JPH01233057A - Manufacture of transferring mold - Google Patents

Manufacture of transferring mold

Info

Publication number
JPH01233057A
JPH01233057A JP5978888A JP5978888A JPH01233057A JP H01233057 A JPH01233057 A JP H01233057A JP 5978888 A JP5978888 A JP 5978888A JP 5978888 A JP5978888 A JP 5978888A JP H01233057 A JPH01233057 A JP H01233057A
Authority
JP
Japan
Prior art keywords
mold
molten metal
vessel
container
granular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5978888A
Other languages
Japanese (ja)
Inventor
Teruhiko Yamaguchi
輝彦 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojima Industries Corp
Original Assignee
Kojima Press Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojima Press Industry Co Ltd filed Critical Kojima Press Industry Co Ltd
Priority to JP5978888A priority Critical patent/JPH01233057A/en
Publication of JPH01233057A publication Critical patent/JPH01233057A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To enable using of low pressure proof of a mold vessel and transfer of complicate and fine shape by exhausting air in the mold vessel before pouring molten metal at the time of obtaining the transferring mold with pressurized casting complex method by presetting a model pattern in the mold vessel and blowing the pressurized air into the vessel after pouring the molten metal. CONSTITUTION:The gypsum-made model pattern 34 having permeability is set so as to plug venting holes 24 in bottom plate 14 of the mold vessel 10 and granular material 30 is packed into the vessel 10. Successively, the granular material 36 is preheated to the temp. higher than the critical preheating temp. to be permissible, to which the molten metal 38 poured into the vessel 10 penetrates into gap between the granular grains 36, and further lower than the solidified temp. of the molten metal 38. Under this condition, while sucking air in the vessel 10 through a suction hose 28, the molten metal 38 is poured and after pouring, the opening part of the vessel 10 is immediately closed and the pressurized air is blown in the vessel 10 through a pressurized air introducing hose 32. Then, this suction and pressurized air introduction are continued till solidifying the molten metal 38.

Description

【発明の詳細な説明】 (技術分野) 本発明は、射出成形型やプレス成形型等の成形型を製造
するための方法に係り、特に所定のモデル型を用いて、
そのモデル型の形状を転写した転写型を製造するための
新規な手法に関するものである。
Detailed Description of the Invention (Technical Field) The present invention relates to a method for manufacturing a mold such as an injection mold or a press mold, and in particular, a method for manufacturing a mold, such as an injection mold or a press mold, using a predetermined model mold.
The present invention relates to a new method for manufacturing a transfer mold that transfers the shape of the model mold.

(従来技術) 従来より、射出成形型やプレス成形型等の成形型を製造
する手法の一つとして、所定のモデル型を用いて、その
モデル型の形状を転写することにより、所望の成形型(
転写型)を得る手法が知られている。かかる転写手法に
よれば、型素材を切削して成形型を製造する切削jJl
′l工手法に比べて、成形型を短時間で安価に製造する
ことができるのである。
(Prior art) Conventionally, as one of the methods for manufacturing molds such as injection molds and press molds, a desired mold is created by using a predetermined model mold and transferring the shape of the model mold. (
A method for obtaining a transcription type is known. According to such a transfer method, cutting jJl for manufacturing a mold by cutting a mold material
Compared to the 'l method, molds can be manufactured in a shorter time and at lower cost.

ところで、かかる転写手法によって製造される転写型の
代表的なものは、モデル型がセ、1・された型容器内に
亜鉛合金溶湯を注湯して製造されるZAS型(亜鉛合金
型)であるが、かかるZAS型は凝固時の収縮か大きく
、収縮歪が大きいために、後加工が面倒であるといった
問題を内在しており、また機械的強度も充分てなく、型
としての耐久性が低いといった問題も内在していた。
By the way, a typical transfer mold manufactured by such a transfer method is the ZAS type (zinc alloy mold), which is manufactured by pouring molten zinc alloy into a mold container in which a model mold is set. However, such ZAS molds have the problem of large shrinkage during solidification and large shrinkage distortion, which makes post-processing troublesome.Also, they do not have sufficient mechanical strength and are not durable as molds. There was also the inherent problem of low performance.

