JP2010185804A - Shape measuring apparatus, shape measuring method, and program - Google Patents

Shape measuring apparatus, shape measuring method, and program Download PDF

Info

Publication number
JP2010185804A
JP2010185804A JP2009030656A JP2009030656A JP2010185804A JP 2010185804 A JP2010185804 A JP 2010185804A JP 2009030656 A JP2009030656 A JP 2009030656A JP 2009030656 A JP2009030656 A JP 2009030656A JP 2010185804 A JP2010185804 A JP 2010185804A
Authority
JP
Japan
Prior art keywords
measured
measurement
displacement
measuring
rotation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009030656A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Omori
義幸 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2009030656A priority Critical patent/JP2010185804A/en
Priority to DE201010001833 priority patent/DE102010001833A1/en
Publication of JP2010185804A publication Critical patent/JP2010185804A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shape measuring apparatus capable of measuring a measuring object composed of a rotational body with high accuracy by a simple structure concerning measurement peculiar to the object, and to provide its measuring method, and a program. <P>SOLUTION: The shape measuring apparatus measures a displacement of a surface at each rotation angle of the measuring object 4 composed of the rotational body, while rotating the measuring object 4 around a predetermined axis of rotation. A controller 41 of the shape measuring apparatus preparatorily measures the displacement of the surface at each rotation angle of the measuring object 4 (S11). From a measured value representing a surface profile of the measuring object 4 acquired by the preparatory measurement and a design value of the measuring object 4 stored previously, the controller 41 calculates the amount of the deviation of the measured value from the design value (S12). The controller 41 adjusts the posture of the measuring object 4 on the basis of the calculated deviation amount (S13). While rotating the measuring object 4 after the posture adjustment around the rotation axis, the controller 41 measures the displacement of the surface at each rotation angle of the measuring object 4 regularly (S14). <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、所定の回転軸を中心として相対的に回転する被測定物の回転角に同期して変位測定する、いわゆる真円度測定機などの形状測定装置、形状測定方法、及び形状測定プログラムに関する。   The present invention relates to a shape measuring apparatus such as a so-called roundness measuring device, a shape measuring method, and a shape measuring program for measuring displacement in synchronization with a rotation angle of a measured object that rotates relatively around a predetermined rotation axis. About.

従来、非球面レンズ等の非球面形状を有する被測定物の測定においては、互いに直交するX軸及びY軸に沿って接触式の測定プローブを移動させながら被測定物の表面を倣い測定する方法(特許文献1、2)及び光学プローブを使用する方法(特許文献3,4)等が知られている。   Conventionally, in measuring an object to be measured having an aspheric shape such as an aspheric lens, a method of measuring the surface of the object to be measured while moving a contact-type measurement probe along an X axis and a Y axis orthogonal to each other (Patent Documents 1 and 2), a method using an optical probe (Patent Documents 3 and 4), and the like are known.

このうち、X軸及びY軸に沿って接触式測定プローブを移動させる方法は、いずれか一方の真直精度が悪い場合、面データとして精度の良い測定データを取得することが困難で、非球面体のような回転体に特有の同軸度、回転振れといった測定項目を求めるには精度が不足するという問題がある。   Of these, the method of moving the contact measurement probe along the X-axis and the Y-axis is difficult to obtain accurate measurement data as surface data when either one of the straightness accuracy is poor. However, there is a problem that the accuracy is insufficient to obtain measurement items such as coaxiality and rotational runout characteristic of the rotating body.

また、光学プローブを使用する方法は、レーザ発光装置が必要であり、装置が大がかりで高価なものになるという問題がある。   Further, the method using an optical probe requires a laser light emitting device, and there is a problem that the device is large and expensive.

特開平7−120239号公報JP-A-7-120239 特開2002−357415公報JP 2002-357415 A 特開平4−340406号公報JP-A-4-340406 特開平7−4929号公報Japanese Patent Laid-Open No. 7-4929

本発明は、簡易な構成で高精度に回転体からなる被測定物に特有の測定が可能な形状測定装置、その方法、及びプログラムを提供する。   The present invention provides a shape measuring apparatus, a method, and a program capable of performing measurement peculiar to an object to be measured that is a rotating body with a simple configuration and high accuracy.

本発明に係る形状測定装置は、回転体からなる被測定物を所定の回転軸を中心として回転させながら、前記被測定物の各回転角における表面の変位を測定する形状測定装置において、前記被測定物の各回転角における表面の変位を予備測定するための制御を行う手段と、前記予備測定によって取得された前記被測定物の表面形状を示す測定値と予め記憶されている前記被測定物の設計値とから前記測定値の前記設計値に対するずれ量を算出する手段と、前記算出されたずれ量に基づいて前記被測定物の姿勢を調整する手段と、前記姿勢調整後の前記被測定物を前記回転軸を中心として回転させながら、前記被測定物の各回転角における表面の変位を本測定するための制御を行う手段とを備えたことを特徴とする。   The shape measuring apparatus according to the present invention is a shape measuring apparatus for measuring a displacement of a surface at each rotation angle of the object to be measured while rotating the object to be measured which is a rotating body around a predetermined rotation axis. Means for preliminarily measuring the displacement of the surface at each rotation angle of the measurement object, the measurement value indicating the surface shape of the measurement object obtained by the preliminary measurement, and the measurement object stored in advance Means for calculating a deviation amount of the measurement value from the design value with respect to the design value, means for adjusting the posture of the object to be measured based on the calculated deviation amount, and the measurement object after the posture adjustment. And a means for performing a control for actual measurement of the displacement of the surface at each rotation angle of the object to be measured while rotating the object about the rotation axis.

