JPH06258034A - Method and apparatus for measuring outer diameter of tubular body - Google Patents

Method and apparatus for measuring outer diameter of tubular body

Info

Publication number
JPH06258034A
JPH06258034A JP4938593A JP4938593A JPH06258034A JP H06258034 A JPH06258034 A JP H06258034A JP 4938593 A JP4938593 A JP 4938593A JP 4938593 A JP4938593 A JP 4938593A JP H06258034 A JPH06258034 A JP H06258034A
Authority
JP
Japan
Prior art keywords
measured
outer diameter
distance
pipe
tubular body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4938593A
Other languages
Japanese (ja)
Inventor
Yukinori Sato
幸徳 佐藤
Mamoru Inaba
護 稲葉
Noritsugu Mifune
法嗣 三船
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP4938593A priority Critical patent/JPH06258034A/en
Publication of JPH06258034A publication Critical patent/JPH06258034A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the outer diameter of a tubular body susceptible to flexure due to large diameter and heavy weight highly accurately. CONSTITUTION:A pair of distance meters 13a, 13b movable up and down on the opposite sides of the cross-section of a tubular body 10 to be measured are positioned at the cross points Y, or the vicinity thereof, of a right circle and a curve having profile defined by the attributes, e.g. material and dimension, of the tube 10. The distance meters 13a, 13b measure the horizontal distances La, Lb upto the tubular body 10 at each position and then the outer diameter D of the tubular body 10 is calculated based on the horizontal distances thus measured and the geometrical positions of the distance meters 13a, 13b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスパイラル鋼管等の大口
径かつ大重量に起因してたわみが生じやすい管体の外径
を正確に測定する管体の外径測定方法及び管体の外径測
定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring an outer diameter of a tubular body and an outer diameter of the tubular body for accurately measuring the outer diameter of the tubular body which is liable to bend due to its large diameter and large weight. Regarding measuring device.

【0002】[0002]

【従来の技術】石油や各種流体を輸送するパイプライン
は、その外径が大きいのでスパイラル鋼管が採用される
場合が多い。このスパイラル鋼管の製造方法を図6に示
す。すなわち、帯状鋼板1をスパイラル状に曲げて、曲
げられた帯状鋼板1の側面の接触部の内面と外面とを溶
接して、図示するような所定外径Dを有した鋼管2に形
成する。この場合、鋼管2の外径Dは、帯状鋼板1の板
幅Wと、帯状鋼板1の導入角度θと,帯状鋼板1の板厚
tとを用いて(1) 式で定まる。 D=W/(π・ sinθ)+t …(1)
2. Description of the Related Art Spiral steel pipes are often used in pipelines for transporting oil and various fluids because of their large outer diameters. The manufacturing method of this spiral steel pipe is shown in FIG. That is, the strip-shaped steel plate 1 is bent in a spiral shape, and the inner surface and the outer surface of the contact portion on the side surface of the bent strip-shaped steel plate 1 are welded to form a steel pipe 2 having a predetermined outer diameter D as shown in the drawing. In this case, the outer diameter D of the steel pipe 2 is determined by the equation (1) using the plate width W of the strip steel plate 1, the introduction angle θ of the strip steel plate 1 and the plate thickness t of the strip steel plate 1. D = W / (π ・ sinθ) + t (1)

【0003】(1) 式でも理解できるように、鋼管2
の外径Dは帯状鋼板1の導入角度θに大きく依存する。
したがって、わずかな導入角度θのずれがそのまま外径
Dの寸法誤差に現れる。
As can be understood from the equation (1), the steel pipe 2
The outer diameter D of is greatly dependent on the introduction angle θ of the strip steel plate 1.
Therefore, a slight deviation of the introduction angle θ appears in the dimensional error of the outer diameter D as it is.

【0004】このために、鋼管2の製造装置において
は、操作員が製管中にスチール巻尺等を回転移動状態の
鋼管2に巻付けて外径を測定していた。そして、測定さ
れた外径が目標外径に対して許容範囲を外れた場合に
は、製造装置における導入角度調整等を実施する。
For this reason, in the apparatus for manufacturing the steel pipe 2, the operator measures the outer diameter by winding a steel tape measure or the like on the steel pipe 2 in a rotationally moving state during the pipe manufacturing. Then, when the measured outer diameter is out of the allowable range with respect to the target outer diameter, the introduction angle adjustment or the like in the manufacturing apparatus is performed.

【0005】しかし、測定作業はスチール巻尺等の工具
を用いた手作業であるので、鋼管2の軸方向における一
定間隔毎にしか測定作業を実行できなかった。したがっ
て、局部的な外径変動を検出できない。また、回転しな
がら軸方向に移動している鋼管2に対してスチール巻尺
を巻付ける作業は危険を伴うので、熟練作業員しか実施
できなかった。
However, since the measuring work is a manual work using a tool such as a steel tape measure, the measuring work can be executed only at regular intervals in the axial direction of the steel pipe 2. Therefore, it is not possible to detect a local variation in outer diameter. Further, the work of winding the steel tape measure around the steel pipe 2 which is rotating and moving in the axial direction is dangerous, and therefore only a skilled worker can perform it.

【0006】このような不都合を解消するために、図7
に示す外径測定装置が提唱されている(特開昭57−1
15994号公報)。固定プーリ3と水平方向に移動自
在に設けられた可動プーリ4との間に8字形によじれた
スチールバンド5を巻装し、垂れ下がったスチールバン
ド5の下側の輪に被測定管6を挿入する。なお、可動プ
ーリ4はスチールバンド5が弛ないように図中右方向へ
弱いばね部材で付勢されている。また、被測定管6の下
端位置から各プール3,4位置までの上下距離Hは固定
である。
In order to eliminate such inconvenience, FIG.
The outer diameter measuring device shown in FIG.
15994 publication). A steel band 5 twisted into a figure 8 is wound between a fixed pulley 3 and a movable pulley 4 that is movable in the horizontal direction, and a pipe 6 to be measured is inserted into the lower ring of the hanging steel band 5. To do. The movable pulley 4 is biased rightward in the drawing by a weak spring member so that the steel band 5 does not loosen. The vertical distance H from the lower end position of the pipe 6 to be measured to the positions of the pools 3 and 4 is fixed.

