JPH06265479A - Defect tester and method thereof - Google Patents

Defect tester and method thereof

Info

Publication number
JPH06265479A
JPH06265479A JP5051057A JP5105793A JPH06265479A JP H06265479 A JPH06265479 A JP H06265479A JP 5051057 A JP5051057 A JP 5051057A JP 5105793 A JP5105793 A JP 5105793A JP H06265479 A JPH06265479 A JP H06265479A
Authority
JP
Japan
Prior art keywords
sample
light receiving
light
defect
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5051057A
Other languages
Japanese (ja)
Inventor
Kozo Takahashi
幸三 高橋
Kinya Kato
欣也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP5051057A priority Critical patent/JPH06265479A/en
Publication of JPH06265479A publication Critical patent/JPH06265479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To provide a defect tester that is able to judge the presence of any defect on a sample in an accurate manner. CONSTITUTION:In a defect tester which is provided with five scanning means 1 to 5 scanning on a test piece TP by means of a spot-form testing light, and a Fourier transforming lens 6 receiving a scattered light from the test piece TP to the testing light and imaging a Fourier image on the test piece TP on a pupil surface, it preliminarily scans the test piece TP, thereby outputting an image on the pupil surface at that time from a random accessible camera element 10 as two-dimensional image information. In succession, such a position where a scattered light from a pattern is not incident on up to and end from a start of the preliminary scanning is specified by a central processing unit 13, plural numbers of light receiving parts serving as a monitoring object are selected from a light receiving part of the camera element 10 corresponding to this position. At the time of inspecting the test piece TP, the presence of a defect is judged by the central processing unit 13 on the basis of incident light intensity in the light receiving part selected as the monitoring object.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体などの試料の欠
陥の有無を検査する欠陥検査装置および欠陥検査方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defect inspection apparatus and a defect inspection method for inspecting a sample such as a semiconductor for defects.

【0002】[0002]

【従来の技術】半導体基板や液晶用基板などの表面に付
着した異物やパターン欠陥の有無を検査する装置として
図8に示すものがある。この装置は、レーザ光源1から
射出された光をコリメータレンズ2で平行光束に拡大し
てガルバノミラー3でステージ4側へ反射させ、この反
射光をレンズ5で集光してステージ4上の試料TPの表
面にスポット状の検査光を入射させる。検査光に対する
試料TPからの散乱光をフーリエ変換レンズ6に導いて
その瞳面に試料TPのフーリエ像を結像させ、瞳面に設
けたフィルタ7のスリット7sからの透過光を背後の受
光素子8で受光する。ガルバノミラー3を軸3Aの回り
に回動させて検査光の入射位置をx方向に変化させると
ともに、ステージ4をy方向へ移動させて試料TPの全
面を走査する。このとき、試料TPの表面のパターンが
xy方向へ規則的に配列されていれば、パターンからの
散乱光は図9に示すように格子点状に輝点BPが並ぶフ
ーリエ像P0を形成する。これに対して異物からの散乱
光はミー(Mie)散乱と考えられるため、異物が検査
光で照射されると瞳面にはほぼ一様な明るさの像が形成
される。したがって、フィルタ7のスリット7sをパタ
ーンからのフーリエ像の輝点BPを避けて配置すれば、
異物が存在する位置のみで受光素子8からの出力が大き
くなり、異物の存在が検出できる。なお、この種のフィ
ルタにより正規のパターンの像を遮って異物の有無を検
査する装置としては、例えば特開平1−158308号
公報に記載されたものがある。試料TPは、例えば半導
体基板や液晶用基板あるいはこれらの露光するためのマ
スクやレチクルである。
2. Description of the Related Art FIG. 8 shows an apparatus for inspecting the presence or absence of foreign matter or pattern defects attached to the surface of a semiconductor substrate or a liquid crystal substrate. In this device, the light emitted from the laser light source 1 is expanded into a parallel light flux by the collimator lens 2, reflected by the galvano mirror 3 toward the stage 4 side, and the reflected light is condensed by the lens 5 to sample on the stage 4. Spot-like inspection light is made incident on the surface of the TP. The scattered light from the sample TP with respect to the inspection light is guided to the Fourier transform lens 6 to form a Fourier image of the sample TP on its pupil surface, and the transmitted light from the slit 7s of the filter 7 provided on the pupil surface is the light receiving element behind. Light is received at 8. The galvanometer mirror 3 is rotated around the axis 3A to change the incident position of the inspection light in the x direction, and the stage 4 is moved in the y direction to scan the entire surface of the sample TP. At this time, if the pattern on the surface of the sample TP is regularly arranged in the xy directions, the scattered light from the pattern forms a Fourier image P 0 in which bright points BP are arranged in a lattice shape as shown in FIG. . On the other hand, the scattered light from the foreign matter is considered to be Mie scattering. Therefore, when the foreign matter is irradiated with the inspection light, an image with substantially uniform brightness is formed on the pupil plane. Therefore, if the slit 7s of the filter 7 is arranged so as to avoid the bright point BP of the Fourier image from the pattern,
The output from the light receiving element 8 increases only at the position where the foreign matter exists, and the presence of the foreign matter can be detected. As an apparatus for inspecting the presence or absence of foreign matter by blocking an image of a regular pattern with a filter of this kind, there is, for example, the one described in JP-A-1-158308. The sample TP is, for example, a semiconductor substrate, a liquid crystal substrate, or a mask or reticle for exposing them.

【0003】[0003]

【発明が解決しようとする課題】試料TPのパターンか
らのフーリエ像はパターンのピッチ等に依存するため、
フーリエ像の輝点BPの位置や数、大きさは試料TPの
パターン毎に異なる。したがって、上述した装置では、
パターン種類によってはパターンからのフーリエ像を完
全に遮断することができず、誤検出が生じるおそれがあ
る。試料のパターンの種類毎に専用のフィルタを用意
し、検査に先立ってパターン種類を確認してこれに応じ
たフィルタを装着することも考えられるが、作業効率の
悪化が避けられず、フィルタの誤装着による検査ミスが
生じるおそれもある。試料TPの途中でパターン種類が
変化するときには、検査途中でスリット位置を変更する
必要があり、このような操作は事実上不可能である。
Since the Fourier image from the pattern of the sample TP depends on the pitch of the pattern and the like,
The position, number, and size of the bright points BP of the Fourier image differ for each pattern of the sample TP. Therefore, in the device described above,
Depending on the pattern type, the Fourier image from the pattern cannot be completely blocked, which may result in erroneous detection. It is possible to prepare a dedicated filter for each pattern type of the sample, check the pattern type before the inspection, and attach a filter corresponding to this, but it is unavoidable that the work efficiency deteriorates and the filter is erroneous. There is also a possibility that an inspection error may occur due to mounting. When the pattern type changes in the middle of the sample TP, it is necessary to change the slit position in the middle of the inspection, and such an operation is virtually impossible.