本発明に係る形状測定方法は、回転体からなる被測定物を所定の回転軸を中心として回転させながら、前記被測定物の各回転角における表面の変位を測定する形状測定方法において、前記被測定物の各回転角における表面の変位を予備測定するステップと、前記予備測定によって取得された前記被測定物の表面形状を示す測定値と予め記憶されている前記被測定物の設計値とから前記測定値の前記設計値に対するずれ量を算出するステップと、前記算出されたずれ量に基づいて前記被測定物の姿勢を調整するステップと、前記姿勢調整後の前記被測定物を前記回転軸を中心として回転させながら、前記被測定物の各回転角における表面の変位を本測定するステップとを備えたことを特徴とする。   The shape measuring method according to the present invention is the shape measuring method for measuring the displacement of the surface at each rotation angle of the measured object while rotating the measured object made of a rotating body around a predetermined rotation axis. Preliminarily measuring the displacement of the surface at each rotation angle of the measurement object, the measurement value indicating the surface shape of the measurement object obtained by the preliminary measurement, and the design value of the measurement object stored in advance Calculating a deviation amount of the measurement value with respect to the design value; adjusting a posture of the measurement object based on the calculated deviation amount; and And measuring the displacement of the surface at each rotation angle of the object to be measured while rotating around the center.

本発明に係る形状測定プログラムは、回転体からなる被測定物を所定の回転軸を中心として回転させながら、前記被測定物の各回転角における表面の変位を測定する形状測定プログラムであって、コンピュータに、前記被測定物の各回転角における表面の変位を予備測定するステップと、前記予備測定によって取得された前記被測定物の表面形状を示す測定値と予め記憶されている前記被測定物の設計値とから前記測定値の前記設計値に対するずれ量を算出するステップと、前記算出されたずれ量に基づいて前記被測定物の姿勢を調整するステップと、前記姿勢調整後の前記被測定物を前記回転軸を中心として回転させながら、前記被測定物の各回転角における表面の変位を本測定するステップとを実行させることを特徴とする。   The shape measurement program according to the present invention is a shape measurement program for measuring a displacement of a surface at each rotation angle of the measurement object while rotating the measurement object formed of a rotating body around a predetermined rotation axis. Preliminarily measuring the displacement of the surface at each rotation angle of the object to be measured in the computer, the measurement value indicating the surface shape of the object to be measured obtained by the preliminary measurement, and the object to be measured stored in advance Calculating a deviation amount of the measurement value from the design value with respect to the design value, adjusting a posture of the object to be measured based on the calculated deviation amount, and the measurement object after the posture adjustment. And measuring the displacement of the surface at each rotation angle of the object to be measured while rotating the object around the rotation axis.

本発明によれば、簡易な構成で高精度に回転体からなる被測定物に特有の測定が可能な形状測定装置、その方法、及びプログラムを提供することができる。   According to the present invention, it is possible to provide a shape measuring apparatus, a method thereof, and a program capable of performing measurement peculiar to a measured object made of a rotating body with a simple configuration and high accuracy.

本発明の実施形態に係る形状測定装置の概略構成を示す外観斜視図である。It is an external appearance perspective view which shows schematic structure of the shape measuring apparatus which concerns on embodiment of this invention. 実施形態に係る形状測定装置の演算処理装置本体31の構成を示すブロック図である。It is a block diagram which shows the structure of the arithmetic processing unit main body 31 of the shape measuring apparatus which concerns on embodiment. 実施形態に係る形状測定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the shape measuring apparatus which concerns on embodiment. ステップS112の動作を説明するための図である。It is a figure for demonstrating operation | movement of step S112. 擬似測定点Piを示す図である。It is a figure which shows the pseudo | simulation measurement point Pi. ステップS113の動作を説明するための図である。It is a figure for demonstrating operation | movement of step S113. ステップS11(ステップS114)の後に得られる擬似測定点Piの分布を示す図である。It is a figure which shows distribution of the pseudo | simulation measurement point Pi obtained after step S11 (step S114). 最小自乗法を説明するための図である。It is a figure for demonstrating the least square method.

次に、本発明に係る実施形態を、図面を参照して説明する。   Next, an embodiment according to the present invention will be described with reference to the drawings.

[実施形態に係る形状測定装置の構成]
先ず、図1を参照して、実施形態に係る形状測定装置の構成を説明する。図1は、実施形態に係る形状測定装置(真円度測定装置)の外観斜視図である。
[Configuration of Shape Measuring Device According to Embodiment]
First, the configuration of the shape measuring apparatus according to the embodiment will be described with reference to FIG. FIG. 1 is an external perspective view of a shape measuring apparatus (roundness measuring apparatus) according to an embodiment.

形状測定装置は、回転体からなる被測定物4(例えば、非球面レンズ)を所定の回転軸を中心として回転させながら、被測定物4の各回転角における表面の変位を測定する。形状測定装置は、図1に示すように、測定機本体1と、駆動制御装置1aを介して測定機本体1に接続された演算処理装置2とから構成される。   The shape measuring apparatus measures the displacement of the surface at each rotation angle of the measurement object 4 while rotating the measurement object 4 (for example, an aspheric lens) made of a rotating body around a predetermined rotation axis. As shown in FIG. 1, the shape measuring apparatus includes a measuring machine main body 1 and an arithmetic processing device 2 connected to the measuring machine main body 1 via a drive control device 1a.