一方、これに対して、近年、ロ木金属学会会報第25巻
、第12号(1986)、第1026〜1033頁で提
案されている加圧鋳造複合法を利用して、転写型を製造
することが考えられている。
On the other hand, in recent years, a transfer mold has been manufactured using a pressure casting composite method proposed in the Bulletin of the Japanese Society of Wood and Metals, Vol. 25, No. 12 (1986), pp. 1026-1033. That is what is being considered.

この加圧鋳造複合法は、底壁部に通気孔を有する型容器
内に所定の粒状材料を充填して、この粒状材料を、核型
容器内に注湯される溶融金属が該粒状材料の間隙に浸透
することを許容する臨界予熱温度(前記会報筒1208
頁左段第16〜19行参照:以下同じ)よりも高く、且
つ該溶融金属の凝固点よりも低い温度に予熱した状態で
、核型容器内に該溶融金属を注湯ゼしめ、かかる溶融金
属の注湯後、該溶融金属に対してパンチプレスで大きな
加圧力を直ちに加えるごとにより、該溶融金属を粒状材
料の間隙に浸透させて、該溶融金属を金属基とする金属
基複合材を製造する手法であり(特公昭57−3089
8号公報参照)、かかる加圧鋳造複合法に従う金属基複
合材の製造に際して、粒状材料の充填に先立って予め型
容器内にモデル型をセットしておけば、溶融金属の凝固
後において、そのモデル型を取り除くことにより、その
モデル型の形状が転写された転写型が得られるのである
This pressure casting composite method involves filling a mold container with ventilation holes in the bottom wall with a predetermined granular material, and then pouring the molten metal into the core mold container. The critical preheating temperature that allows penetration into the gap (the newsletter tube 1208
(see lines 16 to 19 on the left side of the page; the same applies hereinafter) and below the freezing point of the molten metal, the molten metal is poured into a nuclear mold container and zested, and the molten metal is After pouring the molten metal, a large pressing force is immediately applied to the molten metal with a punch press to allow the molten metal to penetrate into the gaps of the granular material, thereby producing a metal matrix composite material using the molten metal as a metal base. It is a method to
(Refer to Publication No. 8), when manufacturing a metal matrix composite material according to the pressure casting composite method, if a model mold is set in the mold container in advance before filling with granular material, the model mold can be set after solidification of the molten metal. By removing the model mold, a transfer mold is obtained in which the shape of the model mold is transferred.

そして、かかる金属基複合材の加圧鋳造複合法を利用し
て製造された転写型によれば、溶湯割合が少なくて済む
ごとから、前記ZAS型に比べて収縮歪が少なくて済む
のであり、また機械的強度も粒状材料と溶融金属との中
間的なものとなるため、粒状+A籾と溶融金属との組み
合わせにより、ZAS型よりも機械的強度の大きい、i
J久性に優れた転写型を得ることができるのである。
According to the transfer mold manufactured using the pressure casting composite method of such a metal matrix composite material, since the proportion of molten metal is small, shrinkage strain can be reduced compared to the above-mentioned ZAS mold. In addition, the mechanical strength is intermediate between that of granular material and molten metal, so the combination of granular + A rice grains and molten metal produces i, which has greater mechanical strength than the ZAS type.
A transcription mold with excellent J durability can be obtained.

