JPH0626748B2 - Pressurized lost foam casting method for metal products - Google Patents

Pressurized lost foam casting method for metal products

Info

Publication number
JPH0626748B2
JPH0626748B2 JP1176969A JP17696989A JPH0626748B2 JP H0626748 B2 JPH0626748 B2 JP H0626748B2 JP 1176969 A JP1176969 A JP 1176969A JP 17696989 A JP17696989 A JP 17696989A JP H0626748 B2 JPH0626748 B2 JP H0626748B2
Authority
JP
Japan
Prior art keywords
pressure
model
metal
mpa
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1176969A
Other languages
Japanese (ja)
Other versions
JPH02235546A (en
Inventor
ミシエル・ギヤラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto France SAS
Original Assignee
Aluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR898903706A external-priority patent/FR2644087B2/en
Application filed by Aluminium Pechiney SA filed Critical Aluminium Pechiney SA
Publication of JPH02235546A publication Critical patent/JPH02235546A/en
Publication of JPH0626748B2 publication Critical patent/JPH0626748B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • B22D27/13Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of gas pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • B22C9/046Use of patterns which are eliminated by the liquid metal in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Casting Devices For Molds (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Pens And Brushes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【発明の詳細な説明】 本発明は、金属製品、特にアルミニウム又はアルミニウ
ム合金の製品を加圧ロストフォーム(lost−foam)プロ
セスによって鋳造する方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for casting metal products, especially products of aluminum or aluminum alloys, by a pressure lost-foam process.

例えばUSP No.3 157 924の教示によって当業者に知られ
ているように、金属の鋳造では、発泡ポリスチレンのよ
うな発泡有機物質からなる模型(pattern)を粘結剤を
含まない乾燥砂で形成した鋳型中に埋め込んで使用する
ことができる。工業的には通常、鋳造製品の質を高める
ためにこれらの模型を耐熱材の薄膜でコーティングす
る。この種の方法では、砂を貫通する供給孔及び通路を
介して予め溶融しておいた鋳造すべき金属を模型と接触
させ、この模型を燃焼させて主に蒸気に変換する。この
蒸気は砂粒の間から外に流出するため、前記溶融金属が
模型に代わって砂中の空間を徐々に埋めていくことにな
る。
As is known to those skilled in the art, for example by the teaching of USP No. 3 157 924, in metal casting, a pattern of foamed organic material, such as expanded polystyrene, is formed from dry sand without binder. It can be used by embedding it in the prepared mold. Industrially, these models are typically coated with a thin layer of refractory material to improve the quality of the cast product. In this type of method, pre-melted metal to be cast is brought into contact with a model through supply holes and passages penetrating the sand, and the model is burned to be converted mainly to steam. Since this steam flows out from between the sand grains, the molten metal gradually fills the space in the sand instead of the model.

この方法は、非恒久的鋳型を用いる一般的鋳造法と異な
って、中子にかなり複雑な方法で接続される剛性鋳型を
耐熱金属粉末の圧縮及び固めによって予め形成する必要
がなく、鋳造製品の取り出し及び鋳型材のリサイクルが
簡単である。従って、通常の方法より簡単であり且つ経
済的でもある。また、鋳造製品の形状についてもデザイ
ナーがより自由に設計することができる。このような理
由から、この方法は工業的に益々重要になってきてい
る。しかしながら、この方法には幾つかの欠点がある。
そのうち下記の2つは、従来の冶金メカニズムに由来す
るものである。
This method differs from the general casting method using non-permanent molds in that it does not require pre-forming a rigid mold that is connected to the core in a fairly complicated way by compression and consolidation of refractory metal powders, Easy to take out and recycle the mold material. Therefore, it is simpler and more economical than the conventional method. Also, the designer can more freely design the shape of the cast product. For this reason, this method is becoming more and more important industrially. However, this method has some drawbacks.
The following two are derived from conventional metallurgical mechanisms.

1)凝固速度が比較的遅いため、液体アルミニウム合金
中に溶解している水素に起因してガス排出によるピンホ
ールが生じ易い。
1) Since the solidification rate is relatively slow, pinholes are likely to occur due to gas discharge due to hydrogen dissolved in the liquid aluminum alloy.