【0004】本発明の目的は、試料の非欠陥部分からの
フーリエ像を遮るフィルタを用いることなく試料上の欠
陥の有無を確実に判断できる欠陥検査装置および欠陥検
査方法を提供することにある。
An object of the present invention is to provide a defect inspection apparatus and a defect inspection method capable of surely determining the presence or absence of a defect on a sample without using a filter that blocks a Fourier image from a non-defect portion of the sample.

【0005】[0005]

【課題を解決するための手段】一実施例を示す図1に対
応付けて説明すると、本発明に係る欠陥検査装置は、ス
ポット状の検査光により試料TPを走査する走査手段1
〜5と、検査光に対する試料TPからの散乱光を受光し
て試料TP上のフーリエ像を瞳面に結像させる受光光学
系6とを備える。そして、瞳面の像を2次元の画素情報
として出力可能な複数の受光部を有する撮像手段10
と、試料TPを走査手段1〜5で予備走査したときの撮
像手段10の出力に基づいて、撮像手段10の複数の受
光部の中から試料TP上に形成されたパターンからの散
乱光が入射しない受光部を選別する選別手段13と、監
視対象として選別された受光部に入射する光強度に基づ
いて試料TPの欠陥の有無を判別する判別手段13とを
備えることにより上述した目的を達成する。本発明の装
置では、図5に示すように予備走査の経路Rpを、試料
TPの欠陥の有無を検査するときの走査経路Rsよりも
粗く設定できる。図6に示すように試料TPを複数の予
備走査領域A1〜A4に分割し、各予備走査領域毎に監
視対象となる受光部の選別を行なってもよい。撮像手段
にランダムアクセス可能な2次元素子10を用い、監視
対象として選別された受光部のみにアクセスして欠陥の
有無を判別することができる。請求項4の装置では、図
7に示すように、上述した選別手段に代え、瞳面におけ
るパターンからの散乱光が入射しない位置を、試料TP
に形成されるパターンの設計情報に基づいて演算し、演
算により得られた位置に対応する受光部から監視対象と
なる受光部を選別する監視対象推定手段18を設けてい
る。
A defect inspection apparatus according to the present invention comprises a scanning means 1 for scanning a sample TP with spot-like inspection light.
5 to 5, and a light receiving optical system 6 that receives scattered light from the sample TP with respect to the inspection light and forms a Fourier image on the sample TP on a pupil plane. Then, the image pickup means 10 having a plurality of light receiving portions capable of outputting the image of the pupil plane as two-dimensional pixel information.
And the scattered light from the pattern formed on the sample TP from among the plurality of light receiving portions of the imaging unit 10 is incident on the basis of the output of the imaging unit 10 when the sample TP is pre-scanned by the scanning units 1 to 5. The above-described object is achieved by providing a selecting unit 13 for selecting a light receiving unit that is not selected, and a determining unit 13 for determining whether or not there is a defect in the sample TP based on the light intensity incident on the light receiving unit selected as a monitoring target. . In the apparatus of the present invention, as shown in FIG. 5, the preliminary scanning route Rp can be set to be coarser than the scanning route Rs used when inspecting the sample TP for defects. As shown in FIG. 6, the sample TP may be divided into a plurality of preliminary scanning areas A1 to A4, and the light receiving portions to be monitored may be selected for each preliminary scanning area. By using the two-dimensional element 10 capable of random access as the image pickup means, it is possible to access only the light receiving section selected as the monitoring target and determine the presence or absence of a defect. In the apparatus of claim 4, as shown in FIG. 7, instead of the above-mentioned selecting means, the position on the pupil plane where the scattered light from the pattern does not enter is set to the sample TP.
The monitoring target estimation means 18 is provided for performing a calculation based on the design information of the pattern formed in the above and selecting a light receiving part to be monitored from the light receiving parts corresponding to the positions obtained by the calculation.

【0006】また、本発明に係る欠陥検査方法は、スポ
ット状の検査光により試料TPを走査し、このときの試
料TPからの散乱光を受光光学系6で受光してその瞳面
に試料上のフーリエ像を結像させ、このフーリエ像に基
づいて試料TPの欠陥の有無を判別する。そして、試料
TPの検査に先立って試料TPを検査光で予備走査し、
このときの瞳面の像を、2次元に配列された複数の受光
部を有する撮像手段10から2次元の画素情報として出
力させ、予備走査の開始から終了までの撮像手段10の
出力に基づいて撮像手段10の複数の受光部の中から試
料TP上に形成されたパターンからの散乱光が入射しな
い受光部を監視対象として選別し、試料TPの検査時に
は、選別された受光部に入射する光強度に基づいて試料
TPの欠陥の有無を判別することで上述した目的を達成
する。本発明の欠陥検査方法では、図5に示すように予
備走査の経路Rpを、試料TPの欠陥の有無を検査する
ときの走査経路Rsよりも粗く設定できる。図6に示す
ように試料TPを複数の予備走査領域A1〜A4に分割
し、各予備走査領域毎に監視対象となる受光部の選別を
行なってもよい。撮像手段にランダムアクセス可能な2
次元素子10を用い、監視対象として選別された受光部
のみにアクセスして欠陥の有無を判別することができ
る。請求項9の方法では、スポット状の検査光により試
料TPを走査し、このときの試料TPからの散乱光を受
光光学系で受光してその瞳面に試料上のフーリエ像を結
像させ、このフーリエ像に基づいて試料の欠陥の有無を
判別する。そして、2次元に配列された受光部を有する
撮像手段10により瞳面の像を2次元の画素情報として
出力可能とし、試料TPの検査に先立って、当該試料T
Pを走査するときの瞳面におけるパターンからの散乱光
が入射しない位置を試料に形成されるパターンの設計情
報に基づいて演算し、演算により得られた位置に対応す
る受光部から監視対象となる受光部を選別し、試料TP
の検査時には、選別された受光部に入射する光強度に基
づいて試料TPの欠陥の有無を判別することで上述した
目的を達成する。
Further, in the defect inspection method according to the present invention, the sample TP is scanned by the spot-shaped inspection light, the scattered light from the sample TP at this time is received by the light receiving optical system 6, and the sample is placed on the pupil plane of the sample. Is formed, and the presence or absence of defects in the sample TP is determined based on this Fourier image. Then, prior to the inspection of the sample TP, the sample TP is pre-scanned with inspection light,
The image of the pupil plane at this time is output as two-dimensional pixel information from the image pickup unit 10 having a plurality of light receiving sections arranged two-dimensionally, and based on the output of the image pickup unit 10 from the start to the end of the preliminary scanning. Among the plurality of light receiving portions of the image pickup means 10, the light receiving portion to which the scattered light from the pattern formed on the sample TP does not enter is selected as a monitoring target, and the light entering the selected light receiving portion during the inspection of the sample TP. The above-described object is achieved by determining the presence or absence of a defect in the sample TP based on the strength. In the defect inspection method of the present invention, the pre-scanning route Rp can be set to be rougher than the scanning route Rs used when inspecting the sample TP for defects as shown in FIG. As shown in FIG. 6, the sample TP may be divided into a plurality of preliminary scanning areas A1 to A4, and the light receiving portions to be monitored may be selected for each preliminary scanning area. Random access to imaging means 2
By using the three-dimensional element 10, it is possible to determine the presence or absence of a defect by accessing only the light receiving portion selected as the monitoring target. In the method according to claim 9, the sample TP is scanned by the spot-shaped inspection light, the scattered light from the sample TP at this time is received by the light receiving optical system, and a Fourier image on the sample is formed on the pupil plane thereof. The presence or absence of defects in the sample is determined based on this Fourier image. Then, the image of the pupil plane can be output as two-dimensional pixel information by the image pickup means 10 having the two-dimensionally arranged light receiving portions, and the sample T can be inspected prior to the inspection of the sample TP.
The position where the scattered light from the pattern on the pupil surface when scanning P is not calculated is calculated based on the design information of the pattern formed on the sample, and the light receiving unit corresponding to the position obtained by the calculation becomes the monitoring target. Select the light receiving part, sample TP
At the time of inspection, the above-described object is achieved by determining the presence or absence of a defect in the sample TP based on the light intensity incident on the selected light receiving unit.

