JPH06293210A - Electric vehicle - Google Patents

Electric vehicle

Info

Publication number
JPH06293210A
JPH06293210A JP7830093A JP7830093A JPH06293210A JP H06293210 A JPH06293210 A JP H06293210A JP 7830093 A JP7830093 A JP 7830093A JP 7830093 A JP7830093 A JP 7830093A JP H06293210 A JPH06293210 A JP H06293210A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
battery
storage battery
cabin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7830093A
Other languages
Japanese (ja)
Inventor
Hiroichi Sekino
博一 関野
Shigenobu Urata
滋宣 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7830093A priority Critical patent/JPH06293210A/en
Publication of JPH06293210A publication Critical patent/JPH06293210A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the efficiency of a refrigerating cycle by using the remaining heat of a battery set inside the refrigerating cycle as a refrigerant evaporation means in heating operation to prevent the lowering of heat exchanging capacity due to frosting, etc. CONSTITUTION:A steam refrigerant heated and pressurized in a compressor 1 heats a cabin through a heat exchanger 5 in the cabin, and then a specified amount of liquid refrigerant produced is reduced in pressure at an expansion valve 7b and returned back to the compressor 1 after cooling a driving motor 6. When the cooling load of the driving motor 6 is small, extra refrigerant is flown into battery 12. The battery 12 is controlled by a control circuit 14 using a signal from a temperature sensor 13 and, when the battery 12 is heated to a specified working temperature, a solenoid valve 10b is opened to cool it and to evaporate gas-liquid refrigerant by remaining heat. When the temperature of the battery 12 is lowered, the solenoid valve 10b is closed, and the refrigerant is evaporated by the heat exchanger 4 outside the cabin. Thus the steam load of the heat exchanger 4 outside the cabin can be reduced to prevent evaporation and lowering of heating capacity due to frosting, refrigerant accumulation, etc., for improvement of the efficiency and reliability of a refrigerating cycle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷暖房システムを備えた
電気自動車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric vehicle equipped with an air conditioning system.

【0002】[0002]

【従来の技術】電気自動車は、現行の内燃式エンジンか
らの排気ガスによる二酸化炭素の大気中への濃縮による
温室効果および大気汚染問題を解決するものとして注目
を浴びつつある。しかしながら電気自動車は蓄電池の電
気容量の問題から一充電当りの走行距離も決して充分と
は言えない。また駆動用電動機に流れる電流量とともに
駆動用電動機の発熱が増加して温度が上昇し、異常温度
上昇時には駆動用電動機の破損が懸念される。また駆動
用電動機の発熱により磁石の減磁が生じ駆動用電動機の
効率が低下するため、駆動用電動機の冷却はとりわけ重
要な課題となる。
2. Description of the Related Art Electric vehicles have been attracting attention as a solution to the problems of greenhouse effect and air pollution caused by the concentration of carbon dioxide in the atmosphere by the exhaust gas from current internal combustion engines. However, the traveling distance per charge of an electric vehicle cannot be said to be sufficient due to the problem of the electric capacity of the storage battery. Further, heat generation of the drive motor increases with the amount of current flowing through the drive motor, and the temperature rises. When the temperature rises abnormally, the drive motor may be damaged. Further, the heat generation of the driving motor causes demagnetization of the magnet, which lowers the efficiency of the driving motor, so that cooling of the driving motor becomes a particularly important issue.

