JPH06255346A - Electric vehicle - Google Patents

Electric vehicle

Info

Publication number
JPH06255346A
JPH06255346A JP4146393A JP4146393A JPH06255346A JP H06255346 A JPH06255346 A JP H06255346A JP 4146393 A JP4146393 A JP 4146393A JP 4146393 A JP4146393 A JP 4146393A JP H06255346 A JPH06255346 A JP H06255346A
Authority
JP
Japan
Prior art keywords
electric motor
coolant
cooling
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4146393A
Other languages
Japanese (ja)
Inventor
Hiroichi Sekino
博一 関野
Shigenobu Urata
滋宣 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4146393A priority Critical patent/JPH06255346A/en
Publication of JPH06255346A publication Critical patent/JPH06255346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To prevent the useless consumption of a battery due to the excessive cooling and improve the traveling distance per charge by constituting a first coolant circuit for the flow of the low temperature gas liquid coolant in an electric motor and a second coolant circuit for the flow of the vaporized coolant after the car room inside cooling and selecting the coolant circuit according to the heat generation quantity of the electric motor. CONSTITUTION:If the calorific heat of an electric motor 6 is small and the cooling load is small in the cooling mode of an electric automobile, cooling is performed by sending the vapor coolant in the high temperature/high pressure state which is compressed by a compressor 1 to a car room outside heat exchanger 4 through a four-way valve 3, and the coolant is evaporated. The electric motor 6 is cooled by sending vapor coolant returned into the compressor to the electric motor 6. When the cooling load of the electric motor is large, the liquid coolant cooled by the car room outside heat exchanger 4 is sent to both the electric motor 6 and a car room inside heat exchanger 5 through a check valve 8a. The coolant sent into the electric motor 6 is decompressed by an expansion valve 7b and formed to the low temperature gas liquid coolant, and is allowed to flow in the electric motor 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は無公害かつ効率よく自由
に人あるいは貨物を運搬できる電気自動車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric vehicle that is pollution-free and can efficiently and freely carry people or cargo.

【0002】[0002]

【従来の技術】電気自動車は、現行の内燃式エンジンか
らの排気ガスによる二酸化炭素の大気中への濃縮による
温室効果および大気汚染問題を解決するものとして注目
を浴びつつある。しかしながら電気自動車は内燃式エン
ジン車に比べ最高速度も低く、さらに電動機の効率また
はバッテリーの電気容量の問題から一充電当りの走行距
離も決して充分とは言えない。また電動機に流れる電流
量とともに電動機および電動機の発熱が増加して温度が
上昇し、異常温度上昇時には電動機の破損が懸念され
る。また電動機の発熱により磁石の減磁が生じ電動機の
効率が低下するため、電動機の冷却はとりわけ重要な課
題となる。
2. Description of the Related Art Electric vehicles have been attracting attention as a solution to the problems of greenhouse effect and air pollution caused by the concentration of carbon dioxide in the atmosphere by the exhaust gas from current internal combustion engines. However, the maximum speed of an electric vehicle is lower than that of an internal combustion engine vehicle, and the traveling distance per charge is not sufficient due to the problems of the efficiency of the electric motor or the electric capacity of the battery. In addition, the heat generation of the electric motor and the electric motor increases with the amount of current flowing through the electric motor, and the temperature rises. When the abnormal temperature rises, the electric motor may be damaged. In addition, cooling of the electric motor is a particularly important issue because the efficiency of the electric motor is reduced due to demagnetization of the magnet due to heat generation of the electric motor.

【0003】以上の課題に対し、電動機を自動車用の空
気調和機の冷凍サイクル内に設置し、夏期冷房モード時
には常時電動機の内部に室内熱交換器と並行に低温気液
冷媒を流して直接熱交換させたり、あるいは銅配管等を
電動機周囲に配設して同様に低温気液冷媒を流して間接
的に熱交換を行って冷却する方法が提案されている。
In order to solve the above problems, the electric motor is installed in the refrigeration cycle of the air conditioner for automobiles, and in the summer cooling mode, the low-temperature gas-liquid refrigerant is constantly flowed inside the electric motor in parallel with the indoor heat exchanger to directly generate heat. A method has been proposed in which the cooling is carried out, or a copper pipe or the like is provided around the electric motor, and a low-temperature gas-liquid refrigerant is also made to flow therethrough to indirectly perform heat exchange for cooling.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、走行開
始直後あるいは低トルクで安定した走行を行っている場
合は電動機の発熱量も少なく、冷却負荷はさほど大きい
ものではない。また冷却後の温度は夏期外気温度(約3
5℃)前後であっても、十分に電動機の信頼性は保証さ
れることからも、常に低温気液冷媒を流すことは冷却過
剰であり、この過剰分は冷凍サイクルの圧縮機を駆動す
る圧縮機用電動機の無駄な消費電力、すなわちバッテリ
ー電力を無駄に消費しているにすぎない。
However, the amount of heat generated by the electric motor is small and the cooling load is not so large immediately after the start of traveling or when the vehicle is traveling stably with low torque. The temperature after cooling is the outside temperature in summer (about 3
Even if the temperature is around 5 ° C), the reliability of the electric motor is sufficiently ensured. Therefore, constantly flowing the low-temperature gas-liquid refrigerant is overcooling, and this excess is the compression that drives the compressor in the refrigeration cycle. Power consumption of the machine electric motor, that is, battery power is merely wasted.