【0007】[0007]

【作用】本発明の欠陥検査装置では、試料TPの検査に
先立って試料TPを走査手段1〜5で予備走査する。こ
のとき、選別手段13により試料TPからの散乱光が入
射しない受光部を試料検査時の監視対象の受光部として
選別する。試料TPの検査時には、判別手段13により
監視対象として選別された受光部に入射する光強度を監
視する。試料TP上の欠陥により瞳面の像が一様に明る
くなると、監視対象の受光部の入射光強度が増加し、欠
陥の存在が判明する。請求項4の装置では、試料TPに
形成するパターンの設計情報に基づいて監視対象推定手
段18により瞳面におけるパターンからの散乱光が入射
しない位置が演算されて、演算結果から監視対象となる
受光部が特定される。
In the defect inspection apparatus of the present invention, the sample TP is pre-scanned by the scanning means 1-5 prior to the inspection of the sample TP. At this time, the selection unit 13 selects the light receiving unit to which the scattered light from the sample TP does not enter as the light receiving unit to be monitored during the sample inspection. At the time of inspecting the sample TP, the light intensity incident on the light receiving section selected as the monitoring target by the determining unit 13 is monitored. When the image on the pupil plane becomes uniformly bright due to the defect on the sample TP, the incident light intensity of the light receiving portion to be monitored increases, and the existence of the defect becomes clear. In the apparatus of claim 4, the position to which scattered light from the pattern on the pupil plane does not enter is calculated by the monitoring target estimation means 18 based on the design information of the pattern formed on the sample TP, and the light reception to be the monitoring target is calculated from the calculation result. The department is specified.

【0008】本発明の欠陥検査方法では、試料TPの計
測に先立って予備走査が行なわれ、このときの撮像手段
10の出力に基づいてパターンからの散乱光が入射しな
い受光部が監視対象として選別される。そして、試料T
Pの検査時には、監視対象として選別された受光部へ入
射する光強度に基づいて欠陥の有無が判別される。請求
項9の方法では、試料TPに形成するパターンの設計情
報に基づいて瞳面でのパターンからの散乱光が入射しな
い位置が演算され、演算結果から試料検査時の監視対象
となる受光部が選別される。
In the defect inspection method of the present invention, the preliminary scanning is performed prior to the measurement of the sample TP, and the light receiving portion to which the scattered light from the pattern does not enter is selected as the monitoring target based on the output of the image pickup means 10 at this time. To be done. And the sample T
At the time of inspecting P, the presence or absence of a defect is determined based on the light intensity incident on the light receiving unit selected as the monitoring target. According to the method of claim 9, the position on the pupil plane where the scattered light from the pattern does not enter is calculated based on the design information of the pattern to be formed on the sample TP, and the light receiving unit to be monitored during the sample inspection is calculated from the calculation result. Be sorted.

【0009】なお、本発明の構成を説明する上記課題を
解決するための手段と作用の項では、本発明を分かり易
くするために実施例の図を用いたが、これにより本発明
が実施例に限定されるものではない。
Incidentally, in the section of means and action for solving the above-mentioned problems for explaining the constitution of the present invention, the drawings of the embodiments are used to make the present invention easy to understand. It is not limited to.

【0010】[0010]

【実施例】【Example】

−第1実施例− 以下、図1〜図5を参照して本発明の第1実施例を説明
する。なお、上述した図8および図9の例と共通する部
分には同一符号を付し、説明を省略する。図1に示すよ
うに、本実施例の欠陥検査装置では、フーリエ変換レン
ズ6の瞳面からフィルタが取り除かれ、瞳面の像を光電
変換して2次元の画素情報として出力可能な撮像素子1
0のみが瞳面上に配置されている。撮像素子10は入射
光強度に応じた電荷を蓄える複数の受光部が2次元に配
列されたもので、撮像素子駆動回路11により任意の受
光部にランダムアクセスが可能とされ、アクセスされた
受光部の電荷のみがA/Dコンバータ12に出力され
る。A/Dコンバータ12でデジタル信号に変換された
撮像素子10の出力は、CPU13からの指令にしたが
ってフレームメモリ14の所定のアドレスに格納され
る。
-First Example- Hereinafter, a first example of the present invention will be described with reference to FIGS. It should be noted that the same parts as those in the examples of FIGS. As shown in FIG. 1, in the defect inspection apparatus of the present embodiment, the filter is removed from the pupil plane of the Fourier transform lens 6, and the image of the pupil plane is photoelectrically converted and can be output as two-dimensional pixel information 1.
Only 0 is placed on the pupil plane. The image sensor 10 has a plurality of light receiving sections that are arranged two-dimensionally and stores electric charges according to the intensity of incident light. The image sensor drive circuit 11 enables random access to any light receiving section, and the accessed light receiving section. Only the electric charges of are output to the A / D converter 12. The output of the image sensor 10 converted into a digital signal by the A / D converter 12 is stored in a predetermined address of the frame memory 14 according to a command from the CPU 13.