【0007】このような構成の外径測定装置において、
予め既知外径Daを有する基準管6aをスチールバンド
5に装着した状態における固定プーリ3と可動プーリ4
との間の距離Sを測定する。そして、次に被測定管6を
スチールバンド5に装着した場合に、可動プーリ4がΔ
Sだけ右方向へ移動したとすると、この移動量ΔSが被
測定管6の外径Dと基準管6aの外径Daとの差ΔDに
比例する。 ΔD=(Da−D)=K・ΔS …(2) なお、Kは各プーリ3,4の外径や距離H等の位置関係
で定まる定数である。また、図8(a)は鋼管の外径D
を非接触で測定する外径測定装置の概略構成図である。
In the outer diameter measuring device having such a structure,
Fixed pulley 3 and movable pulley 4 in a state where a reference tube 6a having a known outer diameter Da is attached to a steel band 5 in advance.
The distance S between and is measured. Then, when the measured pipe 6 is attached to the steel band 5, the movable pulley 4 is
If it is moved to the right by S, this amount of movement ΔS is proportional to the difference ΔD between the outer diameter D of the pipe 6 to be measured and the outer diameter Da of the reference pipe 6a. ΔD = (Da−D) = K · ΔS (2) Note that K is a constant determined by the positional relationship such as the outer diameter of each pulley 3, 4 and the distance H. Further, FIG. 8A shows the outer diameter D of the steel pipe.
FIG. 3 is a schematic configuration diagram of an outer diameter measuring device that measures N.

【0008】図示するように、被測定管6の軸線7上
に、この被測定管6に対向して一対のレーザ距離計7
a,7bが配設されている。そして、各レーザ距離計7
a,7bで被測定管6までの各距離LA ,LB を測定す
る。レーザ距離計7a,7b相互間距離L0 は固定であ
るので、被測定管6の外径Dは次の(3) 式で求まる。 D=L0 −(LA +LB ) …(3)
As shown in the figure, a pair of laser rangefinders 7 are arranged on the axis 7 of the pipe to be measured 6 so as to face the pipe 6 to be measured.
a and 7b are provided. And each laser range finder 7
The distances L A and L B to the pipe 6 to be measured are measured with a and 7b. Since the distance L 0 between the laser rangefinders 7a and 7b is fixed, the outer diameter D of the pipe 6 to be measured can be obtained by the following equation (3). D = L 0 - (L A + L B) ... (3)

【0009】[0009]

【発明が解決しようとする課題】しかしながら上述した
各外径測定装置においてもまだ改良すべき次のような課
題があった。
However, the above-mentioned outer diameter measuring devices also have the following problems to be improved.

【0010】先ず、図7に示す外径測定装置において
は、外径Dを精度よく測定するには、スチールバンド5
を例えば回転移動状態の被測定管6に強く巻付ける必要
がある。したがって、被測定管6に損傷を与えたり、逆
に、外径測定装置や鋼管製造装置に損傷を与える懸念が
ある。すなわち、回転移動状態の被測定管6にスチール
バンド5を巻付けるという接触測定手法に起因する問題
を有する。
First, in the outer diameter measuring device shown in FIG. 7, in order to measure the outer diameter D accurately, the steel band 5 is used.
Needs to be strongly wound around the pipe 6 to be measured in a rotationally moving state. Therefore, there is a concern that the pipe 6 to be measured may be damaged or, conversely, the outer diameter measuring device or the steel pipe manufacturing device may be damaged. That is, there is a problem caused by the contact measurement method in which the steel band 5 is wound around the pipe 6 to be measured in the rotational movement state.

【0011】さらに、図8(a)に示す外径測定装置に
おいては、被測定管6の外径を非接触で測定するので、
図7の外径測定装置における接触測定に起因する問題は
解消される。しかし、この外径測定装置においては、外
径Dを外周値から算出していなくて、2点における測定
値のみで算出している。この手法においては、外径が小
さく、自重に起因して被測定管6がたわなく、常時円形
の断面形状を有している場合は、外径Dを正確に測定で
きる。
Further, in the outer diameter measuring device shown in FIG. 8A, the outer diameter of the pipe 6 to be measured is measured in a non-contact manner.
The problem caused by contact measurement in the outer diameter measuring device of FIG. 7 is solved. However, in this outer diameter measuring device, the outer diameter D is not calculated from the outer peripheral value, but is calculated only from the measured values at two points. In this method, the outer diameter D can be accurately measured when the outer diameter D is small, the measured pipe 6 does not bend due to its own weight, and has a constant circular cross-sectional shape.

【0012】しかし、一般にパイプラインに用いられる
スパイラル鋼管は例えば600mm 〜2500mmのように大口径
であり、重量も重い。したがって、図8(a)に示すよ
うに、被測定管6を片持梁状態で支持すると、図8
(b)に示すように、自重によりたわんで、断面形状が
一点鎖線で示す真円から実線で示す楕円形状に変化す
る。
However, a spiral steel pipe generally used for a pipeline has a large diameter such as 600 mm to 2500 mm and is heavy in weight. Therefore, as shown in FIG. 8A, when the measured pipe 6 is supported in a cantilever state,
As shown in (b), the cross-section changes from a perfect circle indicated by the alternate long and short dash line to an elliptical shape indicated by the solid line by bending due to its own weight.

【0013】このように、断面形状が楕円形状に変化し
た被測定管6aを上下のレーザ距離計7a,7bを用い
て測定した場合には、外径が真円の外径より小さくな
る。したがって、小さく測定された外径Dでもって鋼管
製造装置を制御すると、実際に製造されるスパイラル鋼
管の外径が規定外径より大きくなる。なお、スパイラル
鋼管を実際に敷設する場合は、地中に埋設する等の自重
が印加されない状態で敷設される。
As described above, when the measured pipe 6a whose cross-sectional shape is changed to the elliptical shape is measured by using the upper and lower laser distance meters 7a and 7b, the outer diameter is smaller than the outer diameter of the perfect circle. Therefore, if the steel pipe manufacturing apparatus is controlled by the outer diameter D that is measured small, the outer diameter of the spiral steel pipe that is actually manufactured becomes larger than the specified outer diameter. When the spiral steel pipe is actually laid, it is laid in the ground without being applied with its own weight.

【0014】さらに、図8(a)の外径測定装置におい
ては、被測定管6の外径が前述したように大きく変化す
るので、各レーザ距離計7a,7bを被測定管6から遠
く離れて配設する必要がある。したがって、被測定管6
の外径Dが小さくなると測定誤差が大きくなる。
Further, in the outer diameter measuring device of FIG. 8A, since the outer diameter of the pipe 6 to be measured changes greatly as described above, the laser rangefinders 7a and 7b are separated from the pipe 6 to be measured. Need to be installed. Therefore, the pipe to be measured 6
The measurement error increases as the outer diameter D of N decreases.