(解決課題) しかしながら、かかる金属基複合+Aの加圧鋳造複合法
を利用する転写型の製造手法にあっては、上述のように
、ZAS型に比べて転写精度および面1久性に優れた転
写型を得ることができるものの、溶融金属に対し、パン
チプレスにて3〜6 M P a(#30〜60kg/
cd)程度以」二もの大きな加圧力が加えられるため、
型容器として、その加圧力に耐え得る頑強なものを用い
る必要があり、またそのような大きな加圧力が作用せし
められることから、複雑乃至ば微細な形状の転写が困難
であるといった問題があった。
(Problem to be solved) However, as mentioned above, the method of manufacturing a transfer mold using the pressure casting composite method of metal matrix composite + A has superior transfer accuracy and surface durability compared to the ZAS mold. Although it is possible to obtain a transfer mold, the molten metal is 3 to 6 MPa (#30 to 60 kg/
Since a large pressing force of 2 degrees or more is applied,
It is necessary to use a mold container that is strong enough to withstand the applied pressure, and since such a large pressure is applied, there is a problem that it is difficult to transfer complex or minute shapes. .

(解決手段) ここにおいて、本発明は、上述のような事情を背景とし
て為されたものであり、その要旨とするところは、底壁
部に通気孔を有する所定の型容器内に、該通気孔を覆う
ように通気性を有するモデル型をセットして、かかる型
容器内に、該モデル型を覆う状態で所定の粒状材料を充
填せしめた後、前記型容器の通気孔を通じて吸引排気を
行なう一方、該粒状材料を、該型容器内に注湯される溶
融金属が該粒状材料の間隙に浸透することを許容する臨
界予熱温度よりも高い温度に予熱し7た状態で、核型容
器内に該溶融金属を注湯せしめ、次いで該型容器内に加
圧気体を吹き込んで、該溶融金属に所定の加圧力を作用
させることにより、該溶融金属を前記粒状材料の間隙に
浸透させ、そして該溶融金属を凝固せしめた後、該凝固
した金属を前記型容器から取り外すと共に、前記モデル
型を該凝固した金属から取り除くことにより、該モデル
型が転写された転写型を得るようにしたことにある。
(Solution Means) Here, the present invention has been made against the background of the above-mentioned circumstances, and its gist is to provide ventilation holes in a predetermined type container having ventilation holes in the bottom wall. A model mold having air permeability is set so as to cover the pores, and a predetermined granular material is filled into the mold container so as to cover the model mold, and then suction and exhaust is performed through the ventilation hole of the mold container. On the other hand, the granular material is preheated to a temperature higher than the critical preheating temperature that allows the molten metal poured into the mold container to penetrate into the gaps of the granular material. pouring the molten metal into the mold, then blowing pressurized gas into the mold container to apply a predetermined pressing force to the molten metal, thereby causing the molten metal to penetrate into the gaps between the granular materials, and After solidifying the molten metal, the solidified metal is removed from the mold container and the model mold is removed from the solidified metal, thereby obtaining a transfer mold to which the model mold is transferred. be.

ここで、前記モデル型は、溶湯温度に耐え得る耐熱性と
、粒状材料、溶融金属の重量および加圧気体によって加
えられる圧力に耐え得る耐圧性とを有し、溶融金属がそ
の気孔内に実質的に侵入しないものであればよく、例え
ば亜鉛、錫、鉛、アルミニウム、銅あるいはそれらの合
金等の低融点金属を溶融金属として採用する場合には、
石膏型を、また鉄若しくはその合金等の高融点金属を溶
融金属として採用する場合にば、砂型を、それぞれモデ
ル型として好適に採用することが可能である。
Here, the model mold has heat resistance that can withstand the temperature of the molten metal, and pressure resistance that can withstand the pressure exerted by the particulate material, the weight of the molten metal, and the pressurized gas, and the molten metal is substantially contained in its pores. For example, when using a low melting point metal such as zinc, tin, lead, aluminum, copper or an alloy thereof as the molten metal,
If a plaster mold or a high melting point metal such as iron or its alloy is used as the molten metal, a sand mold can be suitably used as the model mold.