測定機本体1は、基台3と、この基台3上に設けられて半球状の被測定物4を載置すると共に回転させるテーブル5と、このテーブル5に載置された被測定物4の変位を検出する変位検出装置6と、これらを操作するための操作部7とを備えて構成されている。   The measuring machine main body 1 includes a base 3, a table 5 provided on the base 3 for placing and rotating a hemispherical measurement object 4, and a measurement object 4 placed on the table 5. The displacement detection device 6 for detecting the displacement of the first and the operation unit 7 for operating these are provided.

テーブル5は、円板状の載物台11を、その下側に配置された回転駆動装置12により回転駆動して、載物台11の上に載置された被測定物4を回転させるものである。回転駆動装置12の側面には、調整用つまみ13が、周方向にほぼ90度の間隔で配置されている。これら調整用つまみ13を操作することにより、手動操作で載物台11の心出し及び水平出しが行えるようになっている。すなわち、載物台11は、X軸、Y軸、Z軸方向に調整可能に構成されている。また、載物台11は、後述する制御部41により、心出し及び水平出しが行われるように構成されている。   The table 5 rotates the measurement object 4 placed on the stage 11 by rotating the disk-like stage 11 with a rotation driving device 12 disposed below the disk-like stage 11. It is. On the side surface of the rotary drive device 12, adjustment knobs 13 are arranged at intervals of approximately 90 degrees in the circumferential direction. By operating these adjustment knobs 13, the stage 11 can be centered and leveled manually. That is, the stage 11 is configured to be adjustable in the X-axis, Y-axis, and Z-axis directions. Further, the stage 11 is configured such that centering and leveling are performed by a control unit 41 described later.

変位検出装置6は、次のように構成されている。即ち、基台3には上方に延びるコラム21が立設されており、このコラム21にスライダ22が上下動可能に装着されている。スライダ22にはスタイラス23が装着されている。スタイラス23は、水平(X軸、Y軸)、垂直(Z軸)方向に駆動可能に構成されており、その先端には接触子24が設けられている。接触子24は、その先端が被測定物に接触可能に構成されている。コラム21、スライダ22、及びスタイラス23は、接触子駆動手段を構成している。   The displacement detection device 6 is configured as follows. That is, a column 21 extending upward is erected on the base 3, and a slider 22 is mounted on the column 21 so as to be movable up and down. A stylus 23 is attached to the slider 22. The stylus 23 is configured to be drivable in the horizontal (X-axis, Y-axis) and vertical (Z-axis) directions, and a contactor 24 is provided at the tip thereof. The contact 24 is configured such that the tip thereof can contact the object to be measured. The column 21, the slider 22, and the stylus 23 constitute contactor driving means.

上記スライダ22、スタイラス23を移動させ、接触子24を被測定物4の表面を走査(トレース)することによって、X軸方向の各位置における表面の高さZが測定データ(擬似測定点Pi)として得られるようになっている。   The slider 22 and the stylus 23 are moved, and the contact 24 is scanned (traced) on the surface of the DUT 4 so that the surface height Z at each position in the X-axis direction is measured data (pseudo measurement point Pi). It has come to be obtained as.

演算処理装置2は、変位検出装置6で得られた擬似測定点Piを取り込む。演算処理装置2は、演算処理を実行する演算処理装置本体31、及び操作部32、表示画面33を有する。また、演算処理装置2は、操作部7と同様に測定機本体1の動作を制御可能に構成されている。   The arithmetic processing device 2 takes in the pseudo measurement point Pi obtained by the displacement detection device 6. The arithmetic processing device 2 includes an arithmetic processing device main body 31 that executes arithmetic processing, an operation unit 32, and a display screen 33. Further, the arithmetic processing device 2 is configured to be able to control the operation of the measuring machine main body 1 in the same manner as the operation unit 7.

次に、図2を参照して、演算処理装置本体31の構成について説明する。図2は、本発明の実施形態に係る演算処理装置本体31の構成を示すブロック図である。   Next, the configuration of the arithmetic processing unit main body 31 will be described with reference to FIG. FIG. 2 is a block diagram showing a configuration of the arithmetic processing unit main body 31 according to the embodiment of the present invention.

演算処理装置本体31は、図2に示すように、主に、制御部(CPU:Central Processing Unit)41、RAM(Random Access Memory)42、ROM(Read Only Memory)43、HDD(Hard Disk Drive)44、表示制御部45を有する。演算処理装置本体31において、操作部32から入力されるコード情報及び位置情報は、I/F46aを介して制御部41に入力される。制御部41は、ROM43に格納されたマクロプログラム及びHDD44からI/F46bを介してRAM42に格納された各種プログラムに従って、各種の処理を実行する。   As shown in FIG. 2, the arithmetic processing unit main body 31 mainly includes a control unit (CPU: Central Processing Unit) 41, a RAM (Random Access Memory) 42, a ROM (Read Only Memory) 43, and an HDD (Hard Disk Drive). 44 and a display control unit 45. In the arithmetic processing unit main body 31, code information and position information input from the operation unit 32 are input to the control unit 41 via the I / F 46a. The control unit 41 executes various processes according to the macro program stored in the ROM 43 and the various programs stored in the RAM 42 from the HDD 44 via the I / F 46b.

