JP2014240116A - Mark-off display device and method - Google Patents

Mark-off display device and method Download PDF

Info

Publication number
JP2014240116A
JP2014240116A JP2013123940A JP2013123940A JP2014240116A JP 2014240116 A JP2014240116 A JP 2014240116A JP 2013123940 A JP2013123940 A JP 2013123940A JP 2013123940 A JP2013123940 A JP 2013123940A JP 2014240116 A JP2014240116 A JP 2014240116A
Authority
JP
Japan
Prior art keywords
cylindrical member
cylindrical
ruled line
angle
targets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013123940A
Other languages
Japanese (ja)
Other versions
JP6136608B2 (en
Inventor
良男 濱本
Yoshio Hamamoto
良男 濱本
晋作 新玉
Shinsaku Aratama
晋作 新玉
雄一 高濱
Yuichi Takahama
雄一 高濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2013123940A priority Critical patent/JP6136608B2/en
Publication of JP2014240116A publication Critical patent/JP2014240116A/en
Application granted granted Critical
Publication of JP6136608B2 publication Critical patent/JP6136608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mark-off display device and method capable of correctly displaying a position to be marked off even in a case where the cylindrical member deforms due to self-weight in performing mark-off in a state that a cylindrical member is placed in a horizontal state.SOLUTION: A mark-off display device 1 for displaying a position B to be marked off to a cylindrical member 100 comprises: a measurement part for measuring an end surface shape of the cylindrical member 100 which is deformed due to self-weight when the cylindrical member 100 is placed in a horizontal state; a calculation part for determining a corrected angle θ' which is corrected according to deformation of the cylindrical member 100 by determining the peripheral length of the cylindrical member 100 and a cylindrical center G, and converting an angle from the cylindrical center G of the cylindrical member 100 into a ratio of the peripheral length; and a display part for displaying the position B to be marked off to the cylindrical member 100 by laser beam L on the basis of the corrected angle θ'.

Description

本発明は、円筒部材に罫書する位置を表示する罫書表示装置及び罫書表示方法に関する。   The present invention relates to a ruled line display device and a ruled line display method for displaying a position of a ruled line on a cylindrical member.

通常、鋼鉄製のタンク(容器)は、円筒状の胴部(円筒部材)を有している。タンクの胴部には、例えばノズルやピンなどの付属物が溶接等により取り付けられる。このため、付属物を取り付ける前には、付属物の取付位置を胴部に書き入れるための罫書と呼ばれる作業を行う必要がある。   Usually, a steel tank (container) has a cylindrical body (cylindrical member). For example, accessories such as nozzles and pins are attached to the body of the tank by welding or the like. For this reason, before attaching an accessory, it is necessary to perform a work called a ruled line for writing the attachment position of the accessory into the body.

従来の罫書作業では、作業者が胴部の内周又は外周の周長をメジャーで計測し、罫書する位置を決定していた。しかしながら、このような手作業では正確さに欠けるため、罫書を正確に行える方法が望まれている。   In the conventional ruler work, an operator measures the inner circumference or the outer circumference of the body part with a measure to determine the position of the ruler. However, since such a manual operation lacks accuracy, a method for accurately making a ruled line is desired.

特開2010−038892号公報JP 2010-038882 A 特開2011−220816号公報JP 2011-220816 A 特開2008−157635号公報JP 2008-157635 A 特開2006−266910号公報JP 2006-266910 A 特開2003−057191号公報JP 2003-057191 A

そこで、本発明者らは、円筒部材に罫書する位置をレーザープロジェクターを用いて表示する方法を提案する。通常、レーザープロジェクターは、正確な位置がわかっている複数のターゲットから、三次元的に自身の位置を求め、罫書する位置と距離とを自身の位置から換算して求めた後、レーザー光の照射により任意形状の線又は文字を高速で描き、あたかも連続した線であるかのように表示を行う。   In view of this, the present inventors propose a method of displaying the position of the ruled line on the cylindrical member using a laser projector. Usually, a laser projector obtains its position three-dimensionally from a plurality of targets whose exact positions are known, and after obtaining the position and distance of markings from its own position, laser irradiation is performed. Draw a line or character of any shape at high speed, and display it as if it were a continuous line.

ところで、大型のタンクの場合、工場内の設備の制約から胴部を横置きした状態で罫書作業を行うことが多い。しかしながら、胴部を横置きした場合は、自重により胴部が変形し、真円から扁平状の歪みを生じさせることになる。この場合、ターゲットの位置がずれてしまうため、真円を想定した単純な角度位置だけでは単位角度当たりの円弧の長さが水平方向と鉛直方向で異なるために、レーザープロジェクターを用いて罫書する位置を正確に表示することができなくなる。このことがレーザープロジェクターを用いた罫書表示の実用化を困難にしていた。   By the way, in the case of a large tank, the ruled line work is often performed in a state in which the body portion is placed horizontally due to restrictions of equipment in the factory. However, when the trunk portion is placed horizontally, the trunk portion is deformed by its own weight, and a flat distortion is generated from a perfect circle. In this case, the position of the target is shifted, and the length of the arc per unit angle is different between the horizontal direction and the vertical direction only with a simple angular position assuming a perfect circle. Cannot be displayed accurately. This made it difficult to put a ruled-line display using a laser projector into practical use.

本発明は、このような従来の事情に鑑みて提案されたものであり、円筒部材を横置きした状態で罫書を行う際に、この円筒部材が自重により変形した場合でも、罫書する位置を正確に表示できる罫書表示装置及び罫書表示方法を提供することを目的とする。   The present invention has been proposed in view of such a conventional situation, and when a ruler is formed in a state where the cylindrical member is placed horizontally, the position of the ruler is accurately determined even when the cylindrical member is deformed by its own weight. It is an object to provide a ruled line display device and a ruled line display method that can be displayed on the screen.