また、粒状材料は、溶湯温度で消失したり、溶湯温度や
加圧力によって変形したりしないものであればよく、そ
の目的特性に応して種々の無機粉末材料や金属粉末+、
I料を使用することが可能であるが、その粒状材料間の
間隙がモデル型の気孔よりも大きく、溶融金属の浸透を
許容する粒径のものが用いられることとなる。なお、か
かる粒状材料としては、粒径のできるだけ均一なものを
用いることが望ましい。
In addition, the granular material may be any material as long as it does not disappear at the temperature of the molten metal or deform due to the temperature of the molten metal or pressurizing force, and depending on the intended characteristics, various inorganic powder materials, metal powders,
Although it is possible to use I material, it is necessary to use a material with a particle size in which the gaps between the granular materials are larger than the pores of the model mold and allow penetration of the molten metal. Note that it is desirable to use such a granular material having a particle size as uniform as possible.

さらに、型容器の通気孔から吸引排気される空気等の気
体の吸引圧および型容器内に吹き込まれる気体の吹込圧
は、粒状材料の間隙に溶融金属を浸透させ得る圧力であ
ればよく、粒状材料の粒径を始めとする種々の条件によ
っても異なるが、−船釣には、吸引圧が1kg/cnl
程度、吹込圧が5〜6 kg / cMの組め合わ−U
が好適に採用されるごととなる。
Furthermore, the suction pressure of the gas such as air sucked and exhausted from the vents of the mold container and the blowing pressure of the gas blown into the mold container may be any pressure that allows the molten metal to penetrate into the gaps of the granular material. Although it depends on various conditions such as the particle size of the material, - For boat fishing, the suction pressure is 1 kg/cnl.
Combination of degree and blowing pressure of 5 to 6 kg/cM-U
will be suitably adopted.

以下、かかる本発明手法を、添イ」図に基づいてより具
体的に説明する。
Hereinafter, the method of the present invention will be explained in more detail based on the accompanying figures.

すなわち、添付図において、10は、型容器であって、
側壁12と二重の底壁14.16とからなる容器本体1
8と、容器本体18の開口部を開閉する蓋体20とから
なっている。また、底壁14と16との間には、密閉空
間22が形成されており、この密閉空間22には、上部
底壁14に形成された適数の通気孔24を通じて、型容
器10内の空間が連通せしめられていると共に、下部底
壁】6に形成された通孔26を通じて吸引ホース28が
接続されている。そして、通気孔24.密閉空間222
通孔26および吸引ホース28を通じて、型容器10内
の空気等の気体が強制的に吸引排気され得るようになっ
ている。一方、型容器10内の上部空間には、該蓋体2
0に形成された通孔30を通じて、加圧気体としての加
圧空気を導くための加圧空気導入ホース32が接続され
得るようになっており、かかる加圧空気導入ホース32
を通して導かれた加圧空気が、通孔30を通して、型容
器10内に吹き出され得るようになっている。
That is, in the attached drawings, 10 is a mold container,
Container body 1 consisting of a side wall 12 and a double bottom wall 14.16
8 and a lid 20 for opening and closing the opening of the container body 18. Further, a sealed space 22 is formed between the bottom walls 14 and 16, and air inside the mold container 10 is provided in the sealed space 22 through an appropriate number of ventilation holes 24 formed in the upper bottom wall 14. The spaces are communicated with each other, and a suction hose 28 is connected through a through hole 26 formed in the lower bottom wall [6]. And the ventilation hole 24. Closed space 222
Gas such as air within the mold container 10 can be forcibly sucked and exhausted through the through hole 26 and the suction hose 28. On the other hand, in the upper space inside the mold container 10, the lid body 2
A pressurized air introduction hose 32 for introducing pressurized air as pressurized gas can be connected through a through hole 30 formed in the hole 30.
Pressurized air led through can be blown into the mold container 10 through the opening 30 .