【0011】CPU13は、撮像素子駆動回路11を介
して撮像素子10のデータ出力動作を制御するととも
に、ミラー駆動回路3Dおよびステージ駆動回路4Dを
介してガルバノミラー3およびステージ4の動作を制御
して後述する予備走査処理および欠陥検査処理を行な
う。なお、15はCPU13の外部記憶手段としてのメ
モリ、16はCPU13の演算結果を画像表示するモニ
タである。
The CPU 13 controls the data output operation of the image pickup device 10 via the image pickup device drive circuit 11, and controls the operations of the galvano mirror 3 and the stage 4 via the mirror drive circuit 3D and the stage drive circuit 4D. A preliminary scanning process and a defect inspection process, which will be described later, are performed. Reference numeral 15 is a memory as an external storage means of the CPU 13, and 16 is a monitor for displaying the calculation result of the CPU 13 as an image.

【0012】次に、本実施例の検査装置の動作を説明す
る。検査装置に検査対象の試料が装着され不図示の操作
盤から検査開始が指示されると、まず図2の予備走査処
理が開始される。最初のステップS1ではミラー駆動回
路3Dおよびステージ駆動回路4Dに駆動指令を出力し
てレーザ光による試料TPの予備走査を開始する。次の
ステップS2では撮像素子駆動回路11へ撮像素子10
の全受光部へのアクセスを指令し、瞳面の像の全体を2
次元の画像データに変換してフレームメモリ14の所定
アドレスに取り込む。このときの画像の例を図3
(a),(b)に示す。図示の画像P1,P2では、試料
TPのパターンに応じた輝点BP1,BP2が格子状に現
れている。
Next, the operation of the inspection apparatus of this embodiment will be described. When a sample to be inspected is attached to the inspection device and an instruction to start the inspection is given from an operation panel (not shown), first, the preliminary scanning process of FIG. 2 is started. In the first step S1, a drive command is output to the mirror drive circuit 3D and the stage drive circuit 4D to start the preliminary scanning of the sample TP with the laser light. In the next step S2, the image pickup device driving circuit 11 is connected to the image pickup device 10
To access all the light receiving parts of the
It is converted into three-dimensional image data and fetched at a predetermined address of the frame memory 14. An example of the image at this time is shown in FIG.
Shown in (a) and (b). In the illustrated images P 1 and P 2 , bright points BP 1 and BP 2 corresponding to the pattern of the sample TP appear in a grid pattern.

【0013】続くステップS3では、フレームメモリ1
4に取り込んだ画像の全画素の階調を適当な閾値と大小
比較して画像中の輝点BP1,BP2に対応する画素を判
別し、その位置をメモリ15に記憶する。閾値は、試料
の欠陥からの散乱光の像を輝点と判断することがないよ
うに設定される。次のステップS4では予備走査が終了
したか否かを判別し、終了していなければステップS2
へ戻って画像の取り込み以下の処理を繰り返す。ステッ
プS4で予備走査が終了と判断したならばステップS5
へ進み、メモリ15に記憶した輝点位置を重ね合わせて
予備走査開始から終了までに取り込んだ画像に共通の暗
部の位置を判別する。共通の暗部とは予備走査中に一度
も輝点が生じなかった領域であり、例えば予備走査の開
始から終了までに図3(a),(b)に例示した2種類
の画像P1,P2が取り込まれたとすると、これらを合成
した図3(c)から明らかなように、輝点BP1,BP2
のいずれにも含まれない領域DPが共通の暗部である。
In the following step S3, the frame memory 1
The gradations of all the pixels of the image captured in 4 are compared with an appropriate threshold to determine the pixels corresponding to the bright points BP 1 and BP 2 in the image, and the positions thereof are stored in the memory 15. The threshold value is set so that the image of the scattered light from the defect of the sample is not judged as a bright spot. In the next step S4, it is determined whether or not the preliminary scanning is completed, and if it is not completed, the step S2 is executed.
Return to and capture the image and repeat the following process. If it is determined in step S4 that the preliminary scanning is completed, step S5
Then, the position of the dark portion common to the images captured from the start to the end of the preliminary scanning is determined by superimposing the positions of the bright spots stored in the memory 15. The common dark area is an area in which no bright spot is generated during the preliminary scanning, and for example, the two types of images P 1 and P illustrated in FIGS. 3A and 3B from the start to the end of the preliminary scanning. Assuming that 2 is incorporated, as is clear from FIG. 3 (c) in which they are synthesized, the bright spots BP 1 and BP 2
The area DP that is not included in any of the above is the common dark portion.

【0014】共通の暗部を選び出したならばステップS
6へ進み、共通の暗部DP中の複数の画素を欠陥検査時
の監視対象として選別し、その位置をメモリ15に記憶
して処理を終了する。共通の暗部DPに対応するすべて
の画素を監視対象としないのはデータ量を減らして検査
効率を上げるためであり、複数の画素を対象とするのは
ノイズによる誤検出を防止するためである。
If a common dark area is selected, step S
In step 6, the plurality of pixels in the common dark portion DP are selected as monitoring targets at the time of defect inspection, their positions are stored in the memory 15, and the process ends. The reason why all the pixels corresponding to the common dark portion DP are not to be monitored is to reduce the data amount to improve the inspection efficiency, and the target to be a plurality of pixels is to prevent erroneous detection due to noise.

【0015】以上の予備走査が終了すると、続いて図4
に示す欠陥検査処理が開始される。まず、ステップS1
1で先の予備走査で選別した監視対象に関する情報をメ
モリ15から読み込み、次のステップS12で監視対象
として選別された画素に対応する撮像素子10の受光部
をアクセス対象として設定する。続いてステップS13
でミラー駆動回路3Dおよびステージ駆動回路4Dに駆
動指令を出力してレーザ光による試料の走査を開始す
る。次のステップS14では撮像素子駆動回路11へデ
ータ出力を指令してアクセス対象の受光部の出力のみを
フレームメモリ14へ取り込む。次のステップS15で
はフレームメモリ14に取り込んだ画像データを読み込
んで各画素の階調を加算する。ステップS16では階調
の加算値と所定の閾値THとを大小比較する。閾値TH
未満と判断したときはステップS17で走査終了か否か
を判断し、走査終了でないと判断したときはステップS
14へ戻って画像の取り込み以下の処理を繰り返す。な
お、ステップS16で監視対象画素の階調の加算値を閾
値THと比較するのは、既述の通り各画素のノイズの影
響を排除するためである。
When the above preliminary scanning is completed, the process shown in FIG.
The defect inspection process shown in is started. First, step S1
In step 1, information about the monitoring target selected in the preliminary scanning is read from the memory 15, and the light receiving unit of the image sensor 10 corresponding to the pixel selected as the monitoring target in the next step S12 is set as the access target. Then step S13
Then, a drive command is output to the mirror drive circuit 3D and the stage drive circuit 4D to start scanning the sample with the laser light. In the next step S14, the image sensor drive circuit 11 is instructed to output data, and only the output of the light receiving portion to be accessed is fetched into the frame memory 14. In the next step S15, the image data fetched in the frame memory 14 is read and the gradation of each pixel is added. In step S16, the added value of the gradation and the predetermined threshold value TH are compared. Threshold TH
When it is determined that the scanning is not completed, it is determined in step S17 whether or not the scanning is completed.
The process returns to step 14 and the following processes are repeated. The added value of the gradation of the pixel to be monitored is compared with the threshold value TH in step S16 in order to eliminate the influence of noise of each pixel as described above.