本発明は、以下の手段を提供する。
(1) 円筒部材に罫書する位置を表示する罫書表示装置であって、
前記円筒部材を横置きしたときに自重により変形した前記円筒部材の端面形状を測定する測定部と、
前記円筒部材の端面形状から前記円筒部材の周長及び円筒中心を求め、前記円筒部材の円筒中心からの角度を前記周長の比に換算し、前記変形に合わせて補正された角度を求める演算部と、
前記補正された角度に基づいて、前記円筒部材に罫書する位置をレーザー光で表示する表示部とを備えることを特徴とする円筒部材の罫書表示装置。
(2) 前記測定部は、前記円筒部材の端面に複数のターゲットを並べて配置し、これら複数のターゲットの位置を測定し、
前記演算部は、前記複数のターゲットの位置情報から前記円筒部材の端面形状を近似曲線として求め、この近似曲線から前記円筒部材の周長及び円筒中心を計算により求めることを特徴とする前記(1)に記載の円筒部材の罫書表示装置。
(3) 前記測定部は、前記ターゲットの位置を測定する三次元計測器を含むことを特徴とする前記(2)に記載の円筒部材の罫書表示装置。
(4) 前記表示部は、前記円筒部材の端面、若しくは内周面又は外周面に前記レーザー光を照射し、前記罫書する位置に罫書線を表示することを特徴とする前記(1)〜(3)の何れか一項に記載の円筒部材の罫書表示装置。
(5) 円筒部材に罫書する位置を表示する罫書表示方法であって、
前記円筒部材を横置きしたときに自重により変形した前記円筒部材の端面形状を測定する測定ステップと、
前記円筒部材の端面形状から前記円筒部材の周長及び円筒中心を求め、前記円筒部材の円筒中心からの角度を前記周長の比に換算し、前記変形に合わせて補正された角度を求める演算ステップと、
前記補正された角度に基づいて、前記円筒部材に罫書する位置をレーザー光で表示する表示ステップとを含むことを特徴とする円筒部材の罫書表示方法。
(6) 前記測定ステップにおいて、前記円筒部材の端面に複数のターゲットを並べて配置し、これら複数のターゲットの位置を測定し、
前記演算ステップにおいて、前記複数のターゲットの位置情報から前記円筒部材の端面形状を近似曲線として求め、この近似曲線から前記円筒部材の周長及び円筒中心を計算により求めることを特徴とする前記(5)に記載の円筒部材の罫書表示方法。
(7) 前記測定ステップにおいて、前記ターゲットの位置を三次元計測器を用いて測定することを特徴とする前記(6)に記載の円筒部材の罫書表示方法。
(8) 前記表示ステップにおいて、前記円筒部材の端面、若しくは内周面又は外周面に前記レーザー光を照射し、前記罫書する位置に罫書線を表示することを特徴とする前記(5)〜(7)の何れか一項に記載の円筒部材の罫書表示方法。
The present invention provides the following means.
(1) A ruled line display device for displaying a position for marking on a cylindrical member,
A measuring unit for measuring the end surface shape of the cylindrical member deformed by its own weight when the cylindrical member is placed horizontally;
An operation for obtaining the circumferential length and the cylindrical center of the cylindrical member from the end face shape of the cylindrical member, converting the angle from the cylindrical center of the cylindrical member to the ratio of the circumferential length, and obtaining an angle corrected according to the deformation. And
A cylindrical member ruler mark display device comprising: a display unit that displays a position of a ruled mark on the cylindrical member with a laser beam based on the corrected angle.
(2) The measurement unit arranges a plurality of targets side by side on the end face of the cylindrical member, measures the positions of the plurality of targets,
The calculation unit obtains the end surface shape of the cylindrical member as an approximate curve from the position information of the plurality of targets, and obtains the circumference of the cylindrical member and the center of the cylinder by calculation from the approximate curve. ) Is a cylindrical member ruled line display device.
(3) The ruler display device for a cylindrical member according to (2), wherein the measurement unit includes a three-dimensional measuring instrument that measures the position of the target.
(4) Said display part irradiates said laser beam to the end surface of said cylindrical member, or an inner peripheral surface or an outer peripheral surface, and displays a ruled line in the said ruled position, (1)-(characteristics) 3) The ruler display device for cylindrical members according to any one of the above items.
(5) A ruled line display method for displaying a position of a ruled line on a cylindrical member,
A measuring step for measuring an end face shape of the cylindrical member deformed by its own weight when the cylindrical member is placed horizontally;
An operation for obtaining the circumferential length and the cylindrical center of the cylindrical member from the end face shape of the cylindrical member, converting the angle from the cylindrical center of the cylindrical member to the ratio of the circumferential length, and obtaining an angle corrected according to the deformation. Steps,
And a display step of displaying a position to be marked on the cylindrical member with a laser beam based on the corrected angle.
(6) In the measurement step, a plurality of targets are arranged side by side on the end face of the cylindrical member, and the positions of the plurality of targets are measured,
In the calculating step, the end face shape of the cylindrical member is obtained as an approximate curve from the position information of the plurality of targets, and the circumferential length and cylindrical center of the cylindrical member are obtained by calculation from the approximate curve. The method for displaying a ruled sheet of a cylindrical member as described in).
(7) In the measurement step, the position of the target is measured using a three-dimensional measuring instrument, and the ruler display method for cylindrical members according to (6) above,
(8) In the display step, the laser beam is irradiated on an end surface, an inner peripheral surface, or an outer peripheral surface of the cylindrical member, and a ruled line is displayed at the position to be marked. 7) The ruler display method for the cylindrical member according to any one of 7).

以上のように、本発明によれば、円筒部材を横置きした状態で罫書を行う際に、円筒部材が自重により変形した場合でも、罫書する位置を正確に表示できる罫書表示装置及び罫書表示方法を提供することが可能である。   As described above, according to the present invention, a ruled line display device and a ruled line display method capable of accurately displaying the position of a ruled line, even when the cylindrical member is deformed by its own weight when performing a ruled line while the cylindrical member is placed horizontally. Can be provided.