【0015】本発明はこのような事情に鑑みてなされた
ものであり、被測定管体が偏平状にたわんだ場合の断面
形状がたるみが生じていないと仮定した真円と交差する
ことを利用して、被測定管に対する測定位置を最適位置
に設定することによって、たとえ断面形状がたわんだと
しても、常に正しい外径を測定できる管体の外径測定方
法及びその装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and utilizes that the cross-sectional shape when the pipe to be measured is bent in a flat shape intersects with a perfect circle on the assumption that there is no slack. Then, by setting the measurement position with respect to the pipe to be measured to the optimum position, even if the cross-sectional shape is bent, it is an object to provide an outer diameter measuring method of a pipe body and a device therefor that can always measure a correct outer diameter. And

【0016】[0016]

【課題を解決するための手段】上記課題を解消するため
に、本発明の管体の外径測定方法は、被測定管体の断面
を挟んで上下に移動可能な一対の距離計を、被測定管体
の材質,寸法等の属性で定まる断面形状のたわみ曲線と
真円とのあいだの上下に離間した各交点またはその各近
傍の各上下位置にそれぞれ位置決めし、この位置決めさ
れた各位置で被測定管体までの各水平距離を測定し、測
定した各水平距離と各距離計の幾何学的位置とから被測
定管体の外径を算出する。
In order to solve the above-mentioned problems, the method for measuring the outer diameter of a tubular body according to the present invention comprises a pair of rangefinders that are movable up and down with a cross section of the tubular body to be measured interposed therebetween. The bending curve of the cross-sectional shape determined by attributes such as the material and dimensions of the measuring pipe is positioned at each of the vertically spaced intersections between the curved lines and the perfect circle, or at each vertical position in the vicinity of each intersection, and at each of these positioned positions. Each horizontal distance to the pipe to be measured is measured, and the outer diameter of the pipe to be measured is calculated from the measured horizontal distance and the geometric position of each distance meter.

【0017】また、本発明の外径測定装置は、被測定管
体の断面を挟んで上下に移動自在に支持され、被測定管
体までの水平距離を測定する一対の距離計と、各距離計
を上下移動させがら測定値が最低値を示す基準位置を決
定する基準位置決定手段と、被測定管体の材質,寸法等
の属性で定まる断面形状のたわみ曲線と真円との交点か
ら基準位置までの上下移動距離を決定する移動距離決定
手段と、各距離計を基準位置から互いに反対方向に上下
移動距離だけ移動する距離計位置決め手段と、この位置
決めされた各距離計にて測定された各水平距離と各距離
計の幾何学的位置とから被測定管体の外径を算出する外
径算出手段とを備えたものである。
Further, the outer diameter measuring apparatus of the present invention is supported movably up and down across the cross section of the pipe to be measured, and a pair of distance meters for measuring the horizontal distance to the pipe to be measured, and each distance. A reference position determining means for determining the reference position at which the measured value shows the lowest value while moving the meter up and down, and a reference from the intersection of the bending curve and the perfect circle of the sectional shape determined by the attributes such as the material and size of the pipe to be measured. The moving distance determining means for determining the vertical moving distance to the position, the distance meter positioning means for moving each distance meter in the opposite direction from the reference position by the vertical moving distance, and the measured distance by each distance meter An outer diameter calculating means for calculating the outer diameter of the pipe to be measured from each horizontal distance and the geometrical position of each distance meter is provided.

【0018】さらに別の発明の外径測定装置は、被測定
管体の断面を挟んで上下に移動自在に支持され、被測定
管体までの水平距離を測定する一対の距離計と、この各
距離計を上下移動させがら測定値が最低値を示す基準位
置を決定する基準位置決定手段と、各距離計を上下移動
させがら測定値の誤差が最低値を示す位置から基準位置
までの上下移動距離を決定する移動距離決定手段と、各
距離計を基準位置から互いに反対方向に上下移動距離だ
け移動する距離計位置決め手段と、この位置決めされた
各距離計にて測定された各水平距離と各距離計の幾何学
的位置とから被測定管体の外径を算出する外径算出手段
と、この外径算出手段にて算出された外径寸法を、被測
定管体の材質,寸法等の属性で定まる断面形状のたわみ
曲線と各測定値の測定位置とで定まる補正量で補正する
外径寸法補正手段とを備えたものである。
An outer diameter measuring device of still another invention is a pair of rangefinders, which are movably supported up and down across a cross section of a pipe to be measured and which measure a horizontal distance to the pipe to be measured. Reference position determining means for deciding the reference position where the measured value shows the lowest value while moving the distance meter up and down, and vertical movement from the position where the error of the measured value shows the lowest value to the reference position while moving each distance meter up and down Moving distance determining means for determining the distance, distance meter positioning means for moving each distance meter from the reference position in opposite directions by a vertical movement distance, and each horizontal distance measured by each of the positioned distance meters. The outer diameter calculation means for calculating the outer diameter of the pipe to be measured from the geometrical position of the range finder, and the outer diameter dimension calculated by this outer diameter calculation means are used to determine the material, dimensions, etc. of the pipe to be measured. Deflection curve of cross-sectional shape determined by attributes and each measured value Those having an outer diameter correction means for correcting the correction amount determined by the position.

【0019】[0019]

【作用】先ず、本発明の管体の外径測定方法及び外径測
定装置の動作原理を図2の模式図を用いて説明する。
First, the operation principle of the outer diameter measuring method and the outer diameter measuring device of the present invention will be described with reference to the schematic diagram of FIG.

【0020】自重に起因するたわみが全く生じていない
と仮定した管体の断面形状は図中実線で示す真円形状A
である。そして、同一管体が自重でたわみ、断面形状が
楕円形状B1 ,B2 .B3 に変形したとする。そして、
各楕円形状1 ,B2 .B3 はそれぞれ異なる偏平率を有
する。この偏平の程度は、管体の重量や,材質や、肉厚
等の属性によって定まる。なお、図2においては自重に
よる中心位置の移動は相対的なものと見なして真円形状
Aの中心Oに一致させて描いている。
The cross-sectional shape of the tube, assuming that no deflection due to its own weight has occurred, is a perfect circle shape A shown by the solid line in the figure.
Is. Then, the same tubular body is bent by its own weight, and the cross-sectional shape is elliptical shapes B 1 , B 2 . Suppose it has been transformed into B 3 . And
Each elliptical shape 1 , B 2 . B 3 has different flatness rates. The degree of flatness is determined by the weight, material, wall thickness, and other attributes of the tube. In addition, in FIG. 2, the movement of the center position due to its own weight is regarded as a relative movement, and is drawn so as to coincide with the center O of the perfect circular shape A.

【0021】この場合、各楕円形状B1 ,B2 .B3
必ず真円形状Aに交差する。そして、各交点P1
2 ,P3 から中心Oまでの距離は真円形状Aの半径で
ある。したがって、各交点P1 .P2 ,P3 と、この各
交点P1 .P2 ,P3 の中心Oに対する点対称位置であ
る各交点Q1 .Q2 ,Q3 相互間の各距離L1 ,L2
3 は全て等しく真円形状Aの外径Dとなる。
In this case, each elliptical shape B 1 , B 2 . B 3 always intersects with the perfect circular shape A. Then, at each intersection P 1 .
The distance from P 2 and P 3 to the center O is the radius of the perfect circular shape A. Therefore, each intersection P 1 . P 2 , P 3 and the intersection points P 1 . Each intersection Q 1 which is a point symmetric position with respect to the center O of P 2 and P 3 . Each distance L 1 , L 2 , between Q 2 and Q 3
L 3 are all equal and have an outer diameter D of a perfect circular shape A.