制御部41は、測定実行処理に従って、I/F46cを介して測定機本体1を制御する。HDD44は、各種制御プログラムを格納する記録媒体である。RAM42は、各種プログラムを格納する他、各種処理のワーク領域を提供する。また、制御部41は、表示制御部45を介して表示画面33に測定結果等を表示する。   The control unit 41 controls the measuring machine main body 1 via the I / F 46c according to the measurement execution process. The HDD 44 is a recording medium that stores various control programs. The RAM 42 stores various programs and provides a work area for various processes. In addition, the control unit 41 displays measurement results and the like on the display screen 33 via the display control unit 45.

制御部41は、HDD44から各種プログラムを読み出し、そのプログラムを実行することにより、後述する図3に示す動作を実行する。制御部41は、被測定物4の各回転角における表面の変位を予備測定するための制御を行う。制御部41は、予備測定によって取得された被測定物4の表面形状を示す測定値と予め記憶されている被測定物4の設計値とから測定値の設計値に対するずれ量を算出する。制御部41は、算出されたずれ量に基づいて被測定物4の姿勢を調整する。制御部41は、姿勢調整後の被測定物4を回転軸を中心として回転させながら、被測定物4の各回転角における表面の変位を本測定するための制御を行う。   The control unit 41 reads out various programs from the HDD 44 and executes the programs, thereby executing the operation shown in FIG. The control unit 41 performs control for preliminarily measuring the displacement of the surface at each rotation angle of the DUT 4. The control unit 41 calculates a deviation amount of the measured value with respect to the design value from the measured value indicating the surface shape of the measured object 4 obtained by the preliminary measurement and the design value of the measured object 4 stored in advance. The control unit 41 adjusts the posture of the DUT 4 based on the calculated deviation amount. The control unit 41 performs control for main measurement of the displacement of the surface at each rotation angle of the DUT 4 while rotating the DUT 4 after posture adjustment about the rotation axis.

[実施形態に係る形状測定装置の動作]
次に、図3を参照して実施形態に係る形状測定装置の動作について説明する。図3は、実施形態に係る形状測定装置の動作を示すフローチャートである。
[Operation of Shape Measuring Device According to Embodiment]
Next, the operation of the shape measuring apparatus according to the embodiment will be described with reference to FIG. FIG. 3 is a flowchart showing the operation of the shape measuring apparatus according to the embodiment.

先ず、制御部41は、被測定物4の各回転角における表面の変位を予備測定する(ステップS11)。   First, the control unit 41 preliminarily measures the displacement of the surface at each rotation angle of the DUT 4 (step S11).

ここで、ステップS11のより具体的な説明を行う。ステップS11において、制御部41は、接触子24をX軸方向の開始位置Psに移動させる(ステップS111)。次に、制御部41は、図4に示すように、テーブル5をZ軸方向を中心に360°回転させるに伴い、接触子24を走査することで擬似測定点Piを取得する(ステップS112)。擬似測定点Piは、図5に示すように、被測定物4への接触時における接触子24の所定位置を示す点である。複数の擬似測定点Piを結ぶ線分は、ワーク面S0から所定距離をもつ。続いて、制御部41は、図6に示すように、接触子24をX軸方向に所定距離L移動させる(ステップS113)。次に、制御部41は、接触子24がX軸方向の終了位置Peに位置するか否かを判断する(ステップS114)。ここで、制御部41は、接触子24がX軸方向の終了位置Peに位置しないと判断すると(ステップS114、N)、ステップS112からの処理を再び実行する。一方、制御部41は、接触子24がX軸方向の終了位置Peに位置すると判断すると(ステップS114、Y)、続いて、ステップS12の処理に移行する。   Here, step S11 will be described more specifically. In step S11, the control unit 41 moves the contactor 24 to the start position Ps in the X-axis direction (step S111). Next, as illustrated in FIG. 4, the control unit 41 acquires the pseudo measurement point Pi by scanning the contact 24 as the table 5 is rotated 360 ° around the Z-axis direction (step S <b> 112). . As shown in FIG. 5, the pseudo measurement point Pi is a point indicating a predetermined position of the contactor 24 when contacting the measurement object 4. A line segment connecting the plurality of pseudo measurement points Pi has a predetermined distance from the work surface S0. Subsequently, as shown in FIG. 6, the control unit 41 moves the contactor 24 by a predetermined distance L in the X-axis direction (step S113). Next, the control unit 41 determines whether or not the contactor 24 is located at the end position Pe in the X-axis direction (step S114). Here, when the control unit 41 determines that the contactor 24 is not located at the end position Pe in the X-axis direction (step S114, N), the process from step S112 is executed again. On the other hand, when the control unit 41 determines that the contactor 24 is located at the end position Pe in the X-axis direction (step S114, Y), the process proceeds to step S12.

ステップS12において、制御部41は、予備測定によって取得された被測定物4の表面形状を示す測定値と予め記憶されている被測定物4の設計値とから測定値の設計値に対するずれ量を算出する(ステップS12)。具体的に、制御部41は、最小自乗法(ベストフィット)により擬似測定点Pi(測定値)と被測定物4の表面を規定する設計面f(a、x)(f(a、x)=0)(設計値)とを照合させ、その照合により被測定物4の配置状態(ずれ量)を推定する。ここで、被測定物4の配置状態とは、被測定物4の中心軸の向いている方向を含む。   In step S <b> 12, the control unit 41 calculates a deviation amount of the measured value with respect to the design value from the measured value indicating the surface shape of the measured object 4 acquired by the preliminary measurement and the design value of the measured object 4 stored in advance. Calculate (step S12). Specifically, the control unit 41 uses a least square method (best fit) to design the pseudo measurement point Pi (measured value) and the design surface f (a, x) (f (a, x)) = 0) (design value) and the arrangement state (deviation amount) of the DUT 4 is estimated by the comparison. Here, the arrangement state of the DUT 4 includes the direction in which the central axis of the DUT 4 is facing.