レーザープロジェクターの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of a laser projector. レーザープロジェクターの使用形態を示す斜視図である。It is a perspective view which shows the usage type of a laser projector. 横置きされた円筒部材の形状を近似曲線で表した模式図である。It is the schematic diagram which represented the shape of the cylindrical member placed horizontally by the approximate curve. 円筒部材の周長を求める手順を示すフローチャートである。It is a flowchart which shows the procedure which calculates | requires the perimeter of a cylindrical member. 円筒部材の円筒中心を求める手順を示すフローチャートである。It is a flowchart which shows the procedure which calculates | requires the cylinder center of a cylindrical member. 同、円筒部材の円筒中心を求める手順を示すフローチャートである。It is a flowchart which shows the procedure which calculates | requires the cylindrical center of a cylindrical member similarly. 罫書する位置を求める手順を示すフローチャートである。It is a flowchart which shows the procedure which calculates | requires the position which scribes. 同、罫書する位置を求める手順を示すフローチャートである。It is a flowchart which shows the procedure which calculates | requires the position which cuts out a ruled line similarly. 円筒部材の内周面に罫書線を表示する場合を示す斜視図である。It is a perspective view which shows the case where a ruled line is displayed on the internal peripheral surface of a cylindrical member. 円筒部材の外周面に罫書線を表示する場合を示す斜視図である。It is a perspective view which shows the case where a ruled line is displayed on the outer peripheral surface of a cylindrical member.

以下、本発明を適用した円筒部材の罫書表示方法及び罫書表示装置について、図面を参照して詳細に説明する。
なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を模式的に示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
Hereinafter, a ruled-line display method and a ruled-line display device for a cylindrical member to which the present invention is applied will be described in detail with reference to the drawings.
In the drawings used in the following description, in order to make the features easy to understand, there are cases in which the portions that become the features are schematically shown for convenience, and the dimensional ratios of the respective components are not always the same as the actual ones. Absent.

(罫書表示装置)
先ず、本発明を適用した罫書表示装置として、例えば図1及び図2に示すレーザープロジェクター1について説明する。
なお、図1は、レーザープロジェクター1の概略構成を示すブロック図である。図2は、レーザープロジェクター1の使用形態を示す斜視図である。
(Ruled line display device)
First, for example, a laser projector 1 shown in FIGS. 1 and 2 will be described as a ruled line display device to which the present invention is applied.
FIG. 1 is a block diagram showing a schematic configuration of the laser projector 1. FIG. 2 is a perspective view showing how the laser projector 1 is used.

レーザープロジェクター1は、図1及び図2に示すように、円筒部材100に罫書する際の罫書する位置Bをレーザー光Lで表示するものである。具体的に、このレーザープロジェクター1は、測定部2と、測定部2と電気的に接続された演算部3と、演算部3と電気的に接続された表示部4とを概略備えて構成されている。なお、レーザープロジェクター1は、横置きされた円筒部材100に対して測定及び表示が可能な位置に予め据え置きされている。   As shown in FIGS. 1 and 2, the laser projector 1 displays a position B for scoring on the cylindrical member 100 with a laser beam L. Specifically, the laser projector 1 includes a measurement unit 2, a calculation unit 3 electrically connected to the measurement unit 2, and a display unit 4 electrically connected to the calculation unit 3. ing. The laser projector 1 is placed in advance at a position where measurement and display can be performed with respect to the horizontally placed cylindrical member 100.

測定部2は、円筒部材100を横置きしたときに自重により変形した円筒部材100の端面形状を測定する。具体的に、この測定部2は、円筒部材100の端面100aに複数のターゲットTを配置した状態で、これら複数のターゲットTの位置を測定する。   The measuring unit 2 measures the end face shape of the cylindrical member 100 that is deformed by its own weight when the cylindrical member 100 is placed horizontally. Specifically, the measurement unit 2 measures the positions of the plurality of targets T in a state where the plurality of targets T are arranged on the end surface 100 a of the cylindrical member 100.

複数のターゲットTは、円筒部材100の端面100aにおいて同一円周上に並ぶように配置される。本実施形態では、円筒部材100の端面100aのうち、厚み方向の中央部に各ターゲットTが位置するように配置されている。なお、ターゲットTの配置については、このような配置に限らず、円筒部材100の端面100aのうち、内周面100b又は外周面100cに沿った位置に配置することも可能である。また、ターゲットTの数については、円筒部材100の端面100aの形状を測定するのに十分な数のターゲットTを配置すればよい。   The plurality of targets T are arranged on the same circumference in the end surface 100 a of the cylindrical member 100. In the present embodiment, each target T is disposed so as to be located at the center in the thickness direction of the end surface 100 a of the cylindrical member 100. In addition, about arrangement | positioning of the target T, it is also possible to arrange | position not only in such an arrangement | positioning but in the position along the inner peripheral surface 100b or the outer peripheral surface 100c among the end surfaces 100a of the cylindrical member 100. As for the number of targets T, a sufficient number of targets T may be disposed to measure the shape of the end surface 100a of the cylindrical member 100.

測定部2は、横置きされた円筒部材100の測定対象となるターゲットTに対して測定光L’を照射し、当該ターゲットTから反射して戻ってくる測定光L’を受光することによって、当該ターゲットTの位置を測定する。   The measurement unit 2 irradiates the measurement light L ′ to the target T that is a measurement target of the horizontally placed cylindrical member 100 and receives the measurement light L ′ that is reflected and returned from the target T. The position of the target T is measured.