【0003】以上の課題に対し、駆動用電動機を自動車
用の空気調和機の冷凍サイクル内に設置し、夏期冷房運
転時においては駆動用電動機の発熱量に応じて冷媒回路
を切り換えて冷却負荷に合わせて駆動用電動機に流す冷
媒の状態を変えて過冷却にならないような効率のよい冷
却システムが提案されている。なおこのシステムにおい
ては、冬季において駆動用電動機の発熱量が夏期とほと
んど変化しないのに対して外気温が低いために、自然冷
却の効果により強制的に冷却する負荷はかなり減少し、
逆に車室内の暖房負荷は通常の夏期の冷房負荷に比べる
と大きく、さらに圧縮冷媒のみで構成したヒートポンプ
式の暖房サイクルによる暖房効率は、冷房効率に比べる
と劣ることから、冷媒を圧縮する圧縮機をより高速で回
転させてより多くの冷媒を循環させている。よって室内
暖房により冷却されて生じた液冷媒量と駆動用電動機冷
却で必要とする冷媒量の差分は車室外熱交換器で外気と
の熱交換より蒸発させなくてはならない。
To address the above problems, a drive motor is installed in the refrigeration cycle of an air conditioner for automobiles, and during the summer cooling operation, the refrigerant circuit is switched according to the amount of heat generated by the drive motor to serve as a cooling load. At the same time, an efficient cooling system has been proposed in which the state of the refrigerant flowing to the drive motor is changed to prevent overcooling. In this system, the amount of heat generated by the drive motor in winter is almost unchanged from that in summer, but the outside air temperature is low, so the load of forced cooling due to the effect of natural cooling is considerably reduced.
On the contrary, the heating load in the passenger compartment is larger than the cooling load in the normal summer, and the heating efficiency of the heat pump type heating cycle composed of only compressed refrigerant is inferior to the cooling efficiency. The machine is rotated at a higher speed to circulate more refrigerant. Therefore, the difference between the amount of liquid refrigerant generated by cooling by indoor heating and the amount of refrigerant required for cooling the drive motor must be evaporated by heat exchange with the outside air in the vehicle exterior heat exchanger.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、外気温
度が非常に低い(例えば0℃以下)になると、冷媒の蒸
発温度をそれ以下に設定しなくてはならず、さらには両
温度間の差が小さいと熱交換能力が十分に得られないこ
とから、蒸発圧力をRー134aで0.15MPa前後
まで下げる必要があり、圧縮機の吸入圧力が負圧になる
危険性がある。さらに熱交換能力を向上させるために熱
交換器の送風機の回転数を上げて送風量を増やすことも
必要となり、その結果送風機の運転による消費電力が増
大し蓄電池の寿命が低下する。また蒸発温度がー10℃
以下になると熱交換器に着霜するため、さらに熱交換能
力が低下する。よってこの様な状態においては気液冷媒
がすべて蒸発しきらずに、熱交換器手前の配管内に溜ま
り、結果圧縮機に戻る冷媒量が減少するため室内暖房能
力が低下し、さらに蒸発できない気液冷媒が増加して、
冷凍サイクルが運転不可能な状況に陥る。
However, when the outside air temperature becomes extremely low (for example, 0 ° C. or lower), the evaporation temperature of the refrigerant must be set lower than that, and further, the difference between the two temperatures becomes small. If it is small, the heat exchange capacity cannot be sufficiently obtained, so it is necessary to lower the evaporation pressure to about 0.15 MPa with R-134a, and there is a risk that the suction pressure of the compressor becomes a negative pressure. Further, in order to improve the heat exchange capacity, it is necessary to increase the rotation speed of the blower of the heat exchanger to increase the amount of blown air. As a result, the power consumption by the operation of the blower increases and the life of the storage battery decreases. Also, the evaporation temperature is -10 ℃
When the temperature becomes below, frost is formed on the heat exchanger, which further reduces the heat exchange capacity. Therefore, in such a state, the gas-liquid refrigerant does not completely evaporate and accumulates in the pipes in front of the heat exchanger, resulting in a decrease in the amount of refrigerant returning to the compressor, which reduces the indoor heating capacity and further prevents vaporization. As the refrigerant increases,
The refrigeration cycle falls into an inoperable state.

【0005】[0005]

【課題を解決するための手段】本発明はこの欠点を解決
するもので、電動機を駆動源とし、前記電動機および蓄
電池を自動車用空気調和機の冷凍サイクル内に設置した
電気自動車において、前記蓄電池の余熱を暖房運転時の
冷媒蒸発手段とすることにより達成される。
SUMMARY OF THE INVENTION The present invention solves this drawback, and in an electric vehicle in which an electric motor is used as a drive source and the electric motor and a storage battery are installed in a refrigeration cycle of an automobile air conditioner, This is achieved by using the residual heat as a refrigerant evaporation means during heating operation.