ここで、例えば、被測定物4のZ軸方向の中心がテーブル5の回転軸(Z軸)の中心と揃っている場合、ステップS12にて用いられる擬似測定点Piは、図7に示すように、X−Y平面にて、測定経路に沿って同心円状の複数の円を描くように分布する。   Here, for example, when the center in the Z-axis direction of the DUT 4 is aligned with the center of the rotation axis (Z-axis) of the table 5, the pseudo measurement point Pi used in step S12 is as shown in FIG. In the XY plane, a plurality of concentric circles are distributed along the measurement path.

次に、制御部41は、算出されたずれ量に基づいて被測定物4の姿勢を調整する(ステップS13)。具体的に、制御部41は、推定した被測定物4の配置状態に基づき、被測定物4の中心軸を載物台11の回転軸に一致するように、載物台11を調整し、被測定物4の姿勢を調整する。   Next, the control part 41 adjusts the attitude | position of the to-be-measured object 4 based on the calculated deviation | shift amount (step S13). Specifically, the control unit 41 adjusts the stage 11 so that the center axis of the DUT 4 coincides with the rotation axis of the stage 11 based on the estimated arrangement state of the DUT 4. The posture of the DUT 4 is adjusted.

続いて、制御部41は、姿勢調整後の被測定物4を回転軸を中心として回転させながら、被測定物4の各回転角における表面の変位を本測定する(ステップS14)。   Subsequently, the control unit 41 performs the main measurement of the displacement of the surface at each rotation angle of the DUT 4 while rotating the DUT 4 after the posture adjustment about the rotation axis (Step S14).

ここで、ステップS14のより具体的な説明を行う。ステップS14において、制御部41は、接触子24をX軸方向の開始位置Ps’に移動させる(ステップS141)。次に、制御部41は、テーブル5をZ軸方向を中心に360°回転させるに伴い、接触子24を走査することで擬似測定点Pi’を取得する(ステップS142)。続いて、制御部41は、接触子24をX軸方向に所定距離L移動させる(ステップS143)。次に、制御部41は、接触子24がX軸方向の終了位置Pe’に位置するか否かを判断する(ステップS144)。ここで、制御部41は、接触子24がX軸方向の終了位置Pe’に位置しないと判断すると(ステップS144、N)、ステップS142からの処理を再び実行する。一方、制御部41は、接触子24がX軸方向の終了位置Pe’に位置すると判断すると(ステップS144、Y)、その処理を終了させる。   Here, step S14 will be described more specifically. In step S14, the control unit 41 moves the contactor 24 to the start position Ps' in the X-axis direction (step S141). Next, as the table 5 is rotated 360 ° about the Z-axis direction, the control unit 41 scans the contact 24 to obtain a pseudo measurement point Pi ′ (step S142). Subsequently, the control unit 41 moves the contactor 24 by a predetermined distance L in the X-axis direction (step S143). Next, the control unit 41 determines whether or not the contactor 24 is located at the end position Pe ′ in the X-axis direction (step S144). Here, when the control unit 41 determines that the contact 24 is not located at the end position Pe ′ in the X-axis direction (step S144, N), the process from step S142 is executed again. On the other hand, when the control unit 41 determines that the contactor 24 is located at the end position Pe ′ in the X-axis direction (step S144, Y), the process ends.

次に、図8を参照して、最小自乗法(ステップS105)の処理について説明する。図8に示すように、最小自乗法においては、擬似測定点Pi(i=1、2、…、n)と、設計面f(a,x)を用いる。設計面f(a,x)の「a」は、設計面を表現するパラメータを意味し、設計面f(a,x)の「x」は、設計面を構成する座標を意味する。   Next, the process of the least square method (step S105) will be described with reference to FIG. As shown in FIG. 8, in the least square method, pseudo measurement points Pi (i = 1, 2,..., N) and a design surface f (a, x) are used. “A” of the design surface f (a, x) means a parameter expressing the design surface, and “x” of the design surface f (a, x) means coordinates constituting the design surface.

最小自乗法は、擬似測定点Piを平行移動T、及び回転Rによって剛体移動させ、設計面f(a,x)と最も良く一致する姿勢を求めるものである。この姿勢は、平行移動T、及び回転Rによって与えられる。「最も良く一致する姿勢を求める」とは、数学的に上記剛体移動後の擬似測定点Piの値と設計面f(a,x)との最短距離の2乗和を最小とすることを意味する。   In the least square method, the pseudo measurement point Pi is rigidly moved by the parallel movement T and the rotation R, and an attitude that best matches the design surface f (a, x) is obtained. This posture is given by the translation T and the rotation R. “Determining the best matching posture” means mathematically minimizing the sum of squares of the shortest distance between the value of the pseudo measurement point Pi after moving the rigid body and the design surface f (a, x). To do.