【0016】ステップS16で閾値TH以上と判断した
ときはステップS18へ進み、その時点での走査位置を
欠陥位置としてメモリ15に記憶し、ステップS17へ
進む。ステップS17で走査終了と判断したときはステ
ップS19へ進み、メモリ15に記憶した欠陥位置の情
報をモニタ16へ出力して処理を終了する。
When it is determined in step S16 that the threshold value is equal to or more than the threshold value TH, the process proceeds to step S18, the scanning position at that time is stored in the memory 15 as a defect position, and the process proceeds to step S17. When it is determined in step S17 that scanning has ended, the process proceeds to step S19, the information on the defect position stored in the memory 15 is output to the monitor 16, and the process ends.

【0017】以上から明らかなように、本実施例の装置
では、試料TPの予備走査におけるステップS3,S
5,S6の処理により試料TPのパターンからの散乱光
を避けるように監視対象の画素が選別される。そして、
欠陥検査時にはステップS11,12の処理により、撮
像素子10の受光部のうち監視対象として選別された画
素に対応する受光部のみがアクセス対象とされるので、
欠陥検査時にステップS15で演算される撮像素子10
からの出力の加算値は、試料TPに異物やパターン欠陥
等の欠陥部分が存在して撮像素子10が置かれた瞳面全
体が明るくならない限り閾値TH未満となる。したがっ
て、試料TP上に欠陥が存在するときのみステップS1
6が否定され、これにより試料TPの欠陥位置が正確に
把握される。
As is clear from the above, in the apparatus of this embodiment, steps S3 and S in the pre-scanning of the sample TP are performed.
By the processing of S5 and S6, the pixels to be monitored are selected so as to avoid scattered light from the pattern of the sample TP. And
During the defect inspection, by the processing of steps S11 and S12, only the light receiving portion corresponding to the pixel selected as the monitoring target among the light receiving portions of the image sensor 10 is targeted for access.
Image sensor 10 calculated in step S15 during defect inspection
The added value of the outputs from the above is less than the threshold value TH unless a defect portion such as a foreign substance or a pattern defect is present in the sample TP and the entire pupil surface on which the image pickup device 10 is placed becomes bright. Therefore, only when there is a defect on the sample TP, the step S1 is performed.
No. 6 is denied, whereby the defect position of the sample TP is accurately grasped.

【0018】欠陥検査時における監視対象の選別は試料
TPを実際に予備走査したときの撮像素子10からの出
力に基づいてなされるので、正規のパターンからのフー
リエ像を誤って欠陥部分からの像と判断するおそれは皆
無であり、試料TPのパターンの種類に拘らず極めて正
確な検査を行なうことができる。試料TPの途中でパタ
ーンが変化しても検査精度は全く損われない。試料TP
の予備走査と欠陥の検査とで機械的に部品を交換する必
要もないので、予備走査工程を追加してもそれが検査効
率に与える影響は僅かである。
Since the object to be monitored during the defect inspection is selected based on the output from the image pickup device 10 when the sample TP is actually pre-scanned, the Fourier image from the regular pattern is erroneously imaged from the defective portion. There is no possibility that it will be judged that, and an extremely accurate inspection can be performed regardless of the type of pattern of the sample TP. Even if the pattern changes in the middle of the sample TP, the inspection accuracy is not impaired at all. Sample TP
Since it is not necessary to mechanically replace the parts between the pre-scan and the inspection of defects, the effect of the addition of the pre-scan process on the inspection efficiency is slight.

【0019】ここで、半導体基板や液晶用基板、あるい
はこれらの露光用のマスクやレチクルのパターンの多く
は略同一のパターンの繰り返しで構成されるので、同一
試料上でのフーリエ像はさほど変化するものではない。
そこで、図4(a)に示すように予備走査を行なうとき
の経路Rpを、同図(b)に示す欠陥検査時の経路Rsよ
りも粗く設定して予備走査時間の短縮を図ってもよい。
このためには、予備走査時のガルバノミラー3やステー
ジ4の駆動速度を欠陥検査時の速度よりも高く設定すれ
ば良い。
Here, since many patterns of the semiconductor substrate, the liquid crystal substrate, or the exposure mask and reticle for these are formed by repeating substantially the same pattern, the Fourier image on the same sample changes a lot. Not a thing.
Therefore, as shown in FIG. 4A, the route Rp for performing the preliminary scanning may be set to be coarser than the route Rs for the defect inspection shown in FIG. 4B to shorten the preliminary scanning time. .
For this purpose, the driving speed of the galvano mirror 3 and the stage 4 during the preliminary scanning may be set higher than the speed during the defect inspection.

【0020】また、実施例では欠陥検査に先立って予備
走査を必ず実行するものとして説明したが、同一種類の
試料を複数枚連続して検査するときは最初の試料のみ予
備走査を行ない、2枚目以降は1枚目の予備走査データ
をそのまま使用しても良い。複数種類の試料に応じた予
備走査データを予め収集し、試料の種類に応じて必要な
予備走査データを読み込んで検査を行なうようにしても
良い。この場合、試料にバーコード等の識別手段を設
け、試料の判別とこれに対応する予備走査データの読み
込みとを自動的に行なうこともできる。
In the embodiment, the pre-scan is always executed prior to the defect inspection, but when a plurality of samples of the same type are continuously inspected, only the first sample is pre-scan, and the two samples are pre-scanned. For the second and subsequent sheets, the preliminary scan data for the first sheet may be used as it is. It is also possible to collect the preliminary scan data corresponding to a plurality of types of samples in advance and read the necessary preliminary scan data according to the types of samples to perform the inspection. In this case, the sample may be provided with a discriminating means such as a bar code, and the discrimination of the sample and the reading of the preliminary scanning data corresponding thereto can be automatically performed.