【0006】[0006]

【実施例】図1は本発明の電気自動車の暖房運転時の冷
凍サイクルの説明図である。圧縮機1により圧縮され、
オイルセパレータ2でオイル分離された後の高温高圧状
態の蒸気冷媒は、四方弁3により車室内熱交換器5の方
向に送られる。ここで室内の空気と熱交換を行って室内
を暖房し、結果冷媒は冷却されて液冷媒となる。ここで
三方弁9aは三方弁9bの方向に対して閉口状態であ
り、液冷媒は逆止弁8bにより膨張弁7aを迂回して駆
動用電動機6の方向に送られる。液冷媒は逆止弁8aに
より膨張弁7bを流れる際適度に減圧されて、開口状態
の電磁弁10aを通って駆動用電動機6に流れ、駆動用
電動機6を冷却した後三方弁9a方向に対して閉口状態
の三方弁9bおよびアキュムレータ11を通って圧縮機
1に戻される。ここで冬季の駆動用電動機6の冷却負荷
は小さいため、車室内暖房に要した冷媒のうち駆動用電
動機6で蒸発できない分の液冷媒の蒸発を以下のように
行う。蓄電池12には温度センサ13が備え付けられて
おり、その信号は制御回路14で処理され、蓄電池12
の温度を管理している。そして蓄電池12が規格の作動
温度に達した時に電磁弁10bを開口させ、作動温度以
下の場合または一度作動温度に達した後に再び温度が下
がってしまった時には電磁弁10bを閉めるような制御
を行う。なお制御回路14は適度なヒステリシスを持
ち、頻繁に電磁弁10bが作動することを防止してい
る。この制御により電気自動車始動時においては蓄電池
12が十分に作動温度に達していないため、電磁弁10
bは閉じたままとして蓄電池12には冷媒は流さずに、
残りの冷媒蒸発は車室外熱交換器4のみで行う。車室外
熱交換器4において膨張弁7cで減圧された極低温の気
液冷媒は外気との熱交換により蒸発し、四方弁3および
アキュムレータ11を通して圧縮機1に戻す。一方蓄電
池12が作動温度に達した時は電磁弁10bを開けて、
膨張弁7bで減圧された気液冷媒を蓄電池12にも送
り、蓄電池12の余熱で気液冷媒を完全に蒸発させてア
キュムレータ11を通して圧縮機1に戻す。ここで蓄電
池12での過度な冷媒蒸発により蓄電池12の温度が作
動温度以下に下がってしまった時には電磁弁10bを閉
め、再び作動温度に達するまでは車室外熱交換器4のみ
で冷媒蒸発を行うこととする。なお蓄電池12および車
室外熱交換器4への冷媒の分配は、蓄電池12側の蒸発
圧力を高くかつ加熱度を小さく、一方車室外熱交換器4
での蒸発圧力を低くかつ加熱度を大きくすることによ
り、蓄電池12へ送られる冷媒量の方が多くなり、車室
外熱交換器4での熱交換量を少なくすることが可能であ
る。また蓄電池12の余熱に十分な余裕が生じた時に
は、車室外熱交換器4は冷媒蒸発にはまったく使用せず
に、蓄電池12のみで蒸発させることも可能である。以
上の作用により車室外熱交換器4での冷媒の蒸発負荷が
低減し、着霜および冷媒溜り等の問題は解決され、また
送風機による送風量を著しく減らすことが可能となるた
め、安全かつ信頼性の高い冷凍サイクルが構成できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of a refrigeration cycle during heating operation of an electric vehicle of the present invention. Compressed by compressor 1,
The high-temperature, high-pressure vapor refrigerant that has been oil-separated by the oil separator 2 is sent to the vehicle interior heat exchanger 5 by the four-way valve 3. Here, heat is exchanged with the air in the room to heat the room, and as a result, the refrigerant is cooled to become a liquid refrigerant. Here, the three-way valve 9a is closed with respect to the direction of the three-way valve 9b, and the liquid refrigerant is sent to the drive electric motor 6 by bypassing the expansion valve 7a by the check valve 8b. The liquid refrigerant is appropriately decompressed when flowing through the expansion valve 7b by the check valve 8a, flows through the electromagnetic valve 10a in the open state to the driving electric motor 6, cools the driving electric motor 6, and then, in the direction of the three-way valve 9a. And is returned to the compressor 1 through the closed three-way valve 9b and the accumulator 11. Here, since the cooling load of the drive motor 6 in winter is small, the liquid refrigerant that cannot be evaporated by the drive motor 6 among the refrigerants required for heating the vehicle interior is evaporated as follows. The storage battery 12 is equipped with a temperature sensor 13, whose signal is processed by the control circuit 14,
Manages the temperature of. When the storage battery 12 reaches the standard operating temperature, the solenoid valve 10b is opened, and when the operating temperature is lower than the operating temperature or once the operating temperature is reached, the solenoid valve 10b is closed. . The control circuit 14 has an appropriate hysteresis to prevent the solenoid valve 10b from frequently operating. Due to this control, the storage battery 12 does not reach the operating temperature sufficiently at the time of starting the electric vehicle.
With b kept closed, no refrigerant flows into the storage battery 12,
The remaining refrigerant evaporation is performed only in the vehicle exterior heat exchanger 4. The cryogenic gas-liquid refrigerant decompressed by the expansion valve 7c in the vehicle exterior heat exchanger 4 evaporates by heat exchange with the outside air and returns to the compressor 1 through the four-way valve 3 and the accumulator 11. On the other hand, when the storage battery 12 reaches the operating temperature, open the solenoid valve 10b,
The gas-liquid refrigerant decompressed by the expansion valve 7b is also sent to the storage battery 12, and the residual heat of the storage battery 12 completely evaporates the gas-liquid refrigerant and returns it to the compressor 1 through the accumulator 11. Here, when the temperature of the storage battery 12 falls below the operating temperature due to excessive refrigerant evaporation in the storage battery 12, the electromagnetic valve 10b is closed, and the refrigerant is evaporated only by the exterior heat exchanger 4 until the operating temperature is reached again. I will. The distribution of the refrigerant to the storage battery 12 and the exterior heat exchanger 4 is such that the evaporation pressure on the storage battery 12 side is high and the heating degree is low, while the exterior heat exchanger 4
By lowering the evaporation pressure and increasing the degree of heating, the amount of refrigerant sent to the storage battery 12 is increased, and the amount of heat exchange in the vehicle exterior heat exchanger 4 can be reduced. Further, when a sufficient margin is generated in the residual heat of the storage battery 12, the exterior heat exchanger 4 may not be used for the evaporation of the refrigerant at all, and may be evaporated only by the storage battery 12. Due to the above action, the evaporation load of the refrigerant in the vehicle exterior heat exchanger 4 is reduced, problems such as frost formation and refrigerant accumulation are solved, and the amount of air blown by the blower can be significantly reduced, which is safe and reliable. A refrigeration cycle with high properties can be configured.