演算部3は、例えばコンピュータ等を用いて、測定部2が測定した円筒部材100の端面形状から、円筒部材100の周長及び円筒中心Gを求める。具体的に、この演算部3は、複数のターゲットTの位置情報から円筒部材100の形状を近似曲線Cとして求め、この近似曲線Cから円筒部材100の周長及び円筒中心Gを計算により求める。さらに、演算部3は、円筒部材100の円筒中心Gからの角度を周長の比に換算し、円筒部材100の変形に合わせて補正された角度θ’を求める。なお、角度θ’は、円筒中心Gを中心とした角度であり、基準となるターゲートAから罫書する位置Bまでの角度として表される。   The computing unit 3 obtains the circumferential length of the cylindrical member 100 and the cylindrical center G from the end surface shape of the cylindrical member 100 measured by the measuring unit 2 using, for example, a computer. Specifically, the calculation unit 3 obtains the shape of the cylindrical member 100 from the position information of the plurality of targets T as the approximate curve C, and obtains the circumference of the cylindrical member 100 and the cylindrical center G from the approximate curve C by calculation. Further, the calculation unit 3 converts the angle from the cylindrical center G of the cylindrical member 100 into a ratio of the circumferential length, and obtains an angle θ ′ corrected in accordance with the deformation of the cylindrical member 100. Note that the angle θ ′ is an angle centered on the cylindrical center G, and is expressed as an angle from the reference targate A to the ruled position B.

表示部4は、例えば半導体レーザー等を用いて、罫書する位置Bをレーザー光Lで表示する。具体的に、表示部4は、円筒部材100の変形に合わせて補正された角度θ’に基づいて、円筒部材100の端面100aにレーザー光Lを照射する。これにより、円筒部材100の端面100aには、罫書する位置Bに沿って罫書線Sが表示される。   The display unit 4 displays the position B to be marked with the laser beam L using, for example, a semiconductor laser. Specifically, the display unit 4 irradiates the end surface 100 a of the cylindrical member 100 with the laser light L based on the angle θ ′ corrected according to the deformation of the cylindrical member 100. Thereby, the ruled line S is displayed on the end surface 100a of the cylindrical member 100 along the position B where the ruled line is drawn.

以上のような構成を備えるレーザープロジェクター1では、円筒部材100を横置きした状態で罫書を行う際に、この円筒部材100が自重により変形した場合でも、罫書する位置Bを正確に表示することが可能である。   In the laser projector 1 having the above-described configuration, when the ruler is made in a state where the cylindrical member 100 is placed horizontally, even when the cylindrical member 100 is deformed by its own weight, the position B where the ruler is drawn can be accurately displayed. Is possible.

(罫書表示方法)
次に、本発明を適用した罫書表示方法として、上記レーザープロジェクター1を用いて、横置きの円筒部材100に罫書する位置Bを表示する場合を例に挙げて説明する。
(Ruled line display method)
Next, as a ruled line display method to which the present invention is applied, a case where the laser projector 1 is used to display the position B where the ruled line is placed on the horizontal cylindrical member 100 will be described as an example.

本発明を適用した罫書表示方法は、円筒部材100を横置きしたときに自重により変形した円筒部材100の端面形状を測定する測定ステップと、円筒部材100の端面形状から円筒部材100の周長及び円筒中心Gを求め、円筒部材100の円筒中心Gからの角度を周長の比に換算し、円筒部材100の変形に合わせて補正された角度θ’を求める演算ステップと、補正された角度θ’に基づいて、円筒部材100に罫書する位置Bをレーザー光Lで表示する表示ステップとを含むことを特徴とする。   The ruled line display method to which the present invention is applied includes a measuring step of measuring the end surface shape of the cylindrical member 100 deformed by its own weight when the cylindrical member 100 is placed horizontally, the circumferential length of the cylindrical member 100 from the end surface shape of the cylindrical member 100, and A calculation step of obtaining the cylindrical center G, converting the angle of the cylindrical member 100 from the cylindrical center G into a ratio of the circumference, obtaining an angle θ ′ corrected in accordance with the deformation of the cylindrical member 100, and the corrected angle θ And a display step of displaying a position B on the cylindrical member 100 with a laser beam L.

具体的には、先ず、測定ステップにおいては、円筒部材100の端面100aに複数のターゲットTを並べて配置し、上記レーザープロジェクター1を用いて、これら複数のターゲットTの位置を測定する。本実施形態では、例えば図3に示すように、円筒部材100の端面100aのうち、厚み方向の中央部に20個のターゲットT1〜T20が等間隔に並ぶように配置した。なお、図3は、横置きされた円筒部材100の端面形状を近似曲線Cで表した模式図である。   Specifically, first, in the measurement step, a plurality of targets T are arranged side by side on the end surface 100 a of the cylindrical member 100, and the positions of the plurality of targets T are measured using the laser projector 1. In the present embodiment, for example, as shown in FIG. 3, 20 targets T <b> 1 to T <b> 20 are arranged at equal intervals in the central portion in the thickness direction of the end surface 100 a of the cylindrical member 100. FIG. 3 is a schematic diagram showing the end face shape of the horizontally placed cylindrical member 100 as an approximate curve C. FIG.

本実施形態では、図3に示すように、ターゲットT3を基準ターゲットAとし、この基準ターゲットAから反時計方向に角度θだけ離れた位置B(xB,yB)に罫書線Sを表示する場合を例示する。   In the present embodiment, as shown in FIG. 3, the target T3 is set as the reference target A, and the ruled line S is displayed at a position B (xB, yB) that is separated from the reference target A by an angle θ in the counterclockwise direction. Illustrate.

なお、角度θは、円筒部材100を真円としたときの円筒中心Gからの角度を意味する。一方、図3に示すように、横置きされた円筒部材100が自重により変形した場合の円筒中心Gからの角度は、実際は補正された角度θ’となるが、図3では、真円に相当する角度θとして表すものとする。   Note that the angle θ means an angle from the cylindrical center G when the cylindrical member 100 is a perfect circle. On the other hand, as shown in FIG. 3, the angle from the cylinder center G when the horizontally placed cylindrical member 100 is deformed by its own weight is actually the corrected angle θ ′, but in FIG. 3, it corresponds to a perfect circle. It is expressed as an angle θ.

次に、演算ステップにおいては、ターゲットT1〜T20の位置情報から円筒部材100の端面形状を近似曲線Cとして求め、この近似曲線Cから円筒部材100の周長及び円筒中心Gを計算により求める。   Next, in the calculation step, the end face shape of the cylindrical member 100 is obtained as an approximate curve C from the position information of the targets T1 to T20, and the circumferential length and the cylindrical center G of the cylindrical member 100 are obtained from the approximate curve C by calculation.