図8においては、平行移動T、及び回転Rによって剛体移動した擬似測定点Piを、点「xi」として表している。また、点xiと設計面f(a,x)との間の最小距離を与える設計面上の点を「xi”」として表している。また、擬似測定点Piは、上述したように接触子24の所定位置として得られる。点「xi’」を、その接触子24の形状によるオフセットを考慮した真の測定点とすると、最小自乗法により最小化する量は、「Σ|xi’−xi”|」となる。以上、最小自乗法により求めた平行移動T、及び回転Rによって、被測定物4の配置状態を推定することができる。 In FIG. 8, the pseudo measurement point Pi that is rigidly moved by the parallel movement T and the rotation R is represented as a point “xi”. Further, a point on the design surface that gives the minimum distance between the point xi and the design surface f (a, x) is represented as “xi”. Further, the pseudo measurement point Pi is obtained as a predetermined position of the contactor 24 as described above. When the point “xi ′” is a true measurement point in consideration of the offset due to the shape of the contactor 24, the amount to be minimized by the least square method is “Σ | xi′−xi ″ | 2 ”. As described above, the arrangement state of the DUT 4 can be estimated from the translation T and the rotation R obtained by the method of least squares.

[実施形態に係る形状測定装置の効果]
次に、実施形態に係る形状測定装置の効果について説明する。実施形態に係る形状測定装置において、制御部41は、被測定物4の各回転角における表面の変位を予備測定し、予備測定によって取得された測定値と予め記憶されている被測定物4の設計値とから測定値の設計値に対するずれ量を算出する。上記構成により、実施形態に係る形状測定装置は、簡易な構成で高精度に被測定物4の回転軸からのずれ量を求めることができる。
[Effect of the shape measuring apparatus according to the embodiment]
Next, the effect of the shape measuring apparatus according to the embodiment will be described. In the shape measuring apparatus according to the embodiment, the control unit 41 preliminarily measures the displacement of the surface at each rotation angle of the object to be measured 4, and the measurement value acquired by the preliminary measurement and the object 4 to be measured previously stored are measured. The amount of deviation of the measured value from the design value is calculated from the design value. With the above configuration, the shape measuring apparatus according to the embodiment can determine the amount of deviation from the rotation axis of the DUT 4 with high accuracy with a simple configuration.

さらに、制御部41は、算出されたずれ量に基づいて被測定物4の姿勢を調整し、姿勢調整後の被測定物4を回転軸を中心として回転させながら、被測定物4の各回転角における表面の変位を本測定する。上記構成により、実施形態に係る形状測定装置は、簡易な構成で迅速にその測定の精度を保証することができる。   Further, the control unit 41 adjusts the posture of the DUT 4 based on the calculated deviation amount, and rotates each DUT 4 while rotating the DUT 4 after the posture adjustment about the rotation axis. Measure the displacement of the surface at the corner. With the above configuration, the shape measuring apparatus according to the embodiment can quickly guarantee the accuracy of the measurement with a simple configuration.

上記精度の保証により、実施形態に係る形状測定装置は、様々な幾何公差を測定可能となる。例えば、レンズの光軸(上面の表面基準)とレンズの外周との関係(同軸度/直角度/振れ/平面度)を求めることができる。例えば、レンズの上面の軸とその下面との軸との関係を求めることができる。例えば、レンズの上面で心水平出しを行い、そのレンズの下面の軸の評価を行うことができる。   With the guarantee of the accuracy, the shape measuring apparatus according to the embodiment can measure various geometric tolerances. For example, the relationship (coaxiality / perpendicularity / runout / flatness) between the optical axis of the lens (surface reference on the upper surface) and the outer periphery of the lens can be obtained. For example, the relationship between the axis of the upper surface of the lens and the axis of its lower surface can be obtained. For example, centering can be performed on the upper surface of the lens, and the axis of the lower surface of the lens can be evaluated.

また、実施形態に係る形状測定装置は、XYZ軸を移動させて測定を行う三次元測定機ではなく、θ軸の回転精度(テーブル面が上下/左右に動く挙動)が保証されている真円度測定機を使用しているので、上述の回転体特有の測定を高精度で行うことができる。   Further, the shape measuring apparatus according to the embodiment is not a three-dimensional measuring machine that performs measurement by moving the XYZ axes, but a perfect circle in which the rotation accuracy of the θ axis (the behavior of the table surface moving up and down / left and right) is guaranteed. Since the degree measuring machine is used, the above-mentioned measurement specific to the rotating body can be performed with high accuracy.

[その他の実施形態]
以上、形状測定装置の実施形態を説明してきたが、本発明は、上記実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更、追加、置換等が可能である。
[Other Embodiments]
As mentioned above, although the embodiment of the shape measuring apparatus has been described, the present invention is not limited to the above-described embodiment, and various modifications, additions, substitutions, and the like are possible without departing from the spirit of the invention. .

1…測定機本体、2…演算処理装置、3…基台、4…被測定物、5…テーブル、6…変位検出装置、7…操作部、21…コラム、22…スライダ、23…スタイラス、24…接触子、31…演算処理装置本体、32…操作部、33…表示画面。   DESCRIPTION OF SYMBOLS 1 ... Measuring machine main body, 2 ... Arithmetic processing unit, 3 ... Base, 4 ... Object to be measured, 5 ... Table, 6 ... Displacement detection device, 7 ... Operation part, 21 ... Column, 22 ... Slider, 23 ... Stylus, 24: contact, 31 ... arithmetic processing unit main body, 32 ... operation unit, 33 ... display screen.