このような型容器10を用いて転写型を製造するには、
先ず、同図に示されているように、微細な気孔を備えた
通気性を有するモデル型34、例えば石膏型や砂型等を
、前記通気孔24の開口部を塞く状態で、底壁14上に
セットする。そして、かかるモデル型34のセット後、
かかるモデル型34を覆うように、転写型の目的特性に
合わせて選択された無機粉末材料や金属粉末材料等の所
定の粒状材料36を該型容器10内に充填し、図示しな
い加熱手段によって型容器10ごと予備加熱する。その
際、粒状材料36の予熱温度が低ずぎると、後述の溶融
金属38が粒状材料36の間隙に浸透せず、目的とする
転写型が得られないため、ここでは、粒状材料36の間
隙に溶融金属38が浸透することを許容する臨界予熱温
度よりは粒状材料36の温度が高くなるように、粒状材
料36を予備加熱する。
To manufacture a transfer mold using such a mold container 10,
First, as shown in the figure, a breathable model mold 34 with minute pores, such as a plaster mold or a sand mold, is placed on the bottom wall 14 while blocking the opening of the ventilation hole 24. set on top. After setting the model type 34,
A predetermined granular material 36 such as an inorganic powder material or a metal powder material selected according to the intended characteristics of the transfer mold is filled into the mold container 10 so as to cover the model mold 34, and the mold is heated by heating means (not shown). Preheat all 10 containers. At this time, if the preheating temperature of the granular material 36 is too low, the molten metal 38 described later will not penetrate into the gaps of the granular material 36 and the desired transfer mold will not be obtained. Particulate material 36 is preheated such that the temperature of particulate material 36 is above a critical preheat temperature that allows penetration of molten metal 38.

なお、かかる粒状材?436の予備加熱に際して、粒状
材料36を溶融金属38の凝固点よりも高い温度に加熱
することも可能であるが、粒状材料36の予熱温度が高
過ぎると、溶融金属38の転置に要する時間が長くなっ
たり、粒状材料36やモデル型34に要求される耐熱性
が高くなったりずるといった不具合を惹起するため、粒
状材料36は、一般に、溶融金属38の凝固点よりは低
い温度に予熱されることとなる。また、粒状材料36と
しては、予めある程度予熱されたものを用いることが可
能である。
In addition, such granular material? When preheating 436, it is possible to heat the granular material 36 to a temperature higher than the freezing point of the molten metal 38, but if the preheating temperature of the granular material 36 is too high, the time required for displacing the molten metal 38 becomes long. Generally, the granular material 36 is not preheated to a temperature lower than the freezing point of the molten metal 38 to avoid problems such as the heat resistance required for the granular material 36 and the model mold 34 increasing or decreasing. Become. Further, as the granular material 36, it is possible to use one that has been preheated to some extent.

次いで、かかる粒状材料36の予熱状態下で、前記吸引
ホース28を通じて型容器10内の空気等の気体を所定
の吸引圧で吸引排気しつつ、転写型の要求特性に応じて
選択された溶融金属38を型容器10内に注湯する。そ
して、かかる溶融金属38の注湯後、容器本体18の開
口部を速やかに閉塞して、型容器10内に加圧空気導入
ホース32を通じて導いた所定圧力の加圧空気を吹き込
み、溶融金属38を加圧せしめる。なお、ここで、型容
器10内の空気等の気体を吸引排気する際の吸引圧、お
よび型容器10内に吹き込まれる加圧空気の吹込圧の組
み合わせは、粉末材料36の間隙に溶融金属38を浸透
させ得る組み合わせに予め設定されることとなる。
Next, while the granular material 36 is preheated, gas such as air in the mold container 10 is sucked and exhausted through the suction hose 28 at a predetermined suction pressure, and the molten metal selected according to the required characteristics of the transfer mold is heated. 38 is poured into the mold container 10. After pouring the molten metal 38, the opening of the container body 18 is promptly closed, and pressurized air at a predetermined pressure guided through the pressurized air introduction hose 32 is blown into the mold container 10, and the molten metal 38 is Pressurize. Note that the combination of the suction pressure when sucking and exhausting gas such as air in the mold container 10 and the blowing pressure of pressurized air blown into the mold container 10 is such that the molten metal 38 is The combination will be set in advance to allow the penetration of