【0021】一方、試料上のパターンが複雑に変化する
ときは、予備走査を欠陥検査時と同様に緻密に行なう必
要がある。この場合、図6に示すように試料TPを複数
(図では4つ)の予備走査領域A1〜A4に分割し、各
予備走査領域A1〜A4毎に図2の予備走査処理を行な
って各領域毎に監視対象を選別し、欠陥検査時には予備
走査領域A1〜A4毎に撮像素子10のアクセス対象受
光部を変更して検査すると良い。フーリエ像が頻繁に変
化する試料では、予備走査領域を大きく設定すると共通
の暗部がそれだけ少なくなり、極端な場合には共通の暗
部が存在せず試料の全面に共通の監視対象を選別できな
くなるからである。
On the other hand, when the pattern on the sample changes intricately, it is necessary to perform the preliminary scanning as precisely as in the defect inspection. In this case, as shown in FIG. 6, the sample TP is divided into a plurality (four in the figure) of preliminary scanning areas A1 to A4, and the preliminary scanning processing of FIG. 2 is performed for each of the preliminary scanning areas A1 to A4. It is advisable to select the monitoring target for each of the inspection targets, and change the access target light receiving part of the image sensor 10 for each of the preliminary scanning regions A1 to A4 during the defect inspection. For a sample in which the Fourier image changes frequently, if the pre-scan area is set to a large value, the common dark part will be reduced accordingly, and in the extreme case, the common dark part does not exist and it is not possible to select a common monitoring target on the entire surface of the sample. Is.

【0022】−第2実施例− 図7により本発明の第2実施例を説明する。図1との共
通部分には同一符号を付し、説明を省略する。図7に示
すように、本実施例の欠陥検査装置では、試料TPに形
成するパターンの設計データを記憶する設計データメモ
リ17がCPU18に接続されている。CPU18は、
上述した図2に示す予備走査処理に代え、設計データメ
モリ17の設計データに基づいて正規のパターンのフー
リエ像の輝点位置を計算する。そして、輝点位置を避け
るように監視対象の画素を選別してメモリ15に記憶す
る。欠陥検査処理の手順は第1実施例と同様である。
-Second Embodiment- A second embodiment of the present invention will be described with reference to FIG. The same parts as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. As shown in FIG. 7, in the defect inspection apparatus of the present embodiment, a design data memory 17 for storing design data of patterns formed on the sample TP is connected to the CPU 18. The CPU 18
Instead of the preliminary scanning process shown in FIG. 2, the bright spot position of the Fourier image of the regular pattern is calculated based on the design data in the design data memory 17. Then, the pixels to be monitored are selected so as to avoid the bright spot position and stored in the memory 15. The procedure of the defect inspection process is the same as that of the first embodiment.

【0023】このように本実施例でも試料TPに形成さ
れるパターンに応じて監視対象となる受光部が特定され
るので、第1実施例と同様に正確な検査を効率良く行な
うことができる。加えて、予備走査を必要としないので
検査前の空き時間に予め監視対象を選別して検査時間の
短縮を図ることもできる。なお、試料TPのパターンの
設計情報から監視対象を選別する際も、図6の例と同様
に試料TPを複数の領域に分割して各領域毎に監視対象
を定めてよい。
As described above, also in this embodiment, since the light receiving portion to be monitored is specified according to the pattern formed on the sample TP, the accurate inspection can be efficiently performed as in the first embodiment. In addition, since preliminary scanning is not required, it is possible to shorten the inspection time by selecting the monitoring target in advance in the free time before the inspection. When selecting the monitoring target from the design information of the pattern of the sample TP, the monitoring target may be determined for each area by dividing the sample TP into a plurality of areas as in the example of FIG.

【0024】以上の実施例ではランダムアクセス可能な
2次元撮像素子10を用いたが、全受光部の電荷を常時
出力するCCD等の撮像素子に変更し、CPU13,1
8側にて監視対象の受光部からのデータのみを処理する
ようにしてもよい。ただし、ランダムアクセス可能な2
次元撮像素子を用いた場合には、CPU13,18で処
理すべきデータ量が減るので、その分検査効率を高める
ことができる。
In the above embodiment, the two-dimensional image pickup device 10 which can be randomly accessed is used. However, the image pickup device such as CCD which constantly outputs the electric charges of all the light receiving portions is changed to the CPUs 13 and 1.
Alternatively, only the data from the light receiving unit to be monitored may be processed on the 8 side. However, 2 that can be randomly accessed
When the three-dimensional image pickup device is used, the amount of data to be processed by the CPUs 13 and 18 is reduced, so that the inspection efficiency can be increased accordingly.

【0025】以上の実施例と請求項との対応において、
レーザ光源1,コリメータレンズ2,ガルバノミラー
3,レンズ5およびステージ4が走査手段を、フーリエ
変換レンズ6が受光光学系を、撮像素子10が撮像手段
を、CPU13が選別手段および判別手段を、CPU1
8が監視対象選別手段および判別手段を構成する。な
お、本発明は半導体基板や液晶用基板の検査に限らず、
試料上での散乱光のフーリエ像に基づいて試料上の欠陥
の有無を検査するあらゆる装置および方法に適用でき
る。
In the correspondence between the above embodiment and the claims,
The laser light source 1, the collimator lens 2, the galvano mirror 3, the lens 5 and the stage 4 serve as a scanning means, the Fourier transform lens 6 serves as a light receiving optical system, the image pickup device 10 serves as an image pickup means, the CPU 13 serves as a selecting means and a discriminating means, and the CPU 1
Reference numeral 8 constitutes a monitoring target selection means and a discrimination means. The present invention is not limited to the inspection of semiconductor substrates and liquid crystal substrates,
It can be applied to all devices and methods for inspecting a sample for defects based on the Fourier image of scattered light on the sample.

【0026】[0026]

【発明の効果】以上説明したように、本発明の欠陥検査
装置では、試料のパターンに応じて監視対象の受光部が
選別され、選別された受光部に入射する光強度に基づい
て欠陥の有無が判別されるので、パターン種類に影響さ
れない正確な検査を効率良く行なうことができる。請求
項4の装置では、予備走査なしで監視対象を選別できる
ので、検査効率を一層高め得る。本発明の欠陥検査方法
では、欠陥の検査に先立って予備走査を行なって試料の
パターンに応じた監視対象の受光部を選別し、選別した
受光部の階調に基づいて欠陥の有無を判断するので、パ
ターン種類に影響されない正確な検査を効率良く行なう
ことができる。請求項9の方法では、試料のパターンの
設計情報から監視対象が予め選別されるので、検査効率
が一層高まる。
As described above, in the defect inspection apparatus of the present invention, the light receiving portion to be monitored is selected according to the pattern of the sample, and the presence / absence of a defect is determined based on the light intensity incident on the selected light receiving portion. Therefore, it is possible to efficiently perform an accurate inspection that is not affected by the pattern type. In the apparatus according to the fourth aspect, the monitoring target can be selected without preliminary scanning, so that the inspection efficiency can be further improved. In the defect inspection method of the present invention, prior to the inspection of defects, preliminary scanning is performed to select a light receiving portion to be monitored according to the pattern of the sample, and the presence or absence of a defect is determined based on the gradation of the selected light receiving portion. Therefore, an accurate inspection that is not affected by the pattern type can be efficiently performed. In the method of claim 9, the monitoring target is selected in advance from the design information of the sample pattern, so that the inspection efficiency is further enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る欠陥検査装置の概略
構成を示す図。
FIG. 1 is a diagram showing a schematic configuration of a defect inspection apparatus according to a first embodiment of the present invention.