2)熱勾配が比較的小さいため、微細引け巣(micro−s
hrinkage)が生じ易い。
2) Due to the relatively small thermal gradient, micro shrinkage (micro-s
hrinkage) is likely to occur.

これらの欠点を解消するために、本出願人はNo.2 606 6
88で公開された仏国特許出願の発明で、充填後に、金属
の凝固部分が40重量%を超えないうちに、最大0.5〜1.5
MPaの静定気体圧力を鋳型に加えることを提案した。
In order to overcome these drawbacks, the present applicant has proposed No. 2 606 6
The invention of the French patent application published at 88, which, after filling, has a maximum of 0.5-1.5 before the solidified part of the metal exceeds 40% by weight.
It was proposed to apply a static gas pressure of MPa to the mold.

前記発明の方法は、ロストフォーム鋳造で一般的に使用
されているステップ、即ち 耐熱材の薄膜でコーティングされた発泡有機物質からな
る鋳造される製品の模型を使用し、 粘結剤を含まない乾燥砂で形成した鋳型の中に前記模型
を埋め込み、 模型と鋳型の外部とを連通させる供給孔から前記鋳型に
溶融金属を充填して、前記模型を燃焼させ、 前記燃焼によって模型から生じた蒸気及び液体残留物を
排出し、 溶融金属を凝固させて製品を得る ステップを含む。
The method of the invention uses a step commonly used in lost foam casting, namely, a cast product model consisting of a foamed organic material coated with a thin film of refractory material, and dried without binder. The model is embedded in a mold made of sand, the mold is filled with molten metal through a supply hole that communicates the model with the outside of the mold, the model is burned, and steam generated from the model by the combustion and Draining the liquid residue and solidifying the molten metal to obtain the product.

但し、前記発明はその改良点として、鋳型が完全に充填
された時点、即ち金属が完全に模型にとって代わり且つ
蒸気の大部分が排出された時点で、鋳型に気体圧力を加
えるようになっている。この操作は、加圧ガス源に接続
した耐圧チャンバ内に鋳型を配置して行い得る。
However, as an improvement, the above-mentioned invention applies gas pressure to the mold when the mold is completely filled, that is, when the metal is completely replaced by the model and most of the vapor is discharged. . This operation can be performed by placing the mold in a pressure resistant chamber connected to a source of pressurized gas.

この加圧操作は、充填操作の直後、即ち金属がまだ完全
に液体である間に実施し得るが、鋳型内の金属の凝固部
分が40%を超えなければ、それより後で行ってもよい。
凝固部分が40%を超えると圧力を加えても殆ど効果がな
い。加える圧力の最大値は0.5〜1.5MPaが好ましいと判
断された。0.5MPa未満では十分な効果が得られず、1.5M
Paを超えると操作費用が高くなるからである。
This pressing operation may be carried out immediately after the filling operation, i.e. while the metal is still completely liquid, but may be carried out after the solidified portion of the metal in the mold does not exceed 40%. .
When the solidified portion exceeds 40%, there is almost no effect even if pressure is applied. It was judged that the maximum value of the applied pressure is preferably 0.5 to 1.5 MPa. If less than 0.5MPa, sufficient effect cannot be obtained, and 1.5M
This is because if it exceeds Pa, the operating cost will increase.