このようにすれば、モデル型34が通気性を有している
ことから、型容器10内に吹き込まれた加圧空気による
溶融金属38の加圧作用と、モデル型34および通気孔
24を通した吸引排気による粒状材料36間の間隙の減
圧作用に基づく溶融金属38の吸引作用とに基づいて、
溶融金属38が粒状材料36の間隙に良好に浸透されて
、その間隙に充満せしめられるのである。従って、かか
る粒状材料36の溶融金属38の浸透操作後、溶融金属
38を凝固させてから、その溶融金属38の凝固物であ
る金属基複合物を型容器10から取り外し、モデル型3
4をその金属基複合物から取り外せば、そのモデル34
が転写された転写型が得られるのである。
In this way, since the model mold 34 has air permeability, the molten metal 38 is pressurized by the pressurized air blown into the mold container 10, and the model mold 34 and the ventilation hole 24 are Based on the suction effect of the molten metal 38 based on the depressurization effect of the gap between the granular materials 36 due to the suction and exhaust,
The molten metal 38 is effectively infiltrated into the interstices of the granular material 36 to fill the interstices. Therefore, after the operation of infiltrating the molten metal 38 into the granular material 36, the molten metal 38 is solidified, and the metal matrix composite which is the solidified product of the molten metal 38 is removed from the mold container 10, and the model mold 3
4 from its metal matrix composite, the model 34
A transcription form is obtained in which the molecule is transcribed.

なお、前記型容器10の構造や、型容器10における通
気孔24の形成形態等は、必要δこ応じて適宜変更し得
ることば勿論である。また、型容器10内に吹き込まれ
る加圧気体としても、上側の如き加圧空気の他、溶融金
属38に対する影響を考慮してN2.へr等の不活性ガ
スを加圧して用いることも可能である。
It goes without saying that the structure of the mold container 10, the formation form of the ventilation holes 24 in the mold container 10, etc. can be changed as appropriate depending on the necessity. Also, as the pressurized gas blown into the mold container 10, in addition to the pressurized air such as the one above, N2. It is also possible to use a pressurized inert gas such as hydrogen.

(発明の効果) 上述の説明から明らかなように、本発明手法に従って製
造される転写型は、前記加圧複合鋳造法を利用して製造
される転写型と同様に、粒状材料(36)の間隙に溶融
金属(38)が浸透せしめられた金属基複合材で構成さ
れるため、ZAS型に比べて優れた転写精度を有してい
るのであり、また粒状材料(36)と溶融金属(38)
との組み合わせにより、ZAS型よりも優れた耐久性を
有し得るのである。しかも、本発明手法にあっては、粒
状材料(36)間の間隙への溶融金属(38)の浸透操
作が、モデル型(34)を通じた吸引作用下で行なれる
ようになっているため、加圧気体による低加圧作用下で
も、粒状材料(36)間の間隙に溶融金属(38)を充
分良好に、しかもモデル型(34)に充分密着するよう
に浸透させることができるのであり、それ故、加圧鋳造
複合法を利用する場合に比べて、耐圧性に劣る簡素な構
造の型容器(10)を採用することができるのである。
(Effects of the Invention) As is clear from the above description, the transfer mold manufactured according to the method of the present invention has the same effect as the transfer mold manufactured using the pressure composite casting method, in which the granular material (36) is Since it is composed of a metal matrix composite material with molten metal (38) infiltrated into the gap, it has superior transfer accuracy compared to the ZAS type. )
In combination with this, it can have superior durability than the ZAS type. Furthermore, in the method of the present invention, the operation of penetrating the molten metal (38) into the gaps between the granular materials (36) can be performed under the suction effect through the model mold (34). Even under the low pressure action of pressurized gas, the molten metal (38) can be sufficiently infiltrated into the gaps between the granular materials (36) and in a manner that it is in close contact with the model mold (34). Therefore, it is possible to use a mold container (10) with a simpler structure and poorer pressure resistance than when a pressure casting composite method is used.