【図2】図1のCPUでの予備走査の処理手順を示すフ
ローチャート。
FIG. 2 is a flowchart showing a pre-scan processing procedure in the CPU of FIG.

【図3】図1の撮像素子からの出力画像と共通暗部との
対応関係の一例を示す図。
FIG. 3 is a diagram showing an example of a correspondence relationship between an output image from the image sensor of FIG. 1 and a common dark portion.

【図4】図1のCPUでの欠陥検査の処理手順を示すフ
ローチャート。
FIG. 4 is a flowchart showing a processing procedure of defect inspection by the CPU of FIG.

【図5】図1の装置における走査経路の設定例を示す図
で、(a)は予備走査時、(b)は試料の検査時の図。
5A and 5B are diagrams showing an example of setting a scanning path in the apparatus of FIG. 1, in which FIG. 5A is a diagram during preliminary scanning and FIG. 5B is a diagram during sample inspection.

【図6】試料を複数の領域に分けて予備走査するときの
一例を示す図。
FIG. 6 is a diagram showing an example in which a sample is divided into a plurality of regions and pre-scanned.

【図7】本発明の第2実施例に係る欠陥検査装置の概略
構成を示す図。
FIG. 7 is a diagram showing a schematic configuration of a defect inspection apparatus according to a second embodiment of the present invention.

【図8】従来の欠陥検査装置の概略構成を示す図。FIG. 8 is a diagram showing a schematic configuration of a conventional defect inspection apparatus.

【図9】図8の受光素子の受光像とフィルタのスリット
との対応関係の一例を示す図。
9 is a diagram showing an example of a correspondence relationship between a light-receiving image of the light-receiving element of FIG. 8 and a slit of a filter.

【符号の説明】[Explanation of symbols]

1 レーザ光源 3 ガルバノミラー 3D ミラー駆動回路 4 ステージ 4D ステージ駆動回路 6 フーリエ変換レンズ 10 撮像素子 11 撮像素子駆動回路 13,18 CPU 14 フレームメモリ 17 設計データメモリ DP 共通暗部 P1,P2 撮像素子の出力画像 TP 試料1 Laser Light Source 3 Galvano Mirror 3D Mirror Drive Circuit 4 Stage 4D Stage Drive Circuit 6 Fourier Transform Lens 10 Image Sensor 11 Image Sensor Drive Circuit 13, 18 CPU 14 Frame Memory 17 Design Data Memory DP Common Dark Area P 1 , P 2 Image Sensor Output image TP sample