このようにすると、ガスに由来するピンホール及び微細
引け巣が発生しなくなるか又は少なくとも減少するた
め、製品の密度が大幅に増加し、従って機械的特性も向
上した。しかしながら、これには、金属浸透(metal pe
netration)として知られている別の欠点が伴うことが
判明した。即ち、前記条件以外のことは考慮しないでロ
ストフォーム鋳造用鋳型を加圧すると、圧力が金属供給
孔に直接加えられるとその圧力が殆ど一瞬のうちに溶融
金属全体に伝達される一方で、砂の表面には、圧力は砂
粒を介した圧力降下に起因して漸減しながら伝達され
る。従って、圧力に不均衡が生じ、界面領域、即ち模型
が砂と接触する領域では金属の圧力が砂より△Pだけ過
剰になる。この不均衡は一時的なものであり、加圧直後
に生じ、次いで削滅する。
In this way, pinholes and fine shrinkage cavities due to the gas are eliminated or at least reduced, so that the density of the product is significantly increased and thus the mechanical properties are also improved. However, this does not include metal penetration.
It was found to be accompanied by another drawback known as netration). That is, when the lost foam casting mold is pressurized without considering the conditions other than the above conditions, when the pressure is directly applied to the metal supply hole, the pressure is almost instantaneously transmitted to the entire molten metal, while sand is applied. The pressure is transmitted to the surface of the slab due to the pressure drop across the sand grains. Therefore, a pressure imbalance results and the pressure of the metal is over the sand by ΔP in the interface region, i.e. the region where the model contacts the sand. This imbalance is temporary and occurs shortly after pressurization and then erodes.

前記過剰圧力が大きくなり過ぎると金属が砂粒間に浸透
するため、製品の表面に変形が生じる。これが、いわゆ
る金属浸透現象である。そこで、この欠点を解消するた
めに、前記過剰圧力をできるだけ小さくする必要が生じ
た。本出願人は前記特許出願で、圧力を0から所望の最
大値まで経時的に漸増させ、その最大値を金属が完全に
凝固するまで維持することによって前記問題を解決する
ことを提案した。前記圧力不均衡は、最初に加える圧力
が小さければ小さいほど小さくなるからである。この場
合、過剰圧力を小さくするためには圧力増加速度を十分
に小さくしなければならない。金属浸透現象と一般的冶
金メカニズムに起因する前述のごとき欠点はこのように
して解消できたが、本出願人はこれらの欠点以外に、ロ
ストフォーム法に固有の欠点を2つ発見した。即ち、 1)発泡材料の気化残留物に起因するブローホールの発
生、及び 2)液体アルミニウム合金と発泡材料の炭素質残留物と
の接触によって生じる、酸化物に結合した炭素質混在物
の形成である。
When the excessive pressure becomes too large, the metal penetrates between the sand grains, so that the surface of the product is deformed. This is the so-called metal penetration phenomenon. Therefore, in order to eliminate this drawback, it is necessary to make the excess pressure as small as possible. The applicant proposed in the patent application to solve the above problem by gradually increasing the pressure from 0 to the desired maximum value and maintaining that maximum value until the metal has completely solidified. This is because the pressure imbalance decreases as the pressure initially applied decreases. In this case, the pressure increase rate must be sufficiently small in order to reduce the excess pressure. Although the above-mentioned drawbacks caused by the metal infiltration phenomenon and the general metallurgical mechanism can be solved in this way, the present applicant has discovered two drawbacks specific to the lost foam method in addition to these drawbacks. That is, 1) the formation of blowholes due to the vaporized residue of the foam material, and 2) the formation of carbonaceous inclusions bound to the oxide, which is caused by the contact between the liquid aluminum alloy and the carbonaceous residue of the foam material. is there.

そこで、更に研究を続けた結果、下記の結論が得られ
た。
Therefore, as a result of further research, the following conclusions were obtained.