具体的に、本実施形態では、図3に示すように、上記レーザープロジェクター1の測定光L’の照射位置O(x0,y0)を中心としたXY座標を設定し、各ターゲットT1〜T20を結ぶ近似曲線Cを求める。   Specifically, in this embodiment, as shown in FIG. 3, XY coordinates centering on the irradiation position O (x0, y0) of the measurement light L ′ of the laser projector 1 are set, and each of the targets T1 to T20 is set. An approximate curve C to be connected is obtained.

近似曲線Cを求める際は、ターゲットT1(x1,y1)からターゲットT6(x2,y2)に至る第1の領域E1と、ターゲットT6(x2,y2)からターゲットT11(x3,y3)に至る第2の領域E2と、ターゲットT11(x3,y3)からターゲットT16(x4,y4)に至る第3の領域E3と、ターゲットT16(x4,y4)からターゲットT1(x1,y1)に至る第4の領域E4とに4分割する。   When obtaining the approximate curve C, the first region E1 from the target T1 (x1, y1) to the target T6 (x2, y2) and the first region E1 from the target T6 (x2, y2) to the target T11 (x3, y3). The second region E2, the third region E3 from the target T11 (x3, y3) to the target T16 (x4, y4), and the fourth region from the target T16 (x4, y4) to the target T1 (x1, y1). Divide into four areas E4.

これら4分割された領域E1〜E4の各ターゲットT1〜T6(T6〜T11,T11〜T16,T16〜T1)を結ぶ円弧は、5次の多項式で表した場合、下記式(1)〜(4)で表される。
E1:f(x)=a+ax+a+a+a+a …(1)
E2:g(y)=b+by+b+b+b+b …(2)
E3:f(x)=c+cx+c+c+c+c …(3)
E4:g(y)=d+dy+d+d+d+d …(4)
When the arcs connecting the targets T1 to T6 (T6 to T11, T11 to T16, T16 to T1) of the four divided regions E1 to E4 are expressed by a fifth order polynomial, the following formulas (1) to (4 ).
E1: f 1 (x) = a 1 + a 2 x + a 3 x 2 + a 4 x 3 + a 5 x 4 + a 6 x 5 (1)
E2: g 1 (y) = b 1 + b 2 y + b 3 y 2 + b 4 y 3 + b 5 y 4 + b 6 y 5 (2)
E3: f 2 (x) = c 1 + c 2 x + c 3 x 2 + c 4 x 3 + c 5 x 4 + c 6 x 5 (3)
E4: g 2 (y) = d 1 + d 2 y + d 3 y 2 + d 4 y 3 + d 5 y 4 + d 6 y 5 (4)

また、上記式(1)〜(4)で表される4つの円弧を最小二乗法により近似曲線に変換すると、下記式(1)’〜(4)’の近似式で表される。
E1:y=f(x) …(1)’
E2:x=g(y) …(2)’
E3:y=f(x) …(3)’
E4:x=g(y) …(4)’
When the four arcs represented by the above formulas (1) to (4) are converted into approximate curves by the least square method, they are represented by the following approximate formulas (1) ′ to (4) ′.
E1: y = f 1 (x) (1) ′
E2: x = g 1 (y) (2) ′
E3: y = f 2 (x) (3) ′
E4: x = g 2 (y) (4) ′

ここで、近似曲線CをX軸とY軸とが交差しない位置で4分割したのは、最小二乗法を適用するためである。また、第1の領域E1の近似式(1)’及び第3の領域E3の近似式(3)’をy=f(x)の関数で表し、第2の領域E2の近似式(2)’及び第4の領域E4の近似式(4)’をx=g(y)の関数で表した理由もそこにある。   Here, the reason why the approximate curve C is divided into four at a position where the X axis and the Y axis do not intersect is to apply the least square method. Further, the approximate expression (1) ′ of the first area E1 and the approximate expression (3) ′ of the third area E3 are expressed by a function y = f (x), and the approximate expression (2) of the second area E2 This is the reason why 'and the approximate expression (4) of the fourth region E4 are expressed by a function of x = g (y).

円筒部材100の近似曲線Cにおける周長をLLとしたとき、円筒部材100の近似曲線Cにおける周長LLは、下記式(5)により計算で求めることができる。本実施形態では、円筒部材100の近似曲線Cにおける周長LLを5次の多項式で表している。   When the circumferential length of the approximate curve C of the cylindrical member 100 is LL, the circumferential length LL of the approximate curve C of the cylindrical member 100 can be calculated by the following equation (5). In the present embodiment, the circumferential length LL of the approximate curve C of the cylindrical member 100 is represented by a fifth order polynomial.

Figure 2014240116
Figure 2014240116

円筒部材100の近似曲線Cにおける周長LLを求める際は、図4で示すフローチャートの手順に従って演算を行う。なお、図4中に示すDF1は、f(x)の微分式、すなわちf(x)が5次の多項式である場合、下記式(6)で表される。また、図4中に示すDG1は、g(y)の微分式、すなわちg(y)が5次の多項式である場合、下記式(7)で表される。また、図4中に示すDF2は、f(x)の微分式、すなわちf(x)が5次の多項式である場合、下記式(8)で表される。また、図4中に示すDG2は、g(y)の微分式、すなわちg(y)が5次の多項式である場合、下記式(9)で表される。
DF1:f’(x)=a+ax+a+a+a …(6)
DG1:g’(y)=b+by+b+b+b …(7)
DF2:f’(x)=c+cx+c+c+c …(8)
DG2:g’(y)=d+dy+d+d+d …(9)
When obtaining the circumference LL in the approximate curve C of the cylindrical member 100, the calculation is performed according to the procedure of the flowchart shown in FIG. Incidentally, DF1 shown in FIG. 4, the differential equation f 1 (x), that is, when f 1 (x) is a fifth order polynomial, represented by the following formula (6). DG1 shown in FIG. 4 is represented by the following equation (7) when g 1 (y) is a differential equation, that is, when g 1 (y) is a quintic polynomial. Also, DF2 shown in FIG. 4, the differential equation f 2 (x), that is, when f 2 (x) is a fifth order polynomial, represented by the following formula (8). Also, DG2 shown in Figure 4, the differential equation g 2 (y), that is, when g 2 (y) is a fifth order polynomial, represented by the following formula (9).
DF1: f 1 ′ (x) = a 2 + a 3 x + a 4 x 2 + a 5 x 3 + a 6 x 4 (6)
DG1: g 1 '(y) = b 2 + b 3 y + b 4 y 2 + b 5 y 3 + b 6 y 4 ... (7)
DF2: f 2 ′ (x) = c 2 + c 3 x + c 4 x 2 + c 5 x 3 + c 6 x 4 (8)
DG2: g 2 '(y) = d 2 + d 3 y + d 4 y 2 + d 5 y 3 + d 6 y 4 ... (9)

