎつつ
、逆流正イオンIこ対する#t、障壁を形成する手段を
提供することを目的としている。
An object of the present invention is to provide a means for forming a barrier against backflow positive ions I while preventing the inflow of electrons in a negative ion source.

(課題を解決するための手段) 本発明に係る負イオン源では、最下流の!極に永久磁石
を配設し、その手前の電極(以下減速電極とよぶ)を最
下流電極電位よりも高くした電極構成としている。
(Means for Solving the Problems) In the negative ion source according to the present invention, the most downstream! A permanent magnet is disposed at the pole, and the electrode in front of the permanent magnet (hereinafter referred to as a deceleration electrode) has a higher potential than the most downstream electrode.

(作用) 本発明により、ば、正イオンの逆流は静電障壁で防止す
る。また、ドリフト部で発生した電子は、最下流電極C
ζ設けた永久磁石のつくる磁場によって、減速電極への
流入を防ぐことができる。
(Function) According to the present invention, backflow of positive ions is prevented by an electrostatic barrier. In addition, the electrons generated in the drift part are transferred to the most downstream electrode C.
The magnetic field created by the permanent magnet installed in ζ can prevent the flow into the deceleration electrode.

(実施例) 第1図は本発明に係るイオン源の実施例である。(Example) FIG. 1 shows an embodiment of the ion source according to the present invention.

lへ6は第7図と同様の働きをする。ただし、3へ3−
3はやはり、電圧を分割印加するための電極であるが、
通常負イオンをイオン生成部から引き出した場合には電
子も引き出されるため、その分織が必要である。3〜3
−3は電子と負イオンの分離を行なうためのt極構成で
あるが、本発明とは直接関係がないため説明は省く。
6 to l has the same function as in FIG. However, to 3-3-
3 is still an electrode for applying voltage in divided parts,
Normally, when negative ions are extracted from the ion generating section, electrons are also extracted, so it is necessary to separate them. 3~3
-3 is a t-pole configuration for separating electrons and negative ions, but since it is not directly related to the present invention, its explanation will be omitted.

6のドリフト部ではイオンビームとガスとの衝突でイオ
ン、電子が発生する。正イオンの逆流防止には従来どお
り、静電障壁で防止する。そのために、4の減速電極を
5よりも高電位におく。このままであると6から4へ電
子の流入があるが、51こ配役した永久磁石の作用で電
子流入を抑える。
In the drift part 6, ions and electrons are generated by the collision between the ion beam and the gas. As before, an electrostatic barrier is used to prevent the backflow of positive ions. For this purpose, the deceleration electrode 4 is placed at a higher potential than the deceleration electrode 5. If this continues, electrons will flow from 6 to 4, but the action of the 51 permanent magnets suppresses the electron flow.

図のようにビーム径路をよこぎるように、磁場を発生さ
せると磁場の強さが適当な値以上であれば電子は磁力線
を横切って移動することはできず、4への電子流入を防
ぐことができる。ところで、この磁場は電子の動きを抑
制する程度の磁場であるため、高速のイオンの影響する
ことはない。
When a magnetic field is generated to cross the beam path as shown in the figure, if the strength of the magnetic field is above an appropriate value, electrons cannot move across the lines of magnetic force, preventing electrons from flowing into 4. Can be done. By the way, this magnetic field is strong enough to suppress the movement of electrons, so it is not affected by high-speed ions.

第2図は、本発明の変形例を示す。第1図は、イオンの
引出し孔がひとつの場合を例示したが、イオン源では第
2図のように一枚の電極fこ複数個設けた多孔電極が用
いられることが多い。多孔電極の場合でも、@1図と同
様に各引出し孔毎に永久磁石を配することによって同様
の効果が得られる。また、第5図のようlζいくつかの
引出し孔をまとめて処理する方法もある。
FIG. 2 shows a modification of the invention. Although FIG. 1 illustrates the case where there is one ion extraction hole, in the ion source, a porous electrode in which a plurality of electrodes are provided on one sheet is often used as shown in FIG. 2. Even in the case of a porous electrode, the same effect can be obtained by arranging a permanent magnet for each extraction hole as in Figure @1. There is also a method of treating several extraction holes at once as shown in FIG.