【0005】[0005]

【課題を解決するための手段】本発明はこの欠点を解決
するもので、電動機を駆動源とし、前記電動機を自動車
の空気調和機の冷凍サイクル内に設置した電気自動車に
おいて、前記電動機に低温気液冷媒を流す第1冷媒回路
および前記電動機に車室内冷却を行ったのちの蒸発冷媒
を流す第2冷媒回路を構成し、前記電動機の発熱量に応
じて前記第1冷媒回路および第2冷媒回路を切り換える
ことにより達成される。
SUMMARY OF THE INVENTION The present invention solves this drawback by providing an electric motor as a drive source in an electric vehicle in which the electric motor is installed in a refrigeration cycle of an air conditioner of the vehicle. A first refrigerant circuit for flowing a liquid refrigerant and a second refrigerant circuit for flowing an evaporated refrigerant after cooling the vehicle interior of the electric motor are configured, and the first refrigerant circuit and the second refrigerant circuit are generated according to the amount of heat generated by the electric motor. It is achieved by switching.

【0006】[0006]

【実施例】図1は本発明の電気自動車の冷房モード時の
冷凍サイクルの第1冷媒回路である。電動機6の発熱量
が少なく冷却負荷が小さい、例えば走行開始時あるいは
低速安定走行時等小トルクで済む場合は、圧縮機1によ
り圧縮されオイルセパレータ2でオイル分離された後の
高温高圧状態の蒸気冷媒は、四方弁3を介して車室外熱
交換器4に送られて冷却される。冷却後の低温高圧の液
冷媒は逆止弁8aを通してまず車室内熱交換器5に送ら
れて、膨張弁7aで減圧されて低温気液冷媒となり室内
の空気を冷却して蒸発する。ここで自動車用空調機の室
内熱交換器5は設置スペースの関係により大きさが限ら
れるため、一般に蒸発温度を低く設定して冷却する室内
空気との温度差を大きくすることが必要となる。よって
冷媒蒸発温度はー10〜ー15℃が妥当とされ、ここで
加熱度を5〜10℃とすると、圧縮機に戻される吸入蒸
気冷媒温度は0〜ー10℃となり、外気温度に比べてか
なり低い温度である。よってこの蒸気冷媒を順次三方弁
9a、バイパス流路10および三方弁9bを通して電動
機6に送りこむことによって、電動機6の少量の冷却負
荷は冷却され、電動機6の異常温度上昇が防止できる。
ここで電磁弁11は閉口状態である。電動機6での熱交
換により温度上昇した蒸気冷媒はアキュムレータ12を
介して圧縮機1に戻される。
1 is a first refrigerant circuit of a refrigerating cycle of an electric vehicle according to the present invention in a cooling mode. When the amount of heat generated by the electric motor 6 is small and the cooling load is small, for example, when a small torque is required at the time of starting traveling or stable traveling at low speed, the steam in a high temperature and high pressure state after being compressed by the compressor 1 and separated by the oil separator 2 The refrigerant is sent to the exterior heat exchanger 4 via the four-way valve 3 to be cooled. The cooled low-temperature high-pressure liquid refrigerant is first sent to the vehicle interior heat exchanger 5 through the check valve 8a and is decompressed by the expansion valve 7a to become a low-temperature gas-liquid refrigerant, which cools the indoor air and evaporates. Since the size of the indoor heat exchanger 5 of the automobile air conditioner is limited due to the installation space, it is generally necessary to set the evaporation temperature low and increase the temperature difference from the room air to be cooled. Therefore, it is appropriate that the refrigerant evaporation temperature is -10 to -15 ° C, and if the heating degree is 5 to 10 ° C, the refrigerant temperature of the suction vapor returned to the compressor will be 0 to -10 ° C, which is higher than the outside air temperature. It is a fairly low temperature. Therefore, by sending this vapor refrigerant to the electric motor 6 through the three-way valve 9a, the bypass passage 10 and the three-way valve 9b in sequence, a small cooling load of the electric motor 6 is cooled, and an abnormal temperature rise of the electric motor 6 can be prevented.
Here, the solenoid valve 11 is in a closed state. The vapor refrigerant whose temperature has risen due to heat exchange in the electric motor 6 is returned to the compressor 1 via the accumulator 12.