また、そのように、溶融金属(38)に対する加圧力、
ひいてはモデル型(34)に対する加圧力が小さくて済
むことから、従来の加圧鋳造複合法を利用する場合に比
べて、より複雑乃至は微細な形状の転写型を製造するこ
とが可能となるのである。
Also, in this way, the pressing force on the molten metal (38),
Furthermore, since the pressure applied to the model mold (34) is small, it is possible to manufacture a transfer mold with a more complex or minute shape than when using the conventional pressure casting composite method. be.

以下に、本発明の実施例を挙げ、本発明を更に具体的に
明らかにすることとする。
Examples of the present invention will be given below to clarify the present invention more specifically.

(実施例) 添付図に示す如き型容器10に対して、型容器10の底
壁14に形成された通気孔24を寒くように、石膏で作
成した通気性を有するモデル型34をセットした。そし
て、かかるモデル型34をセットした型容器10内に、
粉粒+A料36として、最小粒径が150メソシユの略
均−な粒径の鉄粉を充填し、この鉄粉を型容器10ごと
、錫の臨界予熱温度と凝固点との間の温度であるI 8
0 ’cに予熱した。
(Example) A breathable model mold 34 made of plaster was set in a mold container 10 as shown in the attached drawing so that the ventilation hole 24 formed in the bottom wall 14 of the mold container 10 would be kept cool. Then, in the mold container 10 in which the model mold 34 is set,
As the powder + A material 36, iron powder of approximately uniform particle size with a minimum particle size of 150 mesosius is filled, and this iron powder is packed into the mold container 10 at a temperature between the critical preheating temperature and the solidification point of tin. I 8
Preheated to 0'c.

次いで、かかる鉄粉の予熱状態下で、吸引ポース28を
通じて、吸引圧1 kg / ctの吸引圧をもって型
容器〕0内の空気を吸引しつつ、溶融金属38としての
錫の溶湯を注湯し、かかる錫溶湯の注湯後、型容器10
の開口部を直ちに閉塞して、加圧空気導入ボース32を
通じて核型容器1o内に5〜6 kg / c+Aの加
圧空気を吹き出させ、錫溶湯が凝固するまで、かかる加
圧空気の吹出操作および上記型容器10内の空気の吸引
操作を続行した。
Next, under the preheated state of the iron powder, molten tin as the molten metal 38 was poured while sucking the air inside the mold container with a suction pressure of 1 kg/ct through the suction port 28. , After pouring the molten tin, the mold container 10
Immediately close the opening and blow out pressurized air of 5 to 6 kg/c+A into the nuclear mold container 1o through the pressurized air introduction bow 32, and continue blowing out the pressurized air until the molten tin solidifies. And the suction operation of the air inside the mold container 10 was continued.

そして、錫溶湯の凝固後、型容器1oからその凝固物を
取り出すと共に、その凝固物からモデル型34である石
膏型を取り外した。
After solidifying the molten tin, the solidified product was taken out from the mold container 1o, and the plaster mold, which was the model mold 34, was removed from the solidified product.

その結果、モデル型34である石膏型の形状がZAS型
よりも優れた転写精度をもって転写された、ZAS型よ
りも機械的強度の大きい耐久性に優れた転写型が得られ
た。
As a result, a transfer mold was obtained in which the shape of the plaster mold, which is the model mold 34, was transferred with better transfer precision than the ZAS mold, and which had greater mechanical strength and excellent durability than the ZAS mold.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図は、本発明手法を説明するだめの原理図である。 10;型容器   24:通気孔 28:吸引ポース 32:加圧空気導入ボース34:モ
デル型  36;粒状材料 38;溶融金属
The attached figure is a principle diagram for explaining the method of the present invention. 10; Mold container 24: Vent hole 28: Suction port 32: Pressurized air introduction bow 34: Model mold 36; Granular material 38; Molten metal

Claims (1)