【0007】図2は本発明の電気自動車の冷房運転時の
冷凍サイクルの説明図である。圧縮機1により圧縮さ
れ、オイルセパレータ2でオイル分離された後の高温高
圧状態の蒸気冷媒は、流路切り換えされた四方弁3を介
して車室外熱交換器4に送られて冷却される。冷却後の
低温高圧の液冷媒は逆止弁8aを通して駆動用電動機6
と車室内熱交換器5の両方向に送られる。駆動用電動機
6の方向に送られた冷媒は、膨張弁7bで減圧されて低
温気液冷媒となり電磁弁10aおよび三方弁9bを通し
て駆動用電動機6に流れ、駆動用電動機6の冷却負荷を
十分に冷却して温度上昇した冷媒はアキュムレータ11
を通り圧縮機に戻る。ここで冷房運転時には蓄電池12
の温度に係わらず電磁弁10bを閉口状態として蓄電池
12へは冷媒は流さない。
FIG. 2 is an explanatory view of the refrigeration cycle during the cooling operation of the electric vehicle of the present invention. The high-temperature high-pressure vapor refrigerant that has been compressed by the compressor 1 and separated by the oil separator 2 is sent to the exterior heat exchanger 4 via the four-way valve 3 whose flow path is switched to be cooled. The low-temperature high-pressure liquid refrigerant after cooling passes through the check valve 8a and the driving electric motor 6
And is sent to both directions of the vehicle interior heat exchanger 5. The refrigerant sent in the direction of the driving electric motor 6 is decompressed by the expansion valve 7b to become a low temperature gas-liquid refrigerant, flows to the driving electric motor 6 through the electromagnetic valve 10a and the three-way valve 9b, and sufficiently cools the driving electric motor 6. The refrigerant that has cooled and increased in temperature is accumulator 11
Return to the compressor via. Here, during the cooling operation, the storage battery 12
Regardless of the temperature, the solenoid valve 10b is closed and no refrigerant flows to the storage battery 12.