【0007】図2は本発明の電気自動車の冷房モード時
の冷凍サイクルの第2冷媒回路である。電動機6の発熱
量が多く冷却負荷が大きい、例えば急加速時、登坂走行
時あるいは高速走行時等大トルクを必要とする場合は、
圧縮機1により圧縮され、オイルセパレータ2でオイル
分離された後の高温高圧状態の蒸気冷媒は、四方弁3を
介して車室外熱交換器4に送られて冷却される。冷却後
の低温高圧の液冷媒は逆止弁8aを通して電動機6と車
室内熱交換器5の両方向に送られる。電動機6の方向に
送られた冷媒は、膨張弁7bで減圧されて低温気液冷媒
となり電動機6に流れる。このように気液冷媒を流すこ
とにより電動機6の大きな冷却負荷は十分に冷却され、
温度上昇した冷媒はアキュムレータ12を通り圧縮機1
に戻る。ここでバイパス流路10は三方弁9aおよび9
bにより閉塞されており、電磁弁11は開口状態であ
る。なお三方弁9aおよび9bを用いるかわりに、バイ
パス流路10内に電磁弁を配設しても同様の作用が得ら
れる。以上のような作用により電動機6の発熱を冷媒で
完全に吸収することができるため、電動機6の異常温度
上昇が防止でき、熱破損を受ける心配がなくなる。一方
車室内熱交換器5の方向に送られた冷媒は、膨張弁7a
で絞られ低温気液冷媒となり、室内における冷房負荷を
冷却して蒸発し、蒸気冷媒は四方弁3およびアキュムレ
ータ12を通り圧縮機1に戻される。
FIG. 2 shows a second refrigerant circuit of the refrigeration cycle in the cooling mode of the electric vehicle of the present invention. When a large amount of heat is generated by the electric motor 6 and a large cooling load is required, for example, when a large torque is required at the time of sudden acceleration, traveling uphill or traveling at high speed,
The high-temperature high-pressure vapor refrigerant that has been compressed by the compressor 1 and separated by the oil separator 2 is sent to the exterior heat exchanger 4 via the four-way valve 3 to be cooled. The cooled low-temperature high-pressure liquid refrigerant is sent to both the electric motor 6 and the vehicle interior heat exchanger 5 through the check valve 8a. The refrigerant sent in the direction of the electric motor 6 is decompressed by the expansion valve 7b to become a low temperature gas-liquid refrigerant and flows into the electric motor 6. By flowing the gas-liquid refrigerant in this manner, the large cooling load of the electric motor 6 is sufficiently cooled,
The refrigerant whose temperature has risen passes through the accumulator 12 and the compressor 1
Return to. Here, the bypass flow passage 10 includes three-way valves 9a and 9a.
It is closed by b, and the solenoid valve 11 is in an open state. In addition, instead of using the three-way valves 9a and 9b, the same effect can be obtained by disposing an electromagnetic valve in the bypass passage 10. Since the heat generation of the electric motor 6 can be completely absorbed by the refrigerant by the above-described action, the abnormal temperature rise of the electric motor 6 can be prevented, and the risk of thermal damage is eliminated. On the other hand, the refrigerant sent in the direction of the heat exchanger 5 in the vehicle interior is expanded by the expansion valve 7a.
Is squeezed to become a low-temperature gas-liquid refrigerant, cools a cooling load in the room and evaporates, and the vapor refrigerant is returned to the compressor 1 through the four-way valve 3 and the accumulator 12.

【0008】図3は本発明の電気自動車の暖房モード時
の冷凍サイクルの冷媒回路である。
FIG. 3 shows a refrigerant circuit of the refrigeration cycle in the heating mode of the electric vehicle of the present invention.