【0022】したがって、任意の偏平率で楕円変形した
たわみ曲線(楕円形状B)と真円形状Aとの各交点P,
Qの二次元位置が定まれば、正しい外径Dが幾何学的考
察により簡単に算出可能となる。
Therefore, the intersection points P of the deflection curve (elliptical shape B) and the perfect circular shape A, which are elliptically deformed with an arbitrary flatness,
If the two-dimensional position of Q is determined, the correct outer diameter D can be easily calculated by geometrical consideration.

【0023】前述したように、たわみ曲線(楕円形状)
は被測定管の材質,寸法等の属性で定まる。したがっ
て、このたわみ曲線を予め求めておき、このたわみ曲線
(楕円形状B)と真円形状Aとの交点P(P1 .P2
3 )の基準位置からの上下移動距離Y(Y1 ,Y2
3 )を決定しておき、一対の距離計を各交点P,Qに
水平方向から対向する位置に位置決めして、この各位置
から被測定管体までの各水平距離を測定すれば、交点
P.Qの二次元位置が定まる。よって、正しい外径Dが
各距離計の幾何学的位置から算出される。
As described above, the deflection curve (elliptical shape)
Is determined by the material and dimensions of the pipe to be measured. Therefore, this flexure curve is obtained in advance, and the intersection point P (P 1 .P 2 ,
P 3 ) vertical movement distance Y (Y 1 , Y 2 ,
Y 3 ) is determined, a pair of rangefinders are positioned at the positions facing the intersections P and Q in the horizontal direction, and the horizontal distances from these positions to the pipe to be measured are measured. P. The two-dimensional position of Q is determined. Therefore, the correct outer diameter D is calculated from the geometric position of each rangefinder.

【0024】また、本発明の外径測定装置においては、
基準位置を中心Oを通る水平線の上下位置と定義して、
各測定計を上下に移動しながら測定値が最小値を示す位
置を基準位置として検出している。
Further, in the outer diameter measuring device of the present invention,
Define the reference position as the vertical position of the horizontal line passing through the center O,
While moving each measuring meter up and down, the position where the measured value shows the minimum value is detected as the reference position.

【0025】また、別の発明においては、各距離計にお
ける測定位置を測定によって求めている。すなわち、前
述したように、たわみ曲線(楕円形状B)と真円形状A
との関係が予め求められていれば、各距離計が前記各交
点P,Qに正確に対向していいなかったとしも、その測
定位置におけるたわみ曲線上の値が特定できる。したが
って、その測定位置において測定された各水平距離から
算出された外径Dと真に正しい外径との差が前記たわみ
曲線を用いて特定できる。したがって、このを差を補正
量として、算出された外径を補正する事により正確な外
径が得られる。
Further, in another invention, the measurement position in each distance meter is obtained by measurement. That is, as described above, the deflection curve (elliptical shape B) and the perfect circular shape A
If the relationship with is previously obtained, the value on the deflection curve at the measurement position can be specified even if each distance meter does not exactly face the intersection points P and Q. Therefore, the difference between the outer diameter D calculated from each horizontal distance measured at the measurement position and the truly correct outer diameter can be specified using the deflection curve. Therefore, an accurate outer diameter can be obtained by correcting the calculated outer diameter using this difference as a correction amount.

【0026】このことは、各距離計の測定位置を測定値
のバラツキ(誤差,標準偏差)が最も小さくなる位置に
設定すれば、全体として測定精度が向上することを意味
する。
This means that if the measurement position of each distance meter is set to a position where the variation (error, standard deviation) of measured values is minimized, the measurement accuracy is improved as a whole.

【0027】なお、一つの被測定管の同一高さ位置
(y)における軸方向の複数位置における水平距離を測
定した場合における、測定された水平距離のバラツキ程
度(標準偏差)が最も小さい位置は交点P,Q位置又は
その近傍位置であることが実験的に確かめられている。
When the horizontal distances at a plurality of positions in the axial direction at the same height position (y) of one pipe to be measured are measured, the position where the degree of variation (standard deviation) in the measured horizontal distance is the smallest is It has been experimentally confirmed that the position is at the intersection P, Q position or its vicinity.

【0028】したがって、この発明においては、測定値
のバラツキが最も小さい値を示す上下位置を測定位置と
設定し、測定された各水平距離から外径を算出し、その
後、該当測定位置における補正量をたわみ曲線(楕円形
状B)と真円形状Aとの関係から求めて、測定された外
径を補正している。
Therefore, in the present invention, the vertical position showing the smallest variation in the measured values is set as the measuring position, the outer diameter is calculated from each measured horizontal distance, and then the correction amount at the corresponding measuring position is set. Is calculated from the relationship between the deflection curve (elliptical shape B) and the perfect circle shape A, and the measured outer diameter is corrected.

【0029】[0029]

【実施例】以下本発明の一実施例を図面を用いて説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0030】図1は実施例の管体の外径測定装置の概略
構成を示すブロック図である。被測定管体10は、例え
ば、図6に示す手法で製造されるスパイラル鋼管であ
り、回転しながら紙面に直交する軸方向に移動する。
FIG. 1 is a block diagram showing a schematic configuration of an outer diameter measuring device for a pipe according to an embodiment. The measured pipe body 10 is, for example, a spiral steel pipe manufactured by the method shown in FIG. 6, and moves in the axial direction orthogonal to the paper surface while rotating.

【0031】この被測定管体10を挟んで両側に互いに
平行でかつ上下方向に一対の上下リニアガイド11a,
11bが敷設されている。各上下リニアリニアガイド1
1a,11bには各水平リニアガイド12a,12bを
介して各レーザ距離計13a,13bが取付けられてい
る。そして、各レーザ距離計13a,13bの二次元位
置(Xa,Ya),(Xb,Yb)はそれぞれリニアガ
イド制御部14a,14bによって互いに独立して移動
制御される。
A pair of upper and lower linear guides 11a, which are parallel to each other on both sides of the pipe 10 to be measured and which extend in the vertical direction,
11b is laid. Each upper and lower linear linear guide 1
Laser rangefinders 13a and 13b are attached to 1a and 11b via horizontal linear guides 12a and 12b. Then, the two-dimensional positions (Xa, Ya), (Xb, Yb) of the laser rangefinders 13a, 13b are controlled to move independently of each other by the linear guide control units 14a, 14b.

【0032】また、各レーザ距離計13a,13bはそ
れぞれ被測定管体10までの水平距離La,Lbを非接
触で測定する。各レーザ距離計13a,13bで測定さ
れた各水平距離La,Lbは各信号処理回路15a,1
5bによってデジタル値に変換された後に演算処理部1
6へ入力される。
The laser distance meters 13a and 13b respectively measure the horizontal distances La and Lb to the pipe 10 to be measured without contact. The horizontal distances La and Lb measured by the laser rangefinders 13a and 13b are the signal processing circuits 15a and 1b, respectively.
After being converted into a digital value by 5b, the arithmetic processing unit 1
6 is input.