Claims (3)

回転体からなる被測定物を所定の回転軸を中心として回転させながら、前記被測定物の各回転角における表面の変位を測定する形状測定装置において、
前記被測定物の各回転角における表面の変位を予備測定するための制御を行う手段と、
前記予備測定によって取得された前記被測定物の表面形状を示す測定値と予め記憶されている前記被測定物の設計値とから前記測定値の前記設計値に対するずれ量を算出する手段と、
前記算出されたずれ量に基づいて前記被測定物の姿勢を調整する手段と、
前記姿勢調整後の前記被測定物を前記回転軸を中心として回転させながら、前記被測定物の各回転角における表面の変位を本測定するための制御を行う手段と
を備えたことを特徴とする形状測定装置。
In the shape measuring apparatus for measuring the displacement of the surface at each rotation angle of the object to be measured while rotating the object to be measured made of a rotating body around a predetermined rotation axis,
Means for preliminarily measuring the displacement of the surface at each rotation angle of the object to be measured;
Means for calculating an amount of deviation of the measured value with respect to the design value from a measured value indicating the surface shape of the measured object obtained by the preliminary measurement and a design value of the measured object stored in advance;
Means for adjusting the posture of the object to be measured based on the calculated deviation amount;
And means for performing control for main measurement of the displacement of the surface at each rotation angle of the object to be measured while rotating the object to be measured after the posture adjustment about the rotation axis. Shape measuring device.
回転体からなる被測定物を所定の回転軸を中心として回転させながら、前記被測定物の各回転角における表面の変位を測定する形状測定方法において、
前記被測定物の各回転角における表面の変位を予備測定するステップと、
前記予備測定によって取得された前記被測定物の表面形状を示す測定値と予め記憶されている前記被測定物の設計値とから前記測定値の前記設計値に対するずれ量を算出するステップと、
前記算出されたずれ量に基づいて前記被測定物の姿勢を調整するステップと、
前記姿勢調整後の前記被測定物を前記回転軸を中心として回転させながら、前記被測定物の各回転角における表面の変位を本測定するステップと
を備えたことを特徴とする形状測定方法。
In the shape measurement method for measuring the displacement of the surface at each rotation angle of the measurement object while rotating the measurement object made of a rotating body around a predetermined rotation axis,
Preliminarily measuring the displacement of the surface at each rotation angle of the object to be measured;
Calculating a deviation amount of the measured value from the measured value indicating the surface shape of the measured object acquired by the preliminary measurement and a previously stored design value of the measured object;
Adjusting the posture of the object to be measured based on the calculated shift amount;
And measuring the displacement of the surface at each rotation angle of the object to be measured while rotating the object to be measured after the posture adjustment about the rotation axis.
回転体からなる被測定物を所定の回転軸を中心として回転させながら、前記被測定物の各回転角における表面の変位を測定する形状測定プログラムであって、
コンピュータに、
前記被測定物の各回転角における表面の変位を予備測定するステップと、
前記予備測定によって取得された前記被測定物の表面形状を示す測定値と予め記憶されている前記被測定物の設計値とから前記測定値の前記設計値に対するずれ量を算出するステップと、
前記算出されたずれ量に基づいて前記被測定物の姿勢を調整するステップと、
前記姿勢調整後の前記被測定物を前記回転軸を中心として回転させながら、前記被測定物の各回転角における表面の変位を本測定するステップと
を実行させる
ことを特徴とする形状測定プログラム。

A shape measurement program for measuring a displacement of a surface at each rotation angle of the measurement object while rotating the measurement object made of a rotating body around a predetermined rotation axis,
On the computer,
Preliminarily measuring the displacement of the surface at each rotation angle of the object to be measured;
Calculating an amount of deviation of the measured value with respect to the design value from a measured value indicating the surface shape of the measured object obtained by the preliminary measurement and a design value of the measured object stored in advance;
Adjusting the posture of the object to be measured based on the calculated shift amount;
And a step of performing a main measurement of a displacement of a surface at each rotation angle of the measurement object while rotating the measurement object after the posture adjustment around the rotation axis.

JP2009030656A 2009-02-13 2009-02-13 Shape measuring apparatus, shape measuring method, and program Pending JP2010185804A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009030656A JP2010185804A (en) 2009-02-13 2009-02-13 Shape measuring apparatus, shape measuring method, and program
DE201010001833 DE102010001833A1 (en) 2009-02-13 2010-02-11 Form measuring device, shape measuring method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009030656A JP2010185804A (en) 2009-02-13 2009-02-13 Shape measuring apparatus, shape measuring method, and program

Publications (1)

Publication Number Publication Date
JP2010185804A true JP2010185804A (en) 2010-08-26

Family

ID=42338905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009030656A Pending JP2010185804A (en) 2009-02-13 2009-02-13 Shape measuring apparatus, shape measuring method, and program

Country Status (2)