円筒中心G(xG,yG)を求める際は、図5及び図6に示すフローチャートの手順に従って演算を行う。なお、図5及び図6中に示すDは、近似曲線Cの刻みピッチを表し、Lは、この刻みピッチCに相当する円弧の長さを表す。   When obtaining the cylinder center G (xG, yG), the calculation is performed according to the procedures of the flowcharts shown in FIGS. 5 and FIG. 6, D represents the step pitch of the approximate curve C, and L represents the length of the arc corresponding to this step pitch C.

本実施形態では、円筒部材100の近似曲線Cを1度の刻みピッチで360分割し、1度に相当する円弧の長さLを近似式で表した後、この近似式から360点の座標を求め、各座標のX成分とY成分とを算術平均することによって、円筒部材100の円筒中心G(xG,yG)を求めた。   In the present embodiment, the approximate curve C of the cylindrical member 100 is divided into 360 at a pitch of 1 degree, the arc length L corresponding to 1 degree is expressed by an approximate expression, and then the coordinates of 360 points from this approximate expression are expressed. The cylindrical center G (xG, yG) of the cylindrical member 100 was determined by calculating and arithmetically averaging the X component and Y component of each coordinate.

基準ターゲットAから角度θに相当する円弧の長さをLTとしたとき、この円弧の長さLTは、下記式(10)により求めることができる。
LT=LL/360*θ …(10)
When the length of the arc corresponding to the angle θ from the reference target A is LT, the arc length LT can be obtained by the following formula (10).
LT = LL / 360 * θ (10)

罫書する位置B(xB,yB)を求める際は、図7及び図8に示すフローチャートの手順に従って演算を行う。具体的に、xBは、下記式(11)により求めることができる。   When obtaining the position B (xB, yB) for ruled writing, the calculation is performed according to the procedures of the flowcharts shown in FIGS. Specifically, xB can be obtained by the following equation (11).

Figure 2014240116
Figure 2014240116

yBは、罫書する位置Bが基準ターゲットAと同じ領域(第1の領域E1)にある場合、上記式(1)’にxBの演算結果を代入することによって、下記式(1)’’のように求まる。   yB is obtained by substituting the calculation result of xB into the above equation (1) ′ when the ruled position B is in the same region (first region E1) as the reference target A. It is obtained as follows.

yB=f(xB) …(1)’’ yB = f 1 (xB) (1) ″

一方、罫書する位置B(xB,yB)が第2の領域E2にある場合、yBは、下記式(12)により求めることができる。   On the other hand, when the position B (xB, yB) to be marked is in the second area E2, yB can be obtained by the following equation (12).

Figure 2014240116
Figure 2014240116

xBは、上記式(2)’にyBの演算結果を代入することによって、下記式(2)’’のように求まる。   xB is obtained by substituting the calculation result of yB into the above equation (2) 'as in the following equation (2)' '.

xB=g(yB) …(2)’’ xB = g 1 (yB) (2) ″

一方、罫書する位置B(xB,yB)が第3の領域E3にある場合、xBは、下記式(13)により求めることができる。   On the other hand, when the position B (xB, yB) for marking is in the third region E3, xB can be obtained by the following equation (13).

Figure 2014240116
Figure 2014240116

yBは、上記式(3)’にxBの演算結果を代入することによって、下記式(3)’’のように求まる。   yB is obtained by substituting the calculation result of xB into the above equation (3) 'as in the following equation (3)' '.

yB=f(xB) …(3)’’ yB = f 2 (xB) (3) ″

一方、罫書する位置B(xB,yB)が第4の領域E4にある場合、yBは、下記式(14)により求めることができる。   On the other hand, when the position B (xB, yB) for ruled writing is in the fourth area E4, yB can be obtained by the following equation (14).

Figure 2014240116
Figure 2014240116

xBは、上記式(4)’にyBの演算結果を代入することによって、下記式(4)’’のように求まる。   xB is obtained by substituting the calculation result of yB into the above equation (4) 'as in the following equation (4)' '.

xB=g(yB) …(4)’’ xB = g 2 (yB) (4) ″

なお、基準ターゲットAから時計方向に角度θだけ離れた位置B(xB,yB)に罫書線Sを表示する場合も、同様に求めることができる。この場合、時計方向に第1の領域E1、第4の領域E4、第3の領域E3、第2の領域E2の順で求めることができる。   In addition, when the ruled line S is displayed at the position B (xB, yB) that is separated from the reference target A by the angle θ in the clockwise direction, it can be similarly obtained. In this case, it can be obtained in the order of the first region E1, the fourth region E4, the third region E3, and the second region E2 in the clockwise direction.

次に、表示ステップにおいては、上記レーザープロジェクター1の表示部4により、円筒中心G(xG,yG)から罫書する位置B(xB,yB)に向けてレーザー光Lの照射を行い、円筒部材100の端面100aに適当な長さの罫書線Sを表示する。   Next, in the display step, the display unit 4 of the laser projector 1 irradiates the laser beam L from the cylindrical center G (xG, yG) toward the position B (xB, yB) where the ruled line is drawn, and the cylindrical member 100. A ruled line S having an appropriate length is displayed on the end face 100a.