前述のごとく、工業的インベストメント鋳造法では模型
を耐熱材の薄膜で被覆する。この耐熱材の薄膜は、通常
は、粘結剤によって固められたセラミック粒子からな
る。この薄膜は下記のように機能する。即ち、通常ポリ
スチレンからなる発泡材料は、溶融金属を注入すると気
体及び液体になって除去されるが、前記耐熱層は気体に
なった材料の排出をその透過性によって調整し且つ液体
になった材料を吸収するのである。一般的には、前記浸
透性は、溶融金属と発泡材料との間に気体クッションが
保持されるように製品に適合していなければならず、吸
収力は液体残留物を除去すべく最大限でなければならな
い。この状態で鋳型の充填が終了すると、耐熱層が残留
物で飽和され、飽和を超えた過剰分は砂に吸収される。
従って、鋳型内では有機物質で飽和された耐熱層に600
〜800℃の金属が接触し、その結果前記液体が気化し得
る。この気化が生じると圧力が発生し、その結果ガスが
金属中に浸透してブローホールを形成し、また発泡材料
残留物の不完全燃焼に起因する炭素混在物を発生させる
ことになる。
As mentioned above, in the industrial investment casting method, the model is coated with a thin film of heat resistant material. This thin film of refractory material usually consists of ceramic particles that are hardened with a binder. This thin film functions as follows. That is, the foamed material, which is usually made of polystyrene, becomes a gas and a liquid when the molten metal is injected and is removed, but the heat-resistant layer adjusts the discharge of the gasified material by its permeability and becomes a liquid material. Absorbs. Generally, the permeability must be compatible with the product so that a gas cushion is retained between the molten metal and the foam material, and the absorbency must be maximal to remove liquid residues. There must be. When the filling of the mold is completed in this state, the heat resistant layer is saturated with the residue, and the excess amount exceeding the saturation is absorbed by the sand.
Therefore, the heat-resistant layer saturated with the organic material is not
Metals at ˜800 ° C. may come into contact, resulting in vaporization of the liquid. When this vaporization occurs, pressure is generated, and as a result, the gas permeates into the metal to form blow holes, and carbon inclusions are generated due to incomplete combustion of the foam material residue.

この欠点を解消するためには、薄膜の後の砂の中の空間
における圧力より十分に大きい圧力を液体金属中に発生
させて、気体及び液体残留物が砂の方に排出されるよう
に、従って金属中には浸透しないようにしなければなら
ない。しかしながらこの方法は、金属浸透現象を防止す
るための方法、即ち圧力増加速度をできるだけ小さくし
て前記過剰圧力を最小限に押さえる方法に逆らうことに
なる。
To overcome this drawback, a pressure in the liquid metal is generated that is sufficiently greater than the pressure in the space in the sand behind the membrane so that gas and liquid residues are expelled towards the sand, Therefore, it must be prevented from penetrating into the metal. However, this method is against the method for preventing the metal infiltration phenomenon, that is, the method for minimizing the pressure increase rate to minimize the excess pressure.

本出願人は、金属浸透と金属中への残留物の侵入とを回
避するためには特定の過剰圧力範囲にすることが不可欠
であることを発見した。そこで本発明では、改良点とし
て、界面領域における砂の圧力より過剰な溶融金属の圧
力を、急速かつ一時的に砂を介しての圧力降下により発
生させるように、砂粒サイズ及び模型の埋め込み深さに
応じた圧力増加速度を使用する前記過剰圧力は2つの限
界値の間の値(0.001〜0.030MPa)に到達し、次いで静
定圧力の増加に伴って低下し、その後金属が完全に凝固
するまで静定圧力を一定に保つ。
The Applicant has found that it is essential to have a certain overpressure range in order to avoid metal penetration and residue penetration into the metal. Therefore, in the present invention, as an improvement point, the sand grain size and the embedding depth of the model are set so that the pressure of the molten metal in excess of the pressure of the sand in the interface region is rapidly and temporarily generated by the pressure drop through the sand. The overpressure using a pressure increase rate according to reaches a value between two limit values (0.001-0.030MPa), then decreases with increasing static pressure, after which the metal completely solidifies Keep constant pressure constant until.

前記速度は0.003〜0.3MPa/秒が好ましく、製品の厚み
が厚いほど小さくする。この速度が前記範囲から外れる
と、前記2つの欠点のうちいずれか一方が顕著になる。
The speed is preferably 0.003 to 0.3 MPa / sec, and the smaller the product thickness, the smaller the speed. If the speed deviates from the above range, either one of the two drawbacks becomes remarkable.