ところで本発明は負イオン源を対象としてのべてきたが
、電子銃Iこ対しても同様の効果が得られる。
By the way, although the present invention has been described with reference to a negative ion source, similar effects can be obtained with an electron gun.

第3図は、電子銃の典型的な電極配置である。FIG. 3 shows a typical electrode arrangement for an electron gun.

9は電子放出用のカソードであり、10.11は加速用
の電極である。第3図は第8図と同じ構成で1を91こ
とりかえた構成になりでいる。このときにも正イオンの
逆流がおこり、イオンによる陰極への衝撃が陰極寿命を
縮める原因のひとつとじて知られている。電子銃の場合
でも、第7図の構成とすることにより負イオン源の場合
と同様の効果が得られる。
9 is a cathode for electron emission, and 10.11 is an electrode for acceleration. FIG. 3 has the same configuration as FIG. 8, except that 1 is replaced by 91. At this time, a backflow of positive ions also occurs, and the impact of the ions on the cathode is known to be one of the causes of shortening the life of the cathode. Even in the case of an electron gun, the same effect as in the case of a negative ion source can be obtained by adopting the configuration shown in FIG.

以上の例では、永久磁石の向きをビームに平行な配置と
したが、これに限られるわけではない。
In the above example, the permanent magnets are arranged parallel to the beam, but the orientation is not limited to this.

要は磁石線がビームを横切っていれば良く、第5図の配
置でもよい。
The point is that the magnet line only needs to cross the beam, and the arrangement shown in FIG. 5 may be used.

才た、以上の説明では、ビームの形状についてふれなか
ったが形状によらないことはいうまでもない。
Although the above explanation did not mention the shape of the beam, it goes without saying that it does not depend on the shape.

(発明の効果) 以上述べたようfこ本発明−こよれば、減速電極と永久
磁石を併用することIこより、正イオン、を子の加速部
への流入を防ぐことができる。
(Effects of the Invention) As described above, according to the present invention, by using the deceleration electrode and the permanent magnet in combination, it is possible to prevent positive ions from flowing into the child acceleration section.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る負イオン源の電極構成図、第2
図は本発明を多孔型[極に適用した例の構成図、第3図
は電子銃の電極配置の構成図、第4図は本発明を電子銃
−こ応用した例の構成図、第5図は磁石配置の別の実施
例を示す構成図、第6図は正イオン源の従来例を示す構
成図、第7図。 第8図は負イオン源の従来例を示す構成図である。 1・・・イオン生成部、2,3,4,5,10.11・
・・加速用′lt極、6・・・ドリフト部、7,8・・
・永久磁石、9・・・電子放出用のカソード。
FIG. 1 is an electrode configuration diagram of a negative ion source according to the present invention, and FIG.
The figure shows a configuration diagram of an example in which the present invention is applied to a porous type electrode, Figure 3 is a configuration diagram of the electrode arrangement of an electron gun, Figure 4 is a configuration diagram of an example in which the invention is applied to an electron gun, and Figure 5 shows a configuration diagram of an example in which the present invention is applied to an electron gun. 6 is a block diagram showing another example of magnet arrangement, FIG. 6 is a block diagram showing a conventional example of a positive ion source, and FIG. 7 is a block diagram showing another embodiment of the magnet arrangement. FIG. 8 is a configuration diagram showing a conventional example of a negative ion source. 1... Ion generation section, 2, 3, 4, 5, 10.11.
・Acceleration 'lt pole, 6... Drift part, 7, 8...
- Permanent magnet, 9... Cathode for electron emission.