【0033】演算処理部16は、例えばコンピュータで
構成されており、表示器17aとキーボード17bから
なる入出力装置17が接続されている。また、演算処理
部16は前記各リニアガイド制御部14a,14bを介
してレーザ距離計13a,13bの位置を間接的に制御
する。
The arithmetic processing unit 16 is composed of, for example, a computer, and is connected with an input / output device 17 including a display 17a and a keyboard 17b. Further, the arithmetic processing section 16 indirectly controls the positions of the laser rangefinders 13a and 13b via the linear guide control sections 14a and 14b.

【0034】先ず、図3(a)(b)に示すような被測
定管体10と同一規格の基準管18を想定する。そし
て、この基準管18における、自重に起因するたわみが
発生していないと仮定した真円形状Aの正しい外径DS
と、自重に起因するたわみが発生して図2に示すような
楕円形状Bに変形した場合における基準位置からの任意
距離yに各レーザ距離計13a,13bを配設して各水
平距離La,Lbを測定して、この測定値La,Lbか
ら算出された外径Dとの差ΔD(=DS −D)を算出す
る。なお、基準位置とは図3(a)に示すように、基準
管13の中心0を通る水平線の上下位置と定義する。
First, assume a reference tube 18 having the same standard as that of the pipe 10 to be measured as shown in FIGS. 3 (a) and 3 (b). Then, the correct outer diameter D S of the perfect circular shape A on the assumption that the deflection due to its own weight does not occur in the reference pipe 18
When the deflection due to its own weight is generated and it is deformed into the elliptical shape B as shown in FIG. 2, the laser distance meters 13a and 13b are arranged at an arbitrary distance y from the reference position and the horizontal distances La, by measuring Lb, the measurement value La, calculates the difference between the outer diameter D calculated from Lb ΔD (= D S -D) . The reference position is defined as the vertical position of a horizontal line passing through the center 0 of the reference tube 13 as shown in FIG.

【0035】そして、基準位置から上下方向の距離yを
変化させた場合の前記差ΔDをそれぞれ求めて、図3
(b)の補正曲線Cを定める。したがって、この補正曲
線Cが基準位置(y=0)を横切る上下位置Yが、前述
した楕円形状Bが真円形状Aと交差する交点P位置とな
る。よって、この補正曲線Cはたわみが発生した場合の
たわみ曲線に対応する。このように基準管18に対して
測定された補正曲線Cが演算処理部16の記憶部に予め
設定されている。次に、演算処理部16における測定動
作を順を追って説明する。
Then, the difference .DELTA.D when the vertical distance y is changed from the reference position is obtained respectively, and FIG.
The correction curve C of (b) is determined. Therefore, the vertical position Y where the correction curve C crosses the reference position (y = 0) is the intersection point P position where the elliptical shape B described above intersects with the perfect circular shape A. Therefore, the correction curve C corresponds to the deflection curve when the deflection is generated. The correction curve C thus measured for the reference tube 18 is preset in the storage unit of the arithmetic processing unit 16. Next, the measurement operation in the arithmetic processing unit 16 will be described step by step.

【0036】(1) レーザ距離計13a,13bを上
下リニアガイド11a,11bの下端位置へ移動させ
る。この場合、各レーザ距離計13a,13bの各水平
方向位置Xa,Xbは、このレーザ距離計13a,13
bを上下移動させた場合に、被測定管10に接触しない
程度に接近させている。
(1) The laser rangefinders 13a and 13b are moved to the lower end positions of the upper and lower linear guides 11a and 11b. In this case, the horizontal positions Xa and Xb of the laser rangefinders 13a and 13b are the same as those of the laser rangefinders 13a and 13b.
When b is moved up and down, it is brought close enough not to contact the pipe to be measured 10.

【0037】(2) レーザ距離計13a,13bを上
下リニアガイド11a,11bに沿って下端位置から連
続的に上方へ移動させていき、この移動過程で各レーザ
距離計13a,13bから得られる各水平距離La,L
aを読取る。この場合、各レーザ距離計13a,13b
の移動速度を遅くして、同一高さ位置yにおいて複数回
数水平距離La,Lbを測定して、平均値[La]me,
[Lb]me、および標準偏差σ[La],σ[Lb]を
算出する。 (3) 最も小さい平均値[La]me,[Lb]meが得
られる上下位置を基準位置Ra,Rbと決定する。理論
的にはRa=Rbである。
(2) The laser rangefinders 13a, 13b are continuously moved upward from the lower end position along the upper and lower linear guides 11a, 11b. In the course of this movement, the laser rangefinders 13a, 13b obtain the respective values. Horizontal distance La, L
Read a. In this case, each laser range finder 13a, 13b
The horizontal distances La and Lb are measured a plurality of times at the same height position y by slowing down the moving speed of, and the average value [La] me,
[Lb] me and standard deviations σ [La] and σ [Lb] are calculated. (3) The upper and lower positions at which the smallest average values [La] me and [Lb] me are obtained are determined as the reference positions Ra and Rb. Theoretically Ra = Rb.

【0038】(4) 最も小さい標準偏差σ[La],
σ[Lb]が得られる上下位置を各測定位置Ya,Yb
と決定する。そして、各測定位置Ya,Ybと基準位置
Ra,Rbとの差からなる移動距離Y(=Ya−Ra=
Yb−Rb)を算出する。
(4) The smallest standard deviation σ [La],
The upper and lower positions at which σ [Lb] is obtained are measured positions Ya and Yb.
To decide. Then, the moving distance Y (= Ya−Ra = which is the difference between the respective measurement positions Ya and Yb and the reference positions Ra and Rb).
Yb-Rb) is calculated.

【0039】(5) 次に、一方のレーザ距離計13a
を基準位置Raから上方に移動距離Y分移動させて測定
位置(Xa,Ya)に位置させる。同時に、他方のレー
ザ距離計13bを基準位置Raから下方に移動距離Y分
移動させて測定位置(Xb,Yb)に位置させる。 (6) この状態で各レーザ距離計13a,13bにて
被測定管体10までの水平距離La,Lbを測定する。
(5) Next, one laser rangefinder 13a
Is moved upward from the reference position Ra by the movement distance Y to be positioned at the measurement position (Xa, Ya). At the same time, the other laser distance meter 13b is moved downward from the reference position Ra by the movement distance Y to be positioned at the measurement position (Xb, Yb). (6) In this state, the laser distance meters 13a and 13b measure the horizontal distances La and Lb to the pipe 10 to be measured.