この速度は勿論、鋳型を通して生じる圧力降下を考慮し
て、即ち砂粒サイズと模型を砂に埋め込む深さとを考慮
して決定しなければならない。従って前記速度はこれら
のパラメーターに基づいて、過剰圧力が0.001〜0.030MP
a、好ましくは0.002〜0.010MPaになるように決定する。
この過剰圧力は充填操作直後の、薄膜が完全には気化さ
れていない物質でまだ飽和されている臨界期間の間だけ
必要とされる。この過剰圧力は、静定圧力を加えてから
2秒未満の間に達成されるのが好ましい。金属浸透現象
はこの時間の間に最大になるからである。
This speed must, of course, be determined in view of the pressure drop that occurs through the mould, i.e. the size of the sand grains and the depth of embedding the model in the sand. Therefore, the speed is based on these parameters and the overpressure is 0.001-0.030MP
a, preferably 0.002 to 0.010 MPa.
This overpressure is only required during the critical period immediately after the filling operation, when the membrane is still saturated with the material that has not been completely vaporized. This overpressure is preferably achieved within less than 2 seconds of applying the static pressure. This is because the metal penetration phenomenon becomes maximum during this time.

前記した、利用すべき過剰圧力の範囲や、好ましい圧力
増加速度、最大過剰圧力に達するまでの好ましい時間
は、特別な場合(例えば、模型の形状や材質が特別のも
の)にのみ有効なものではない。それらのそれぞれの具
体的な値は、砂粒の粒度(サイズ)や模型の埋め込み深
さのようなパラメータによって、前記した範囲の中から
選択されるものである。
The above-mentioned range of excess pressure to be used, preferable pressure increase rate, and preferable time until the maximum excess pressure is reached are not effective only in special cases (for example, special shape and material of the model). Absent. The specific value of each of them is selected from the above range according to parameters such as the grain size (size) of the sand grains and the embedding depth of the model.

ここで、本発明の使用例として、過剰圧力が前記範囲の
値になるように砂粒サイズと模型の埋め込み深さとを考
慮した条件で、内燃機関の排気マニホルド及びシリンダ
ヘッドを鋳造する場合を挙げる。前記条件及び使用鋳型
のパラメーターは表1に示す通りである。
Here, as an example of use of the present invention, a case where an exhaust manifold and a cylinder head of an internal combustion engine are cast under conditions in which the sand grain size and the embedding depth of the model are taken into consideration so that the excess pressure falls within the above range. The conditions and parameters of the template used are as shown in Table 1.

加圧に使用するガスは、圧縮ガス、不活性ガス、非反応
性ガス等が使用できる。要するに、必須の工程を実施で
き、かつ製品に悪影響を及ぼさないようなものなら使用
するガスの種類にこだわるものではない。
As the gas used for pressurization, a compressed gas, an inert gas, a non-reactive gas or the like can be used. In short, as long as the essential steps can be carried out and the product is not adversely affected, it does not depend on the type of gas used.