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 スポット状の検査光により試料を走査す
る走査手段と、 前記検査光に対する前記試料からの散乱光を受光して前
記試料上のフーリエ像を瞳面に結像させる受光光学系
と、を備えた欠陥検査装置において、 前記瞳面の像を2次元の画素情報として出力可能な複数
の受光部を有する撮像手段と、 前記試料を前記走査手段で予備走査したときの前記撮像
手段の出力に基づいて、前記撮像手段の複数の受光部の
中から前記試料上に形成されたパターンからの散乱光が
入射しない受光部を監視対象として選別する選別手段
と、 前記監視対象として選別された受光部に入射する光強度
に基づいて前記試料の欠陥の有無を判別する判別手段
と、を備えることを特徴とする欠陥検査装置。
1. A scanning unit that scans a sample with spot-shaped inspection light, and a light-receiving optical system that receives scattered light from the sample with respect to the inspection light and forms a Fourier image on the sample on a pupil plane. In a defect inspection apparatus comprising: an image pickup unit having a plurality of light receiving sections capable of outputting the image of the pupil plane as two-dimensional pixel information; and an image pickup unit when the sample is pre-scanned by the scanning unit. Based on the output, a selection unit that selects, as a monitoring target, a light receiving unit to which scattered light from a pattern formed on the sample does not enter, from a plurality of light receiving units of the image capturing unit, and a selection unit that selects the monitoring target. A defect inspecting apparatus, comprising: a determining unit that determines whether or not there is a defect in the sample based on the intensity of light incident on the light receiving unit.
【請求項2】 請求項1記載の欠陥検査装置において、 前記予備走査の経路を、前記試料の欠陥の有無を検査す
るときの走査経路よりも粗く設定することを特徴とする
欠陥検査装置。
2. The defect inspection apparatus according to claim 1, wherein the pre-scanning path is set to be coarser than a scanning path used when inspecting the sample for defects.
【請求項3】 請求項1記載の欠陥検査装置において、 前記試料を複数の予備走査領域に分割し、各予備走査領
域毎に監視対象となる受光部の選別を行なうことを特徴
とする欠陥検査装置。
3. The defect inspection apparatus according to claim 1, wherein the sample is divided into a plurality of preliminary scanning regions, and a light receiving unit to be monitored is selected for each preliminary scanning region. apparatus.
【請求項4】 請求項1記載の欠陥検査装置において、 前記瞳面における前記パターンからの散乱光が入射しな
い位置を、前記試料に形成されるパターンの設計情報に
基づいて演算し、該演算により得られた位置に対応する
受光部から監視対象となる受光部を選別する監視対象推
定手段を、前記選別手段に代えて設けたことを特徴とす
る欠陥検査装置。
4. The defect inspection apparatus according to claim 1, wherein a position on the pupil plane where scattered light from the pattern does not enter is calculated based on design information of a pattern formed on the sample, and the position is calculated by the calculation. A defect inspection apparatus characterized in that a monitoring target estimation unit for selecting a light receiving unit to be monitored from a light receiving unit corresponding to the obtained position is provided in place of the selection unit.
【請求項5】 請求項1〜4のいずれか1項に記載の欠
陥検査装置において、 前記撮像手段がランダムアクセス可能な2次元素子とさ
れ、 前記判別手段は、前記監視対象として選別された受光部
のみにアクセスして前記欠陥の有無を判別することを特
徴とする欠陥検査装置。
5. The defect inspection apparatus according to claim 1, wherein the imaging unit is a randomly accessible two-dimensional element, and the determination unit is a light receiving device selected as the monitoring target. A defect inspection apparatus, wherein only a part is accessed to determine the presence or absence of the defect.
【請求項6】 スポット状の検査光により試料を走査
し、このときの試料からの散乱光を受光光学系で受光し
てその瞳面に前記試料上のフーリエ像を結像させ、この
フーリエ像に基づいて前記試料の欠陥の有無を判別する
欠陥検査方法において、 前記試料の検査に先立って前記試料を前記検査光で予備
走査し、 このときの前記瞳面の像を、2次元に配列された複数の
受光部を有する撮像手段から2次元の画素情報として出
力させ、 前記予備走査の開始から終了までの前記撮像手段の出力
に基づいて、前記撮像手段の複数の受光部の中から前記
試料上に形成されたパターンからの散乱光が入射しない
受光部を監視対象として選別し、 前記試料の検査時には、前記選別された受光部に入射す
る光強度に基づいて前記試料の欠陥の有無を判別するこ
とを特徴とする欠陥検査方法。
6. A sample is scanned with spot-like inspection light, scattered light from the sample at this time is received by a light receiving optical system, and a Fourier image on the sample is formed on the pupil plane, and this Fourier image is formed. In the defect inspection method for determining the presence or absence of a defect in the sample based on, the sample is pre-scanned with the inspection light prior to the inspection of the sample, and the image of the pupil plane at this time is arranged two-dimensionally. The two-dimensional pixel information is output from the imaging unit having a plurality of light receiving units, and the sample is selected from the plurality of light receiving units of the imaging unit based on the output of the imaging unit from the start to the end of the preliminary scanning. The light receiving part to which scattered light from the pattern formed above does not enter is selected as a monitoring target, and at the time of inspecting the sample, the presence or absence of a defect in the sample is determined based on the light intensity incident on the selected light receiving part. Do Defect inspection method comprising and.
【請求項7】 請求項6記載の欠陥検査方法において、 前記予備走査の経路を、前記試料の欠陥の有無を検査す
るときの走査経路よりも粗く設定することを特徴とする
欠陥検査方法。
7. The defect inspection method according to claim 6, wherein the pre-scanning path is set to be coarser than a scanning path used when inspecting the sample for defects.
【請求項8】 請求項6記載の欠陥検査方法において、 前記試料を複数の予備走査領域に分割し、各予備走査領
域毎に監視対象となる受光部の選別を行なうことを特徴
とする欠陥検査方法。
8. The defect inspection method according to claim 6, wherein the sample is divided into a plurality of preliminary scanning regions, and a light receiving portion to be monitored is selected for each preliminary scanning region. Method.
【請求項9】 スポット状の検査光により試料を走査
し、このときの試料からの散乱光を受光光学系で受光し
てその瞳面に前記試料上のフーリエ像を結像させ、この
フーリエ像に基づいて前記試料の欠陥の有無を判別する
欠陥検査方法において、 2次元に配列された受光部を有する撮像手段により、前
記瞳面の像を2次元の画素情報として出力可能とし、 前記試料の検査に先立って、当該試料を走査するときの
前記瞳面における前記パターンからの散乱光が入射しな
い位置を、前記試料に形成されるパターンの設計情報に
基づいて演算し、 該演算により得られた位置に対応する受光部から監視対
象となる受光部を選別し、 前記試料の検査時には、前記選別された受光部に入射す
る光強度に基づいて前記試料の欠陥の有無を判別するこ
とを特徴とする欠陥検査方法。
9. A sample is scanned with spot-like inspection light, scattered light from the sample at this time is received by a light receiving optical system, and a Fourier image on the sample is formed on the pupil plane, and this Fourier image is formed. In the defect inspection method for determining the presence / absence of a defect of the sample based on the above, it is possible to output the image of the pupil plane as two-dimensional pixel information by an imaging unit having a two-dimensionally arranged light receiving section, Prior to the inspection, the position on the pupil plane where the scattered light from the pattern does not enter when the sample is scanned is calculated based on the design information of the pattern formed on the sample, and obtained by the calculation. The light receiving unit to be monitored is selected from the light receiving units corresponding to the positions, and at the time of inspecting the sample, the presence or absence of a defect in the sample is determined based on the light intensity incident on the selected light receiving unit. Defect inspection method to be.
【請求項10】 請求項6〜9のいずれか1項に記載の
欠陥検査方法において、 前記撮像手段がランダムアクセス可能な2次元素子とさ
れ、 前記試料の検査時には、前記監視対象として選別された
受光部のみにアクセスして前記欠陥の有無を判別するこ
とを特徴とする欠陥検査方法。
10. The defect inspection method according to claim 6, wherein the imaging unit is a randomly accessible two-dimensional element, and is selected as the monitoring target when inspecting the sample. A defect inspection method characterized in that only the light receiving portion is accessed to determine the presence or absence of the defect.
JP5051057A 1993-03-11 1993-03-11 Defect tester and method thereof Pending JPH06265479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5051057A JPH06265479A (en) 1993-03-11 1993-03-11 Defect tester and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5051057A JPH06265479A (en) 1993-03-11 1993-03-11 Defect tester and method thereof

Publications (1)

Publication Number Publication Date
JPH06265479A true JPH06265479A (en) 1994-09-22

Family

ID=12876183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5051057A Pending JPH06265479A (en) 1993-03-11 1993-03-11 Defect tester and method thereof

Country Status (1)

Country Link
JP (1) JPH06265479A (en)

Similar Documents

Publication Publication Date Title
JP4351522B2 (en) Pattern defect inspection apparatus and pattern defect inspection method
US4614430A (en) Method of detecting pattern defect and its apparatus
US5436464A (en) Foreign particle inspecting method and apparatus with correction for pellicle transmittance
JP2002014057A (en) Defect checking device
KR20060066658A (en) Method and system for inspecting a mura defect, and method of manufacturing a photomask
JP5416600B2 (en) Defect inspection apparatus and method
JP6920009B2 (en) Defect detection device, defect detection method and defect observation device
KR20090008185A (en) Surface inspection device
JP3907874B2 (en) Defect inspection method
JP2001209798A (en) Method and device for inspecting outward appearance
WO2001073411A1 (en) Through hole inspecting method and device
KR100249270B1 (en) Method and system for inspecting unevenness
JP2007205828A (en) Optical image acquisition device, pattern inspection device, optical image acquisition method, and pattern inspection method
JP2001183301A (en) Apparatus and method for inspecting flaw
JP2577805B2 (en) Inspection method and apparatus for soldered part and method for inspecting electronic component mounting state
JPH06265479A (en) Defect tester and method thereof
JP3202089B2 (en) Surface defect inspection method for periodic patterns
JPH10267858A (en) Method for judging defect of glass substrate
JP2005077272A (en) Method for inspecting defect
JPH02173544A (en) Lens inspecting device
JPH10332534A (en) Laser optical system inspection device
JP5747846B2 (en) Chart inspection method, inspection apparatus, and image sensor for shading correction of image sensor using defocus
JP5372618B2 (en) Patterned substrate inspection apparatus and patterned substrate inspection method
JPH063281A (en) Method for displaying foreign material data
JP2000002526A (en) Inspection method for surface defect and inspection device thereof