【0040】(7) 測定された各水平距離La,Lb
と各レーザ距離計13a,13bの二次元位置(Xa,
Ya),(Xb,Yb)の幾何学的関係から(4) 式を用
いて被測定管体10の外径Dを算出する。 D=[{(Xa−La)−(Xb+Lb)}2 +(Ya−Yb)2 1/2 …(4)
(7) Measured horizontal distances La and Lb
And the two-dimensional position of each laser rangefinder 13a, 13b (Xa,
The outer diameter D of the pipe 10 to be measured is calculated by using the equation (4) from the geometrical relationship of (Ya) and (Xb, Yb). D = [{(Xa-La)-(Xb + Lb)} 2 + (Ya-Yb) 2 ] 1/2 …(Four)

【0041】(8) 記憶部に記憶された図3(b)に
示す補正曲線Cにおける基準位置(y=0)から移動距
離Yだけ移動した上下位置(y=Y)における補正量Δ
Y を読取る。 (9) 読取った補正量ΔDY を用いて、先に(4) 式で
算出された外径Dを(5)式で補正して正しい外径DC
得る。 DC =D−ΔDY …(5)
(8) The correction amount Δ at the vertical position (y = Y) moved by the movement distance Y from the reference position (y = 0) in the correction curve C shown in FIG. 3B stored in the storage unit.
Read D Y. (9) Using the read correction amount ΔD Y , the outer diameter D previously calculated by the equation (4) is corrected by the equation (5) to obtain the correct outer diameter D C. D C = D−ΔD Y (5)

【0042】このような構成の管体の外径測定装置にお
いては、被測定管体10と同一規格の基準管18におけ
る真円形状Aから自重に起因するたわみ曲線(楕円形状
B)に対応する補正特性Cを予め記憶部に登録してい
る。そして、各レーザ距離計13a,13bの設置位置
(移動距離Y)に対応する補正値ΔDY を読出して、該
当設置位置で測定された測定値La.Lbから得られる
外径Dを、この補正値ΔDY で補正して正しい外径DC
を得ている。したがって、たとえ被測定管体10が自重
によりたわんだとしても常に正しい外径DC が得られ
る。
In the outer diameter measuring device for a pipe having such a structure, it corresponds to the deflection curve (elliptical shape B) due to its own weight from the perfect circular shape A in the reference pipe 18 of the same standard as the pipe 10 to be measured. The correction characteristic C is registered in the storage unit in advance. Then, the correction value ΔD Y corresponding to the installation position (moving distance Y) of each of the laser rangefinders 13a and 13b is read out, and the measured value La. Correct the outer diameter D obtained from Lb by this correction value ΔD Y to obtain the correct outer diameter D C.
Is getting Therefore, even if the measured pipe body 10 is bent by its own weight, the correct outer diameter D C is always obtained.

【0043】さらに、一旦、測定位置(移動距離Y)を
決定すると、同一位置で継続して、しかも非接触状態で
外径を測定可能である。したがって、図7に示すスチー
ルテープ5を被測定管体6に巻付ける場合に比較して、
被測定管体10に損傷を与えることはなく、かつ被測定
管体10の回転速度及び軸方向の移動速度を上昇でき
る。すなわち、たとえ外径を連続測定したとしても、安
全性を十分確保できるので、スパイラル鋼管の製造能率
が低下することはない。
Further, once the measurement position (moving distance Y) is determined, the outer diameter can be continuously measured at the same position and in a non-contact state. Therefore, as compared with the case where the steel tape 5 shown in FIG.
The measured pipe body 10 is not damaged, and the rotational speed and axial movement speed of the measured pipe body 10 can be increased. That is, even if the outer diameter is continuously measured, the safety can be sufficiently ensured, so that the manufacturing efficiency of the spiral steel pipe does not decrease.

【0044】また、図3(b)に示すように、測定位置
(移動距離Y)を測定値La,Lbのバラツキ(標準偏
差)が最も小さくなる位置に設定しているので、外径の
最終的な測定精度をより一層向上できる。図4及び図5
に実測値を示す。
Further, as shown in FIG. 3 (b), since the measurement position (moving distance Y) is set to the position where the variation (standard deviation) of the measured values La and Lb is minimized, the final outer diameter is determined. Measurement accuracy can be further improved. 4 and 5
Shows the measured value.

【0045】図4は各レーザ距離計13a,13bを上
下移動させた場合の各レーザ距離計13a,13bから
得られる水平距離La,Lbと上下位置yとの関係を示
す実測図である。図示するように水平距離La,Lbの
最小位置を各基準位置Ra,Rbと設定している。
FIG. 4 is an actual measurement diagram showing the relationship between the horizontal distances La and Lb obtained from the laser rangefinders 13a and 13b and the vertical position y when the laser rangefinders 13a and 13b are moved up and down. As shown in the figure, the minimum positions of the horizontal distances La and Lb are set as the reference positions Ra and Rb.

【0046】図5は回転しながら移動している被測定管
体10の外径を連続測定した場合における補正後の測定
値DC の軸方向の各測定位置における変動量と、スチー
ル巻尺を用いて外周を測定して外周から外径を算出した
場合の変動量との比較を示す図である。図示するよう
に、実施例装置においては、スチール巻尺を用いた手動
測定値にほぼ対応した測定値が得られることが実証され
た。次に、他の実施例の管体の外径測定装置を説明す
る。なお、この実施例装置のハード構成は図1に示す上
述した実施例装置と同じである。異なる所は演算処理部
16におけるソフト的な測定動作である。この実施例装
置の測定動作を説明する。 (1)の測定動作は先の実施例における(1)の測定動
作と同じである。
FIG. 5 shows the variation of the corrected measured value D C at each measuring position in the axial direction when continuously measuring the outer diameter of the pipe 10 to be measured which is rotating and the steel tape measure is used. It is a figure showing comparison with the amount of fluctuation when measuring the outer circumference and calculating the outer diameter from the outer circumference. As shown in the figure, it was proved that in the example apparatus, the measured value substantially corresponding to the manual measured value using the steel tape measure was obtained. Next, a pipe outer diameter measuring device of another embodiment will be described. The hardware configuration of this embodiment apparatus is the same as that of the above-described embodiment apparatus shown in FIG. The different point is the software-like measurement operation in the arithmetic processing unit 16. The measurement operation of the apparatus of this embodiment will be described. The measurement operation of (1) is the same as the measurement operation of (1) in the previous embodiment.

【0047】(2) レーザ距離計13a,13bを上
下リニアガイド11a,11bに沿って下端位置から連
続的に上方へ移動させていき、この移動過程で各レーザ
距離計13a,13bから得られる各水平距離La,L
aを読取る。 (3) 最も小さい各水平距離La,Laが得られる上
下位置を基準位置Ra,Rbと決定する。 (4) 記憶部に記憶された図3(b)に示す補正曲線
Cにおける基準位置(y=0)を横切る移動距離YP
読取る。
(2) The laser rangefinders 13a and 13b are continuously moved upward from the lower end position along the upper and lower linear guides 11a and 11b, and in the course of this movement, the laser rangefinders 13a and 13b obtain each. Horizontal distance La, L
Read a. (3) The vertical positions at which the smallest horizontal distances La, La are obtained are determined as the reference positions Ra, Rb. (4) The moving distance Y P across the reference position (y = 0) in the correction curve C shown in FIG. 3B stored in the storage unit is read.