この方法で鋳造した製品はブローホールが極めて少なく
且つ炭素沈積物が全くなかった。これは、本発明の改良
の効果を立証するものである。
The product cast by this method had very few blowholes and no carbon deposits. This proves the effect of the improvement of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】耐熱材の薄膜で被覆された発泡有機物質か
らなる、鋳造される製品の模型を使用し、 粘結剤を含まない乾燥砂で形成した鋳型の中に前記模型
を埋め込み、 前記鋳型に溶融金属を充填し、前記模型を燃焼させ、 模型から生じた蒸気及び液体残留物を排出し、 溶融金属を凝固させて製品を得、 金属の凝固部分が40重量%を越える前に最大0.5〜1.5MP
aの静定圧力を鋳型に加えるステップを含む金属製品の
加圧ロストフォーム鋳造方法において、 砂粒サイズ及び模型埋め込み深さに応じて、砂の圧力に
対する溶融金属の圧力を、それら界面領域で、砂を介し
ての圧力降下によって急速かつ一時的に、過剰にさせる
ような速度で、前記静定圧力を増加させて、前記過剰圧
力を0.001MPaと0.030MPaの間に到達させ、その後、その
過剰圧は前記静定圧力の増加に伴って減少し、次いで前
記静定圧力を凝固が完了するまで一定の値に維持するこ
とを特徴とする金属製品の加圧ロストフォーム鋳造方
法。
1. A model of a product to be cast, which is made of a foamed organic material coated with a thin film of a heat-resistant material, is used, and the model is embedded in a mold formed of dry sand containing no binder, The mold is filled with molten metal, the model is burned, the vapor and liquid residue generated from the model are discharged, the molten metal is solidified to obtain the product, and the maximum solidified portion of the metal exceeds 40% by weight. 0.5-1.5MP
In a method of pressure lost foam casting of a metal product including the step of applying a static pressure of a to a mold, the pressure of the molten metal with respect to the pressure of the sand is changed in the interfacial region according to the sand grain size and the model embedding depth. The static pressure is increased at a rate such that the pressure drop across it rapidly and transiently causes the excess pressure to reach between 0.001 MPa and 0.030 MPa, after which the excess pressure is increased. Is decreased as the static pressure is increased, and then the static pressure is maintained at a constant value until the solidification is completed.
【請求項2】圧力増加速度を0.003〜0.3MPa/秒にし、
製品の厚みが厚ければ厚いほどこの速度を小さくする請
求項1に記載の方法。
2. A pressure increase rate of 0.003 to 0.3 MPa / sec,
The method of claim 1, wherein the thicker the product, the lower this speed.
【請求項3】過剰圧力が0.002〜0.010MPaの値を有する
請求項2に記載の方法。
3. The method according to claim 2, wherein the overpressure has a value of 0.002 to 0.010 MPa.
【請求項4】最大過剰圧力に達するまでの時間が2秒未
満である請求項1に記載の方法。
4. The method of claim 1, wherein the time to reach maximum overpressure is less than 2 seconds.
JP1176969A 1989-03-07 1989-07-07 Pressurized lost foam casting method for metal products Expired - Lifetime JPH0626748B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8903706 1989-03-07
FR898903706A FR2644087B2 (en) 1986-11-17 1989-03-07 IMPROVEMENT IN THE LOSS FOAM MOLDING PROCESS OF METAL PARTS

Publications (2)

Publication Number Publication Date
JPH02235546A JPH02235546A (en) 1990-09-18
JPH0626748B2 true JPH0626748B2 (en) 1994-04-13

Family

ID=9379922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1176969A Expired - Lifetime JPH0626748B2 (en) 1989-03-07 1989-07-07 Pressurized lost foam casting method for metal products

Country Status (19)

Country Link
EP (1) EP0386384B1 (en)
JP (1) JPH0626748B2 (en)
KR (1) KR920003686B1 (en)
AR (1) AR241761A1 (en)
AT (1) ATE81044T1 (en)
AU (1) AU600413B2 (en)
BR (1) BR8903257A (en)
CA (1) CA1335689C (en)
DE (1) DE68903103T2 (en)
DK (1) DK320189A (en)
ES (1) ES2034726T3 (en)
FI (1) FI93322C (en)
GR (1) GR3005937T3 (en)
IE (1) IE63394B1 (en)
MX (1) MX172962B (en)
NO (1) NO172968C (en)
PT (1) PT91078B (en)
RU (1) RU1836177C (en)
UA (1) UA13214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109550889A (en) * 2017-09-25 2019-04-02 高淳县龙宁精密铸造有限公司 Chief axis evaporative pattern and its method for casting main shaft ram