また、円筒部材100の内周面100bに罫書線Sを表示する場合は、図9に示すように、近似曲線Cから内周面100bまでの距離aの分だけ、位置Bから円筒中心Gに向かって移動した点B’(xBa,yBa)を演算により求める。そして、この点B’から円筒部材100の軸方向に向かって、内周面100bに罫書線Sを表示する。   When the ruled line S is displayed on the inner peripheral surface 100b of the cylindrical member 100, as shown in FIG. 9, the distance B from the approximate curve C to the inner peripheral surface 100b is moved from the position B to the cylindrical center G. A point B ′ (xBa, yBa) that has moved in the direction is obtained by calculation. Then, a ruled line S is displayed on the inner peripheral surface 100b from the point B ′ toward the axial direction of the cylindrical member 100.

また、円筒部材100の外周面100cに罫書線Sを表示する場合は、図10に示すように、近似曲線Cから外周面100cまでの距離bの分だけ、位置Bから円筒中心Gとは反対側に向かって移動した点B’’(xBb,yBb)を演算により求める。そして、この点B’’から円筒部材100の軸方向に向かって、外周面100cに罫書線Sを表示する。   Further, when the ruled line S is displayed on the outer peripheral surface 100c of the cylindrical member 100, as shown in FIG. 10, the distance B from the approximate curve C to the outer peripheral surface 100c is opposite to the cylindrical center G from the position B. A point B ″ (xBb, yBb) moved toward the side is obtained by calculation. Then, a ruled line S is displayed on the outer peripheral surface 100 c from the point B ″ toward the axial direction of the cylindrical member 100.

以上のように、本発明によれば、例えば大型のタンク(容器)のように、円筒状の胴部(円筒部材)を横置きした状態で罫書作業を行う際に、胴部が自重により変形した場合であっても、罫書する位置を正確に表示することが可能である。   As described above, according to the present invention, when performing a ruler work with a cylindrical body (cylindrical member) placed horizontally, such as a large tank (container), the body is deformed by its own weight. Even in this case, it is possible to accurately display the position of the ruled line.

1…レーザープロジェクター(罫書表示装置) 2…測定部 3…演算部 4…表示部 100…円筒部材 100a…端面 100b…内周面 100c…外周面 T…ターゲット A…基準ターゲット B…罫書する位置 C…近似曲線 G…円筒中心 LL …周長 θ…真円に相当する角度 θ’…補正された角度   DESCRIPTION OF SYMBOLS 1 ... Laser projector (ruled line display apparatus) 2 ... Measuring part 3 ... Calculation part 4 ... Display part 100 ... Cylindrical member 100a ... End surface 100b ... Inner peripheral surface 100c ... Outer peripheral surface T ... Target A ... Reference target B ... Position where ruled mark C ... Approximate curve G ... Cylinder center LL ... Perimeter length θ ... An angle corresponding to a perfect circle θ '... A corrected angle

Claims (8)

円筒部材に罫書する位置を表示する罫書表示装置であって、
前記円筒部材を横置きしたときに自重により変形した前記円筒部材の端面形状を測定する測定部と、
前記円筒部材の端面形状から前記円筒部材の周長及び円筒中心を求め、前記円筒部材の円筒中心からの角度を前記周長の比に換算し、前記円筒部材の変形に合わせて補正された角度を求める演算部と、
前記補正された角度に基づいて、前記円筒部材に罫書する位置をレーザー光で表示する表示部とを備えることを特徴とする円筒部材の罫書表示装置。
A scribing display device for displaying a scribing position on a cylindrical member,
A measuring unit for measuring the end surface shape of the cylindrical member deformed by its own weight when the cylindrical member is placed horizontally;
Obtaining the circumference and cylindrical center of the cylindrical member from the end face shape of the cylindrical member, converting the angle from the cylindrical center of the cylindrical member into the ratio of the circumferential length, and correcting the angle according to the deformation of the cylindrical member An arithmetic unit for obtaining
A cylindrical member ruler mark display device comprising: a display unit that displays a position of a ruled mark on the cylindrical member with a laser beam based on the corrected angle.
前記測定部は、前記円筒部材の端面に複数のターゲットを並べて配置し、これら複数のターゲットの位置を測定し、
前記演算部は、前記複数のターゲットの位置情報から前記円筒部材の端面形状を近似曲線として求め、この近似曲線から前記円筒部材の周長及び円筒中心を計算により求めることを特徴とする請求項1に記載の円筒部材の罫書表示装置。
The measurement unit arranges a plurality of targets side by side on the end surface of the cylindrical member, measures the positions of the plurality of targets,
The calculation unit obtains an end face shape of the cylindrical member as an approximate curve from position information of the plurality of targets, and obtains a circumferential length and a cylindrical center of the cylindrical member from the approximate curve by calculation. A ruler display device for cylindrical members as described in 1.
前記測定部は、前記ターゲットの位置を測定する三次元計測器を含むことを特徴とする請求項2に記載の円筒部材の罫書表示装置。   The ruler display device for a cylindrical member according to claim 2, wherein the measuring unit includes a three-dimensional measuring instrument for measuring the position of the target. 前記表示部は、前記円筒部材の端面、若しくは内周面又は外周面に前記レーザー光を照射し、前記罫書する位置に罫書線を表示することを特徴とする請求項1〜3の何れか一項に記載の円筒部材の罫書表示装置。   The said display part irradiates the said laser beam to the end surface of the said cylindrical member, or an inner peripheral surface or an outer peripheral surface, and displays a ruled line in the said ruled position. The ruler display device for the cylindrical member according to the item. 円筒部材に罫書する位置を表示する罫書表示方法であって、
前記円筒部材を横置きしたときに自重により変形した前記円筒部材の端面形状を測定する測定ステップと、
前記円筒部材の端面形状から前記円筒部材の周長及び円筒中心を求め、前記円筒部材の円筒中心からの角度を前記周長の比に換算し、前記円筒部材の変形に合わせて補正された角度を求める演算ステップと、
前記補正された角度に基づいて、前記円筒部材に罫書する位置をレーザー光で表示する表示ステップとを含むことを特徴とする円筒部材の罫書表示方法。
A method for displaying a ruled line to display a position of a ruled line on a cylindrical member,
A measuring step for measuring an end face shape of the cylindrical member deformed by its own weight when the cylindrical member is placed horizontally;
Obtaining the circumference and cylindrical center of the cylindrical member from the end face shape of the cylindrical member, converting the angle from the cylindrical center of the cylindrical member into the ratio of the circumferential length, and correcting the angle according to the deformation of the cylindrical member A calculation step for obtaining
And a display step of displaying a position to be marked on the cylindrical member with a laser beam based on the corrected angle.
前記測定ステップにおいて、前記円筒部材の端面に複数のターゲットを並べて配置し、これら複数のターゲットの位置を測定し、
前記演算ステップにおいて、前記複数のターゲットの位置情報から前記円筒部材の端面形状を近似曲線として求め、この近似曲線から前記円筒部材の周長及び円筒中心を計算により求めることを特徴とする請求項5に記載の円筒部材の罫書表示方法。
In the measurement step, a plurality of targets are arranged side by side on the end face of the cylindrical member, and the positions of the plurality of targets are measured,
6. In the calculation step, an end face shape of the cylindrical member is obtained as an approximate curve from position information of the plurality of targets, and a circumferential length and a cylinder center of the cylindrical member are obtained by calculation from the approximate curve. A method for displaying a ruled line of a cylindrical member as described in 1.
前記測定ステップにおいて、前記ターゲットの位置を三次元計測器を用いて測定することを特徴とする請求項6に記載の円筒部材の罫書表示方法。   7. The ruler display method for a cylindrical member according to claim 6, wherein in the measuring step, the position of the target is measured using a three-dimensional measuring instrument. 前記表示ステップにおいて、前記円筒部材の端面、若しくは内周面又は外周面に前記レーザー光を照射し、前記罫書する位置に罫書線を表示することを特徴とする請求項5〜7の何れか一項に記載の円筒部材の罫書表示方法。   8. The display step of irradiating an end surface, an inner peripheral surface, or an outer peripheral surface of the cylindrical member with the laser beam, and displaying a ruled line at a position for marking. The method for displaying the ruled sheet of the cylindrical member according to item.
JP2013123940A 2013-06-12 2013-06-12 Ruled line display device and ruled line display method Active JP6136608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013123940A JP6136608B2 (en) 2013-06-12 2013-06-12 Ruled line display device and ruled line display method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013123940A JP6136608B2 (en) 2013-06-12 2013-06-12 Ruled line display device and ruled line display method