【0048】(5) 次に、一方のレーザ距離計13a
を基準位置Ra(y=0)から上方に移動距離YP 分移
動させて測定位置(Xa,Ya)に位置させる。同時
に、他方のレーザ距離計13bを基準位置Raから下方
に移動距離YP 分移動させて測定位置(Xb,Yb)に
位置させる。 (6) この状態で各レーザ距離計13a,13bにて
被測定管体10までの水平距離La,Lbを測定する。
(5) Next, one laser rangefinder 13a
Is moved upward from the reference position Ra (y = 0) by the movement distance Y P to be positioned at the measurement position (Xa, Ya). At the same time, the other laser range finder 13b is moved downward from the reference position Ra by the movement distance Y P to be positioned at the measurement position (Xb, Yb). (6) In this state, the laser distance meters 13a and 13b measure the horizontal distances La and Lb to the pipe 10 to be measured.

【0049】(7) 測定された各水平距離La,Lb
と各レーザ距離計13a,13bの二次元位置(Xa,
Ya),(Xb,Yb)の幾何学的関係から(6) 式を用
いて被測定管体10の外径Dを算出する。 D=[{(Xa−La)−(Xb+Lb)}2 +(Ya−Yb)2 1/2 …(6)
(7) Measured horizontal distances La and Lb
And the two-dimensional position of each laser rangefinder 13a, 13b (Xa,
The outer diameter D of the pipe body 10 to be measured is calculated using the equation (6) from the geometrical relationship of (Ya) and (Xb, Yb). D = [{(Xa-La)-(Xb + Lb)} 2 + (Ya-Yb) 2 ] 1/2 … (6)

【0050】この場合、各水平距離La,Lbは図2に
おける真円形状Aと楕円形状Bとの交点P,Qに対向て
しいるので、上述した実施例における補正演算処理を実
行する必要がない。
In this case, since the horizontal distances La and Lb face the intersection points P and Q of the perfect circle shape A and the elliptical shape B in FIG. 2, it is necessary to execute the correction calculation process in the above-mentioned embodiment. Absent.

【0051】このように構成された管体の外径測定装置
においても、自重によりたわんだ状態の被測定管体10
におけるたわみが発生していないと仮定した場合の正し
い外径が精度良く測定できるので、上述した実施例とほ
ぼ同様の効果を得ることが可能である。
Even in the outer diameter measuring device for a tubular body constructed as described above, the tubular body 10 to be measured in a state of being bent by its own weight.
Since it is possible to accurately measure the correct outer diameter when it is assumed that the deflection does not occur, it is possible to obtain substantially the same effect as the above-described embodiment.

【0052】[0052]

【発明の効果】以上説明したように本発明の管体の外径
測定方法および管体の外径測定装置によれば、被測定管
体が偏平状にたわんだ場合の断面形状曲線がたわみが生
じていないと仮定した真円と交差することを利用して、
被測定管体の外径を測定するための距離計の設置位置を
たわみの影響が少ない位置に設定している。したがっ
て、たとえ断面形状がたわんだとしても、自重によりた
わんだ状態の被測定管体におれるたわみが発生していな
いと仮定した場合の正しい外径を精度良く測定できる。
As described above, according to the method for measuring the outer diameter of a pipe and the apparatus for measuring an outer diameter of a pipe of the present invention, the bending of the cross-sectional shape curve when the pipe to be measured is bent flat Utilizing the fact that it intersects with a perfect circle that has not occurred,
The installation position of the range finder for measuring the outer diameter of the pipe to be measured is set to a position where the influence of deflection is small. Therefore, even if the cross-sectional shape is bent, it is possible to accurately measure the correct outer diameter when it is assumed that the measured pipe body is not bent due to its own weight.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係わる管体の外径測定方
法を適用した管体の外径測定装置の概略構成を示す模式
図。
FIG. 1 is a schematic diagram showing a schematic configuration of an outer diameter measuring device for a tube to which an outer diameter measuring method for a tube according to an embodiment of the present invention is applied.

【図2】 同測定方法の動作原理を説明するための図。FIG. 2 is a diagram for explaining the operating principle of the measurement method.

【図3】 同実施例装置に記憶されている補正曲線を示
す図。
FIG. 3 is a diagram showing a correction curve stored in the apparatus of the embodiment.

【図4】 同実施例装置の各レーザ距離計における測定
結果を示す図。
FIG. 4 is a diagram showing a measurement result in each laser range finder of the apparatus of the embodiment.

【図5】 同実施例装置で測定された外径の変動量と手
作業で測定した変動量との比較を示す図。
FIG. 5 is a view showing a comparison between a variation amount of the outer diameter measured by the apparatus of the embodiment and a variation amount manually measured.

【図6】 一般的なスパイラル鋼管の製造方法を示す模
式図。
FIG. 6 is a schematic view showing a method for manufacturing a general spiral steel pipe.

【図7】 従来の外径測定装置の概略構成を示す模式
図。
FIG. 7 is a schematic diagram showing a schematic configuration of a conventional outer diameter measuring device.

【図8】 同じく従来の外径測定装置の概略構成および
その問題点を説明するための図。
FIG. 8 is a diagram for explaining a schematic configuration of a conventional outer diameter measuring device and its problems.

【符号の説明】[Explanation of symbols]