Claims (2)

【特許請求の範囲】[Claims] (1)イオン生成部で負イオンを生成し、電場によって
負イオンを引出し、加速する負イオン源において、複数
の加速用電極のうち、イオンの進行方向にそって最下流
にある電極に永久磁石を配設するとともに、最下流電極
のすぐ上流の電極電位を最下流電極より高くしたことを
特徴とするイオン源。
(1) In a negative ion source that generates negative ions in the ion generation section and extracts and accelerates them using an electric field, a permanent magnet is attached to the most downstream electrode along the direction of ion movement among the multiple acceleration electrodes. An ion source characterized in that the electrode potential immediately upstream of the most downstream electrode is higher than that of the most downstream electrode.
(2)電子放出用陰極部を具備し、電場によって電子を
加速する電子銃において、複数の加速用電極のうち電子
の進行方向にそって最下流にある電極に永久磁石を配設
するとともに最下流電極のすぐ上流の電極電位を、最下
流電極より高くしたことを特徴とする電子銃。
(2) In an electron gun that is equipped with an electron-emitting cathode section and accelerates electrons using an electric field, a permanent magnet is disposed in the most downstream electrode along the electron traveling direction among multiple accelerating electrodes, and the most downstream electrode is provided with a permanent magnet. An electron gun characterized in that the electrode potential immediately upstream of the downstream electrode is higher than that of the most downstream electrode.
JP3186388A 1988-02-16 1988-02-16 Ion source and electron gun Pending JPH01209645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3186388A JPH01209645A (en) 1988-02-16 1988-02-16 Ion source and electron gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3186388A JPH01209645A (en) 1988-02-16 1988-02-16 Ion source and electron gun

Publications (1)

Publication Number Publication Date
JPH01209645A true JPH01209645A (en) 1989-08-23

Family

ID=12342887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3186388A Pending JPH01209645A (en) 1988-02-16 1988-02-16 Ion source and electron gun

Country Status (1)

Country Link
JP (1) JPH01209645A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002043103A3 (en) * 2000-11-20 2002-10-17 Varian Semiconductor Equipment Extraction and deceleration of low energy beam with low beam divergence
EP2446456A1 (en) * 2009-06-23 2012-05-02 L-3 Communications Corporation Magnetically insulated cold-cathode electron gun
CN102592930A (en) * 2011-01-08 2012-07-18 日新离子机器株式会社 Ion source

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002043103A3 (en) * 2000-11-20 2002-10-17 Varian Semiconductor Equipment Extraction and deceleration of low energy beam with low beam divergence
CN1311508C (en) * 2000-11-20 2007-04-18 瓦里安半导体设备联合公司 Extraction and deceleration of low energy beam with low beam divergence
EP2446456A1 (en) * 2009-06-23 2012-05-02 L-3 Communications Corporation Magnetically insulated cold-cathode electron gun
EP2446456A4 (en) * 2009-06-23 2014-03-19 L 3 Comm Corp Magnetically insulated cold-cathode electron gun
CN102592930A (en) * 2011-01-08 2012-07-18 日新离子机器株式会社 Ion source
JP2012146424A (en) * 2011-01-08 2012-08-02 Nissin Ion Equipment Co Ltd Ion source

Similar Documents

Publication Publication Date Title
US10172227B2 (en) Plasma accelerator with modulated thrust
JP4944336B2 (en) Plasma accelerator
US4471224A (en) Apparatus and method for generating high current negative ions
JPH01209645A (en) Ion source and electron gun
US3376469A (en) Positive ion-source having electron retaining means
JPH03505944A (en) How to accelerate magnetized rotating plasma in a pulse accelerator
JPH0610465B2 (en) Cusp magnetic field type ion engine
JP3067784B2 (en) Electrostatic accelerator
JP3316994B2 (en) Accelerator tube
JPH07211497A (en) Decelerating tube
US3375401A (en) Source of negatively charged particles having positively charged particle retaining means
JP2913633B2 (en) Ion engine
JP2909696B2 (en) Beam generating method and apparatus
JPH0668961B2 (en) Fast atom beam source
Spädtke et al. Accel–decel extraction system for PIG sources
Krylov et al. Numerical simulation of secondary particles in electrostatic accelerator
JPH0750637B2 (en) Fast atom beam source
JP2797490B2 (en) Strongly focused charged particle acceleration / deceleration tube
JP3099905B2 (en) Charged particle generator
JPH08236030A (en) Negative ion source
Kwan High current injectors for heavy ion driven inertial fusion
JPH05248346A (en) Electron impact type ion engine
JP2791083B2 (en) Negative ion source
JPS58201230A (en) Ion source device
DE3345573A1 (en) Device for reducing the divergence angle of an ion or electron source