Publications (2)

Publication Number Publication Date
JP2014240116A true JP2014240116A (en) 2014-12-25
JP6136608B2 JP6136608B2 (en) 2017-05-31

Family

ID=52139654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013123940A Active JP6136608B2 (en) 2013-06-12 2013-06-12 Ruled line display device and ruled line display method

Country Status (1)

Country Link
JP (1) JP6136608B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112238433A (en) * 2019-07-17 2021-01-19 平高集团有限公司 Production method of switch cylinder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163891A (en) * 1980-05-21 1981-12-16 Tokyo Shibaura Electric Co Marking device
JPH06258034A (en) * 1993-03-10 1994-09-16 Nkk Corp Method and apparatus for measuring outer diameter of tubular body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163891A (en) * 1980-05-21 1981-12-16 Tokyo Shibaura Electric Co Marking device
JPH06258034A (en) * 1993-03-10 1994-09-16 Nkk Corp Method and apparatus for measuring outer diameter of tubular body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112238433A (en) * 2019-07-17 2021-01-19 平高集团有限公司 Production method of switch cylinder
CN112238433B (en) * 2019-07-17 2022-08-09 平高集团有限公司 Production method of switch cylinder

Also Published As

Publication number Publication date
JP6136608B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
US8180101B2 (en) Calibration method for structure parameters of structured-light vision sensor
CN104266608B (en) Field calibration device for visual sensor and calibration method
CN109754433B (en) Calibration image acquisition method, device, equipment and storage medium
CN109000558A (en) A kind of big visual field non-contact three-dimensional point coordinate measurement method and apparatus
CN104880205B (en) Nonopiate shafting laser transit measuring system scaling method
CN104259669A (en) Precise three-dimensional curved surface laser marking method
CN106546186A (en) A kind of truing tool and calibration steps of handheld laser scanner precision
JP6441154B2 (en) Measuring method using total station and control device for total station
CN109855554A (en) Deflection measuring apparatus and method for engineering truck machinery arm
JP6136608B2 (en) Ruled line display device and ruled line display method
JP7044332B2 (en) Target positioning method and target positioning tool
JP2017067704A (en) Three-dimensional shape data generation method and component inspection method using the same, as well as three-dimensional shape data generation device and component inspection program
CN108151672B (en) Shaft shape tolerance measuring instrument based on projection imaging
JP2015096808A (en) Method of measuring plate thickness
JP2017009557A (en) Boundary point extraction method and measurement method using total station
CN106296657A (en) A kind of method video camera being carried out Fast Calibration based on geometrical principle
JP6500560B2 (en) Optical sensor calibration method and three-dimensional coordinate measuring machine
JP6554342B2 (en) Measuring system and measuring method
JPH0545135A (en) Method and device for visually measuring precise contour
JP6086099B2 (en) Surface shape measuring apparatus and method
JP7201208B2 (en) Calibration gauge and calibration method
KR102597800B1 (en) Assembly accuracy measuring method of 2 dimensional stage LM guide
JP2010185804A (en) Shape measuring apparatus, shape measuring method, and program
JP2017198532A (en) Shape measurement method of shape measurement device and shape measurement device
JP6653539B2 (en) Image measuring device, control program therefor, and measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R151 Written notification of patent or utility model registration

Ref document number: 6136608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250