【0009】圧縮機1により圧縮され、オイルセパレー
タ2でオイル分離された後の高温高圧状態の蒸気冷媒
は、流路切り換えされた四方弁3により車室内熱交換器
5の方向に送られる。ここで室内の空気と熱交換を行い
室内を暖房し、結果冷媒は冷却されて液冷媒となる。こ
の時バイパス流路10は三方弁9aおよび9bにより閉
塞されている。液冷媒は逆止弁8bを通して電動機6方
向に送られる。液冷媒は膨張弁7bで減圧されて開口状
態の電磁弁11を通して電動機6に流れ、電動機6を冷
却した後三方弁9bおよびアキュムレータ12を通して
圧縮機1に戻される。ここで冬季の電動機6の冷却負荷
は小さいため、室内暖房に要した冷媒のうち電動機6で
蒸発できない分の液冷媒については車室外熱交換器4に
送られ、膨張弁7cで減圧された極低温の気液冷媒は外
気との熱交換により蒸発して、四方弁3およびアキュム
レータ12を通して圧縮機1に戻される。
The high-temperature, high-pressure vapor refrigerant that has been compressed by the compressor 1 and separated by the oil separator 2 is sent to the vehicle interior heat exchanger 5 by the four-way valve 3 whose flow path is switched. Here, heat is exchanged with the air in the room to heat the room, and as a result, the refrigerant is cooled to become a liquid refrigerant. At this time, the bypass passage 10 is closed by the three-way valves 9a and 9b. The liquid refrigerant is sent to the electric motor 6 through the check valve 8b. The liquid refrigerant is decompressed by the expansion valve 7b and flows to the electric motor 6 through the electromagnetic valve 11 in the open state, and after cooling the electric motor 6, is returned to the compressor 1 through the three-way valve 9b and the accumulator 12. Since the cooling load of the electric motor 6 in winter is small, the liquid refrigerant that cannot be evaporated by the electric motor 6 out of the refrigerant required for indoor heating is sent to the vehicle exterior heat exchanger 4 and decompressed by the expansion valve 7c. The low-temperature gas-liquid refrigerant evaporates by heat exchange with the outside air and is returned to the compressor 1 through the four-way valve 3 and the accumulator 12.

【0010】以上のように自動車用空調機の冷凍サイク
ルに前述の冷媒回路を構成することにより、電気自動車
の駆動用の電動機の冷却負荷に応じた冷凍サイクルの運
転が可能となり、冷却過剰によるバッテリーの無駄な消
耗を回避できるため、一充電当りの走行距離が向上しか
つ総合的にエネルギー効率の高い電気自動車が構成でき
る。
By configuring the above-mentioned refrigerant circuit in the refrigeration cycle of the automobile air conditioner as described above, the refrigeration cycle can be operated according to the cooling load of the electric motor for driving the electric vehicle, and the battery due to overcooling can be operated. Since it is possible to avoid wasteful consumption, it is possible to construct an electric vehicle with improved traveling distance per charge and overall high energy efficiency.

【0011】[0011]

【発明の効果】本発明は以上説明したように電動機を駆
動源とし、前記電動機を自動車の空気調和機の冷凍サイ
クル内に設置した電気自動車において、前記電動機に低
温気液冷媒を流す第1冷媒回路および前記電動機に車室
内冷却を行ったのちの蒸発冷媒を流す第2冷媒回路を構
成し、前記電動機の発熱量に応じて前記第1冷媒回路お
よび第2冷媒回路を切り換えることにより、電気自動車
の駆動用の電動機の冷却負荷に応じた冷凍サイクルの運
転が可能となり、冷却過剰によるバッテリーの無駄な消
耗を回避できるため、一充電当りの走行距離が向上しか
つ総合的にエネルギー効率の高い電気自動車とすること
ができる。
As described above, the present invention is an electric vehicle in which an electric motor is used as a driving source and the electric motor is installed in a refrigeration cycle of an air conditioner of a vehicle. A second refrigerant circuit that flows an evaporative refrigerant after cooling the vehicle interior to the circuit and the electric motor, and switches the first refrigerant circuit and the second refrigerant circuit in accordance with the amount of heat generated by the electric motor, thereby an electric vehicle It is possible to operate the refrigeration cycle according to the cooling load of the electric motor for driving, and to avoid wasteful consumption of the battery due to overcooling, improving the mileage per charge and overall energy-efficient electricity It can be a car.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の電気自動車の冷房モード時の冷凍サ
イクルの第1冷媒回路の説明図。
FIG. 1 is an explanatory diagram of a first refrigerant circuit of a refrigeration cycle in a cooling mode of an electric vehicle of the present invention.

【図2】 本発明の電気自動車の冷房モード時の冷凍サ
イクルの第2冷媒回路の説明図。
FIG. 2 is an explanatory diagram of a second refrigerant circuit of a refrigeration cycle in a cooling mode of the electric vehicle of the present invention.