【特許請求の範囲】[Claims] 底壁部に通気孔を有する所定の型容器内に、該通気孔を
覆うように、通気性を有するモデル型をセットして、か
かる型容器内に、該モデル型を覆う状態で所定の粒状材
料を充填せしめた後、前記型容器の通気孔を通じて吸引
排気を行なう一方、該粒状材料を、該型容器内に注湯さ
れる溶融金属が該粒状材料の間隙に浸透することを許容
する臨界予熱温度よりも高い温度に予熱した状態で、該
型容器内に該溶融金属を注湯せしめ、次いで該型容器内
に加圧気体を吹き込んで、該溶融金属に所定の加圧力を
作用させることにより、該溶融金属を前記粒状材料の間
隙に浸透させ、そして該溶融金属を凝固せしめた後、該
凝固した金属を前記型容器から取り外すと共に、前記モ
デル型を該凝固した金属から取り除くことにより、該モ
デル型が転写された転写型を得ることを特徴とする転写
型の製造方法。
A model mold with air permeability is set in a predetermined mold container having a ventilation hole in the bottom wall so as to cover the ventilation hole, and a predetermined granular shape is placed in the mold container while covering the model mold. After filling the material, suction and exhaust are carried out through the ventilation holes of the mold container, while the granular material is heated to a critical temperature that allows the molten metal poured into the mold container to penetrate into the gaps of the granular material. Pouring the molten metal into the mold container in a state preheated to a temperature higher than the preheating temperature, and then blowing pressurized gas into the mold container to apply a predetermined pressing force to the molten metal. by infiltrating the molten metal into the interstices of the granular material and solidifying the molten metal, and then removing the solidified metal from the mold container and removing the model mold from the solidified metal. A method for producing a transfer mold, comprising obtaining a transfer mold onto which the model mold is transferred.
JP5978888A 1988-03-14 1988-03-14 Manufacture of transferring mold Pending JPH01233057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5978888A JPH01233057A (en) 1988-03-14 1988-03-14 Manufacture of transferring mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5978888A JPH01233057A (en) 1988-03-14 1988-03-14 Manufacture of transferring mold

Publications (1)

Publication Number Publication Date
JPH01233057A true JPH01233057A (en) 1989-09-18

Family

ID=13123375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5978888A Pending JPH01233057A (en) 1988-03-14 1988-03-14 Manufacture of transferring mold

Country Status (1)

Country Link
JP (1) JPH01233057A (en)

Similar Documents

Publication Publication Date Title
US5058653A (en) Process for lost foam casting of metal parts
US5069271A (en) Countergravity casting using particulate supported thin walled investment shell mold
JP2009233751A (en) Method and device for chill molding
JPH02197368A (en) Manufacture of metal matrix composite material
PT1534451E (en) Casting process
JP2634213B2 (en) Method for producing powder molded article by isostatic press
EP0474078B1 (en) Countergravity casting using particulate supported thin walled investment shell mold
US5161595A (en) Process for the lost foam casting, under low pressure, of aluminium alloy articles
CN108296441A (en) A kind of hot core box mould and sand core forming method extending film covered sand core exhaust passage
JPS60210351A (en) Production of fiber reinforced light metal cast piece by diecasting
JP2665876B2 (en) Casting method of low carbon stainless steel parts using high vacuum mouth stow process
WO2009053675A1 (en) Casting a metal object
US3701379A (en) Process of casting utilizing magnesium oxide cores
US5014764A (en) Lost-foam casting of aluminum under pressure
JPH01233057A (en) Manufacture of transferring mold
CN108127101A (en) A kind of large thin-wall aluminium alloy castings plaster casting method
CN207914537U (en) A kind of profile-followed hot core box mould for extending film covered sand core exhaust passage
EP3135399B1 (en) Method of manufactruring precision cast parts for vehicle exhaust systems
JPH0399769A (en) Method of pressurizing type lost foam casting of metallic object
JPS62220241A (en) Casting mold and vacuum casting method using said casting mold
AU600413B2 (en) A process for the lost-foam casting, under pressure, of metal articles
CN1739891A (en) Vacuum sucking cast process of preparing aluminium base composite material
JP2541691B2 (en) Core for forming the socket of cast iron pipe
JPS58167062A (en) Stuffing to be packed in sliding nozzle
JPH07173507A (en) Rein forming air-permeable mold and production thereof