10…被測定管体、11a,11b…上下リニアガイ
ド、12a.12b…水平リニアガイト、13a,13
b…レーザ距離計、14a.14b…リニアガイド制御
部、15a,15b…信号処理部、16…演算処理部、
17…入出力装置、18…基準管。
10 ... Tube to be measured, 11a, 11b ... Vertical linear guide, 12a. 12b ... Horizontal linear guides, 13a, 13
b ... Laser rangefinder, 14a. 14b ... Linear guide control unit, 15a, 15b ... Signal processing unit, 16 ... Arithmetic processing unit,
17 ... I / O device, 18 ... Reference tube.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被測定管体の断面を挟んで上下に移動可
能な一対の距離計を、前記被測定管体の材質,寸法等の
属性で定まる断面形状のたわみ曲線と真円とのあいだの
上下に離間した各交点またはその各近傍の各上下位置に
それぞれ位置決めし、この位置決めされた各位置で被測
定管体までの各水平距離を測定し、測定された各水平距
離と前記各距離計の幾何学的位置とから前記被測定管体
の外径を算出する管体の外径測定方法。
1. A pair of rangefinders, which can move up and down across the cross section of the pipe to be measured, are provided between a bending curve and a perfect circle of a cross sectional shape determined by attributes such as material and size of the pipe to be measured. Positioned at each vertical position of each intersection or its vicinity, which is separated from each other vertically, and measure each horizontal distance to the pipe to be measured at each of these positioned positions. A method for measuring an outer diameter of a tubular body, which comprises calculating the outer diameter of the tubular body to be measured from the geometrical position of the meter.
【請求項2】 被測定管体の断面を挟んで上下に移動自
在に支持され、前記被測定管体までの水平距離を測定す
る一対の距離計と、この各距離計を上下移動させがら測
定値が最低値を示す基準位置を決定する基準位置決定手
段と、前記被測定管体の材質,寸法等の属性で定まる断
面形状のたわみ曲線と真円との交点から前記基準位置ま
での上下移動距離を決定する移動距離決定手段と、前記
各距離計を前記基準位置から互いに反対方向に前記上下
移動距離だけ移動する距離計位置決め手段と、この位置
決めされた各距離計にて測定された各水平距離と前記各
距離計の幾何学的位置とから前記被測定管体の外径を算
出する外径算出手段とを備えた管体の外径測定装置。
2. A pair of distance meters, which are movably supported up and down across the cross section of the pipe to be measured, and which measure a horizontal distance to the pipe to be measured, and measurement while vertically moving each distance meter. Reference position determining means for determining the reference position showing the minimum value, and vertical movement from the intersection of the perfect curve and the bending curve of the cross-sectional shape determined by the properties such as the material and size of the pipe to be measured to the reference position. Moving distance determining means for determining a distance, distance meter positioning means for moving each of the distance meters in the opposite directions from the reference position by the vertical movement distance, and each horizontal position measured by each of the positioned distance meters. An outer diameter measuring device for a tubular body, comprising: an outer diameter calculating means for calculating an outer diameter of the tubular body to be measured from a distance and a geometrical position of each distance meter.
【請求項3】 被測定管体の断面を挟んで上下に移動自
在に支持され、前記被測定管体までの水平距離を測定す
る一対の距離計と、この各距離計を上下移動させがら測
定値が最低値を示す基準位置を決定する基準位置決定手
段と、前記各距離計を上下移動させがら測定値の誤差が
最低値を示す位置から前記基準位置までの上下移動距離
を決定する移動距離決定手段と、前記各距離計を前記基
準位置から互いに反対方向に前記上下移動距離だけ移動
する距離計位置決め手段と、この位置決めされた各距離
計にて測定された各水平距離と前記各距離計の幾何学的
位置とから前記被測定管体の外径を算出する外径算出手
段と、この外径算出手段にて算出された外径寸法を、前
記被測定管体の材質,寸法等の属性で定まる断面形状の
たわみ曲線と前記各測定値の測定位置とで定まる補正量
で補正する外径寸法補正手段とを備えた管体の外径測定
装置。
3. A pair of distance meters, which are movably supported up and down across the cross section of the pipe to be measured, and which measure the horizontal distance to the pipe to be measured, and measurement while vertically moving each distance meter. A reference position determining means for determining a reference position showing a minimum value, and a moving distance for determining a vertical movement distance from the position where the error of the measurement value shows the minimum value while vertically moving each distance meter to the reference position. Determining means, distance meter positioning means for moving each of the distance meters in the opposite directions from each other by the vertical movement distance, each horizontal distance measured by each of the positioned distance meters, and each distance meter. The outer diameter calculation means for calculating the outer diameter of the pipe to be measured from the geometrical position of, and the outer diameter dimension calculated by this outer diameter calculation means Deflection curve of cross-sectional shape determined by attributes and each of the above An outer diameter measuring device for a tubular body, comprising an outer diameter dimension correcting means for correcting the measured value with a correction amount determined by the measurement position.
JP4938593A 1993-03-10 1993-03-10 Method and apparatus for measuring outer diameter of tubular body Pending JPH06258034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4938593A JPH06258034A (en) 1993-03-10 1993-03-10 Method and apparatus for measuring outer diameter of tubular body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4938593A JPH06258034A (en) 1993-03-10 1993-03-10 Method and apparatus for measuring outer diameter of tubular body

Publications (1)

Publication Number Publication Date
JPH06258034A true JPH06258034A (en) 1994-09-16

Family

ID=12829559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4938593A Pending JPH06258034A (en) 1993-03-10 1993-03-10 Method and apparatus for measuring outer diameter of tubular body

Country Status (1)

Country Link
JP (1) JPH06258034A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916830A2 (en) 1997-11-14 1999-05-19 Toyota Jidosha Kabushiki Kaisha Pilot injection control apparatus for an internal combustion engine
JP2012197165A (en) * 2011-03-23 2012-10-18 Nisshin Steel Co Ltd Coil recognizing device
JP2014240116A (en) * 2013-06-12 2014-12-25 株式会社Ihi Mark-off display device and method
JP2016020850A (en) * 2014-07-15 2016-02-04 新日鐵住金株式会社 Coil inner circumferential hole deformation volume measuring apparatus and coil inner circumferential hole deformation volume measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916830A2 (en) 1997-11-14 1999-05-19 Toyota Jidosha Kabushiki Kaisha Pilot injection control apparatus for an internal combustion engine
JP2012197165A (en) * 2011-03-23 2012-10-18 Nisshin Steel Co Ltd Coil recognizing device
JP2014240116A (en) * 2013-06-12 2014-12-25 株式会社Ihi Mark-off display device and method
JP2016020850A (en) * 2014-07-15 2016-02-04 新日鐵住金株式会社 Coil inner circumferential hole deformation volume measuring apparatus and coil inner circumferential hole deformation volume measuring method

Similar Documents

Publication Publication Date Title
JP5480165B2 (en) Method for inspecting and controlling a roll bending machine that continuously bends elongated workpieces with various radii of curvature, and a machine so controlled
JPH06258034A (en) Method and apparatus for measuring outer diameter of tubular body
US20050044963A1 (en) High-resolution gas gauge proximity sensor
JPH0367573B2 (en)
JP2010071778A (en) Apparatus for measuring outer diameter of large diameter tube
GB2197477A (en) Diametral variation determination for workpieces
JP2009063541A (en) Geometric quantity measurement method and device
JPH0465610A (en) Shape measuring instrument for tube body
KR20020015328A (en) Methods for production of continuous stretches of circular cylindrical members, tools, use of a tool, a length of pipe and pipe parts
JP4644190B2 (en) Curvature radius measuring device
JP2011013160A (en) Method and device for manufacturing welded h-shaped steel
JPH07318301A (en) Method and device for measuring uneven wall thickness of cylindrical body
JPH05164548A (en) Method of measuring degree of steepness
JPH0462001B2 (en)
CN116608770A (en) Method for detecting coil winding precision of steel coil
JP2525264B2 (en) Measuring method for bending amount of long material such as pipe or round bar
JP2021047134A (en) Thickness measurement system
JP3010885B2 (en) H-section steel web height measuring method and measuring device
JP2024022810A (en) Shape measurement method for shape steel and manufacturing method for shape steel
JPH0942904A (en) Method of measuring inner diameter of pipe
JPH07311031A (en) Method and device for measuring roll profile
JPS61259113A (en) Method for measuring bend and out of roundness of tubular rod material
JPH0655614A (en) Device and method for measuring thickness of sheet-shaped component
CN115727777A (en) Method for measuring radian of fan-shaped section of continuous casting machine
JP2002122401A (en) Pipe ruler