【図3】 本発明の電気自動車の暖房モード時の冷凍サ
イクルの説明図。
FIG. 3 is an explanatory diagram of a refrigeration cycle in a heating mode of the electric vehicle of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 オイルセパレータ 3 四方弁 4 車室外熱交換器 5 車室内熱交換器 6 電動機 7a 膨張弁 7b 膨張弁 7c 膨張弁 8a 逆止弁 8b 逆止弁 9a 三方弁 9b 三方弁 10 バイパス流路 11 電磁弁 12 アキュムレータ 1 compressor 2 oil separator 3 four-way valve 4 vehicle exterior heat exchanger 5 vehicle interior heat exchanger 6 electric motor 7a expansion valve 7b expansion valve 7c expansion valve 8a check valve 8b check valve 9a three-way valve 9b three-way valve 10 bypass flow path 11 Solenoid valve 12 Accumulator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電動機を駆動源とし、前記電動機を自動
車の空気調和機の冷凍サイクル内に設置した電気自動車
において、前記電動機に低温気液冷媒を流す第1冷媒回
路および前記電動機に車室内冷却を行ったのちの蒸発冷
媒を流す第2冷媒回路を構成し、前記電動機の発熱量に
応じて前記第1冷媒回路および第2冷媒回路を切り換え
ることを特徴とする電気自動車。
1. An electric vehicle having an electric motor as a drive source, wherein the electric motor is installed in a refrigeration cycle of an air conditioner of an automobile, and a first refrigerant circuit for flowing a low-temperature gas-liquid refrigerant to the electric motor and a vehicle interior cooling to the electric motor. The electric vehicle, characterized in that a second refrigerant circuit is made to flow the evaporating refrigerant after performing the above step, and the first refrigerant circuit and the second refrigerant circuit are switched according to the amount of heat generated by the electric motor.
JP4146393A 1993-03-02 1993-03-02 Electric vehicle Pending JPH06255346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4146393A JPH06255346A (en) 1993-03-02 1993-03-02 Electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4146393A JPH06255346A (en) 1993-03-02 1993-03-02 Electric vehicle

Publications (1)

Publication Number Publication Date
JPH06255346A true JPH06255346A (en) 1994-09-13

Family

ID=12609076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4146393A Pending JPH06255346A (en) 1993-03-02 1993-03-02 Electric vehicle

Country Status (1)

Country Link
JP (1) JPH06255346A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018192967A (en) * 2017-05-18 2018-12-06 株式会社豊田中央研究所 Air-conditioning system for vehicle
CN113459798A (en) * 2020-03-31 2021-10-01 比亚迪股份有限公司 Acceleration control method and system and vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018192967A (en) * 2017-05-18 2018-12-06 株式会社豊田中央研究所 Air-conditioning system for vehicle
CN113459798A (en) * 2020-03-31 2021-10-01 比亚迪股份有限公司 Acceleration control method and system and vehicle

Similar Documents

Publication Publication Date Title
CN106985632B (en) Multi-connected multifunctional heat pump type electric air conditioning system and working method thereof
CN107972445A (en) A kind of four-drive hybrid electric vehicle heat management system and its control method
CN107453005B (en) Automobile heat management method
CN1311209C (en) Energy recovery system
KR101991241B1 (en) A System for Controlling a Refrigerator Vehicle by a Structure a Refrigerator Vehicle by Supplying a Power of a Battery
CN107394311B (en) Cooling and heating system of electric automobile power battery
JPH05344606A (en) Cooling system of electric automobile
CN209111895U (en) Integrated heat management system
CN108317766A (en) A kind of air-conditioning system and electric bus of electric bus
CN103884128B (en) A kind of utilize automobile waste heat to drive absorption and compressed mixed refrigerated air-conditioning system
CN215971023U (en) Vehicle thermal management system and vehicle
JPH07156645A (en) Electric vehicle
Horuz Vapor absorption refrigeration in road transport vehicles
JP2013250035A (en) Heat siphon-type refrigeration cycle device
CN203785313U (en) Automobile waste heat-driven adsorption and compression hybrid refrigeration air conditioning system
JP6881041B2 (en) Intake cooling system
JP2020040606A (en) Cooling system of hybrid vehicle
JPH06293210A (en) Electric vehicle
CN110356283B (en) Thermal management system of vehicle power battery
CN109823140B (en) Automobile air conditioner refrigerating system and method based on liquid hydrogen fuel cell
JPH06255346A (en) Electric vehicle
CN216048481U (en) Multi-heat-source heat pump type electric automobile heat management system
CN212685163U (en) Heat pump air conditioning system of electric automobile
CN201875831U (en) Cold energy storage air conditioner
KR20130082488A (en) Hybrid air conditioner system for a vehicle without starting an engine capable of being used while an engine turned off