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2651453B2 (en) * 1989-09-07 1994-03-25 Pechiney Aluminium IMPROVEMENT IN THE LOST FOAM AND PRESSURE MOLDING PROCESS OF METAL PARTS.
US5301739A (en) * 1992-06-30 1994-04-12 Cook Arnold J Method for casting and densification
US6640877B2 (en) * 1998-05-14 2003-11-04 Howmet Research Corporation Investment casting with improved melt filling
RU2312738C1 (en) * 2006-02-09 2007-12-20 Открытое акционерное общество "Новосибирский завод химконцентратов" Investment casting method at pressure crystallization and apparatus for performing the same
CN103556011B (en) * 2013-11-22 2015-10-21 山东蒙沃变速器有限公司 A kind of lost foam casting aluminum alloy materials and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR887120A (en) * 1941-11-19 1943-11-04 Silumin Ges M B H Molding process
US3420291A (en) * 1965-12-29 1969-01-07 Trw Inc Method for reducing metal casting porosity
FR2559407B1 (en) * 1984-02-15 1986-09-05 Pont A Mousson FOUNDRY MOLDING PROCESS AND MOLD FOR PRECISION CASTING UNDER LOW PRESSURE, WITH GASIFIABLE MODEL AND SAND MOLD WITHOUT BINDER
GB2159445B (en) * 1984-06-02 1988-07-06 Cosworth Res & Dev Ltd Casting of metal articles
EP0241426B1 (en) * 1986-04-11 1989-07-12 Schweizerische Aluminium Ag Process and plant for pressure casting
FR2606688B1 (en) * 1986-11-17 1989-09-08 Pechiney Aluminium LOSS FOAM MOLDING PROCESS FOR METAL PARTS
US4724889A (en) * 1987-04-27 1988-02-16 Ford Motor Company Degating technique for clustered castings made by ECP

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109550889A (en) * 2017-09-25 2019-04-02 高淳县龙宁精密铸造有限公司 Chief axis evaporative pattern and its method for casting main shaft ram

Also Published As

Publication number Publication date
AR241761A1 (en) 1992-12-30
NO172968C (en) 1993-10-06
NO892666D0 (en) 1989-06-27
FI893154A (en) 1990-09-08
GR3005937T3 (en) 1993-06-07
DE68903103D1 (en) 1992-11-05
FI893154A0 (en) 1989-06-28
PT91078B (en) 1995-07-03
IE63394B1 (en) 1995-04-19
NO892666L (en) 1990-09-10
MX172962B (en) 1994-01-26
KR920003686B1 (en) 1992-05-09
NO172968B (en) 1993-06-28
ATE81044T1 (en) 1992-10-15
JPH02235546A (en) 1990-09-18
PT91078A (en) 1990-11-07
EP0386384A1 (en) 1990-09-12
AU3780489A (en) 1989-10-19
KR900014059A (en) 1990-10-22
AU600413B2 (en) 1990-08-09
BR8903257A (en) 1990-09-25
DK320189D0 (en) 1989-06-28
IE892097L (en) 1990-09-07
DE68903103T2 (en) 1993-04-15
ES2034726T3 (en) 1993-04-01
FI93322B (en) 1994-12-15
RU1836177C (en) 1993-08-23
EP0386384B1 (en) 1992-09-30
DK320189A (en) 1990-09-08
UA13214A (en) 1997-02-28
CA1335689C (en) 1995-05-30
FI93322C (en) 1995-03-27

Similar Documents

Publication Publication Date Title
US5058653A (en) Process for lost foam casting of metal parts
US5161595A (en) Process for the lost foam casting, under low pressure, of aluminium alloy articles
JPH0626748B2 (en) Pressurized lost foam casting method for metal products
US5088544A (en) Process for the lost-foam casting, under controlled pressure, of metal articles
US5014764A (en) Lost-foam casting of aluminum under pressure
CN1021303C (en) Process for lost-foam casting, under pressure, of metal articles
JPH0626749B2 (en) Pressurized lost foam casting method for metal articles
PL165322B1 (en) Method for casting metal under pressure and employing the method of foam precipitates
JP2000153353A (en) Method for casting cast product
JPH06190534A (en) Pressurize-casting method and apparatus
Dion et al. Production of aluminum alloy castings using evaporative pattern and vacuum techniques
JPS6434573A (en) Full mold casting method
JP2938969B2 (en) Casting equipment using vanishing model
JPH0542356A (en) Production of fiber reinforced composite member
JPH02254132A (en) Manufacture of iron porous body used for reinforcing metallic parts for pressure casting of aluminum or the like
JP2000234561A (en) Piston for internal combustion engine
JPH01233057A (en) Manufacture of transferring mold
JPS60158971A (en) Casting method of molten steel
Garat Lost Foam Casting Process for Metal Pieces
WO1997001407A1 (en) Method for forming a mould for use in casting and mould formed by said method
FR2644087A2 (en) Improvement to the method for lost-foam moulding of metallic components

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 16