Country Link
JP (1) JP2010185804A (en)
DE (1) DE102010001833A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013037210A1 (en) * 2011-09-15 2013-03-21 湘潭电机力源模具有限公司 Detecting method and device for curved surface precision of dish parabolic reflecting mirror
DE102013220943A1 (en) 2012-10-18 2014-04-24 Mitutoyo Corporation Profile measuring device, setting method for profile measuring device and profile measuring method
CN106813598A (en) * 2017-02-23 2017-06-09 云南北方驰宏光电有限公司 Aspherical lens centring means and spotting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829153A (en) * 1994-07-12 1996-02-02 Mitsutoyo Corp Shape measuring instrument
JP2001041738A (en) * 1999-08-04 2001-02-16 Tokyo Seimitsu Co Ltd Circularity measurement method and device
JP2005331497A (en) * 2004-04-21 2005-12-02 Olympus Corp Evaluation device and method for aspheric lens
JP2006052998A (en) * 2004-08-11 2006-02-23 Olympus Corp Method and apparatus for measuring three dimensional shape
JP2008151664A (en) * 2006-12-18 2008-07-03 Nikon Corp Measuring method of three-dimensional cam, measuring program, and measuring stage

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3010786B2 (en) 1991-05-16 2000-02-21 キヤノン株式会社 Aspheric measurement method
JP3311119B2 (en) 1993-10-25 2002-08-05 旭光学工業株式会社 Diopter measurement method and device
JP2502476B2 (en) 1994-05-13 1996-05-29 キヤノン株式会社 Surface shape measuring device
JP4794753B2 (en) 2001-06-04 2011-10-19 パナソニック株式会社 Shape measurement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829153A (en) * 1994-07-12 1996-02-02 Mitsutoyo Corp Shape measuring instrument
JP2001041738A (en) * 1999-08-04 2001-02-16 Tokyo Seimitsu Co Ltd Circularity measurement method and device
JP2005331497A (en) * 2004-04-21 2005-12-02 Olympus Corp Evaluation device and method for aspheric lens
JP2006052998A (en) * 2004-08-11 2006-02-23 Olympus Corp Method and apparatus for measuring three dimensional shape
JP2008151664A (en) * 2006-12-18 2008-07-03 Nikon Corp Measuring method of three-dimensional cam, measuring program, and measuring stage

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013037210A1 (en) * 2011-09-15 2013-03-21 湘潭电机力源模具有限公司 Detecting method and device for curved surface precision of dish parabolic reflecting mirror
US8970851B2 (en) 2011-09-15 2015-03-03 Xiangtan Liyuan Electric Tooling Co. Ltd. Detecting method and device for curved surface precision of dish parabolic reflecting mirror
DE102013220943A1 (en) 2012-10-18 2014-04-24 Mitutoyo Corporation Profile measuring device, setting method for profile measuring device and profile measuring method
CN103776346A (en) * 2012-10-18 2014-05-07 株式会社三丰 Profile measuring instrument, adjusting method for profile measuring instrument, and profile measuring method
US9316476B2 (en) 2012-10-18 2016-04-19 Mitutoyo Corporation Profile measuring instrument, adjusting method for profile measuring instrument, and profile measuring method
DE102013220943B4 (en) 2012-10-18 2024-04-04 Mitutoyo Corporation Profile measuring device, setting method for profile measuring device and profile measuring method
CN106813598A (en) * 2017-02-23 2017-06-09 云南北方驰宏光电有限公司 Aspherical lens centring means and spotting device
CN106813598B (en) * 2017-02-23 2019-04-05 云南北方驰宏光电有限公司 Aspherical lens centring means and spotting device

Also Published As

Publication number Publication date
DE102010001833A1 (en) 2010-08-19

Similar Documents

Publication Publication Date Title
JP5337955B2 (en) Shape measuring apparatus, shape measuring method, and program
JP5292564B2 (en) Shape measuring apparatus, calibration method thereof, and calibration program
JP5277033B2 (en) Correction ball diameter calculation method and shape measuring apparatus
JP4163545B2 (en) Reference jig for roundness measuring machine
JP5648692B2 (en) Shape measuring apparatus, shape measuring method, structure manufacturing method and program
TWI623724B (en) Shape measuring device, structure manufacturing system, stage system, shape measuring method, structure manufacturing method, shape measuring program, and computer readable recording medium
JP2006509194A (en) Workpiece inspection method
US10578414B2 (en) Inner-wall measuring instrument and offset-amount calculation method
JP6657552B2 (en) Flatness measurement method
JP2011002317A (en) Calibration method of image probe and shape measuring machine
JP2018194312A (en) Three-dimensional measurement apparatus and three-dimensional measurement method
JP5270138B2 (en) Calibration jig and calibration method
JP2006258612A (en) Inter-shaft angle correction method
JP2010185804A (en) Shape measuring apparatus, shape measuring method, and program
JP4417121B2 (en) Method for passing the object to be measured and surface texture measuring device
JP2005037353A (en) Width measuring method and surface property measuring equipment
JP6735735B2 (en) A coordinate measuring method and apparatus for inspecting a workpiece, the method comprising generating a measurement correction value using a reference shape known not to substantially deviate from an ideal form, Coordinate measuring method and apparatus for inspecting a workpiece
JP2016191663A (en) Calibration method of optical sensor, and three-dimensional coordinate measuring instrument
JP5287266B2 (en) measuring device
JP2007271359A (en) Shape measuring apparatus
JP5781397B2 (en) Circular shape measuring method and apparatus
JP2005037355A (en) Width measuring method and surface property measuring equipment
JP2012093237A (en) Error distribution calculation method, shape measurement method, and shape measurement device
TWM653550U (en) Inspection device for indexing plates
JP2009036543A (en) Ball groove measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120106

A131 Notification of reasons for refusal

Effective date: 20130326

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130723

Free format text: JAPANESE INTERMEDIATE CODE: A02