【0008】以上のように電動機を駆動源とし、電動機
および蓄電池を自動車用空気調和機の冷凍サイクル内に
設置した電気自動車において、蓄電池の余熱を暖房運転
時の冷媒蒸発手段とすることにより、蓄電池側で電動機
で蒸発できない分の気液冷媒の蒸発を行うことができる
ため、車室外熱交換器での冷媒蒸発量の減少により蒸発
負荷が低減し、着霜および冷媒溜り等の問題は解決さ
れ、また送風機による送風量が著しく減らすことがで
き、冷凍サイクルの効率および信頼性が改善される。よ
って蓄電池の無駄な消耗を回避できるため、一充電当り
の走行距離が向上しかつ総合的にエネルギー効率の高い
電気自動車が構成できる。なお電気自動車始動直後の蓄
電池温度が作動温度に達していない場合には冷媒蒸発に
は使用しないので、蓄電池の性能にはほとんど悪影響を
与えることはない。また冷房運転時には蓄電池は冷凍サ
イクルから容易に切り離すことができるため、冷媒の流
れ、車室内および駆動用電動機の冷却効果および総合的
なエネルギー効率はまったく変わりなく運転することが
できる。
As described above, in an electric vehicle in which the electric motor is used as a drive source and the electric motor and the storage battery are installed in the refrigerating cycle of the automobile air conditioner, the residual heat of the storage battery is used as the refrigerant vaporizing means during the heating operation, so that the storage battery Since it is possible to evaporate the gas-liquid refrigerant that cannot be evaporated by the electric motor on the side, the evaporation load is reduced due to the decrease in the refrigerant evaporation amount in the vehicle exterior heat exchanger, and problems such as frost formation and refrigerant accumulation are solved. Moreover, the amount of air blown by the blower can be significantly reduced, and the efficiency and reliability of the refrigeration cycle are improved. Therefore, it is possible to avoid wasteful consumption of the storage battery, and thus it is possible to configure an electric vehicle with improved traveling distance per charge and overall high energy efficiency. When the temperature of the storage battery has not reached the operating temperature immediately after starting the electric vehicle, it is not used for refrigerant evaporation, and therefore the performance of the storage battery is hardly adversely affected. Further, since the storage battery can be easily separated from the refrigeration cycle during the cooling operation, the refrigerant flow, the cooling effect of the vehicle interior and the drive motor, and the overall energy efficiency can be operated without any change.

【0009】[0009]

【発明の効果】本発明は以上説明したように電動機を駆
動源とし、電動機および蓄電池を自動車用空気調和機の
冷凍サイクル内に設置した電気自動車において、蓄電池
の余熱を暖房運転時の冷媒蒸発手段とすることにより、
蓄電池および車室外熱交換器、または蓄電池のみで気液
冷媒の蒸発を行うこともできるため車室外熱交換器での
冷媒蒸発量が減少により車室外熱交換器での蒸発負荷が
低減し、着霜および冷媒溜り等による蒸発能力および暖
房能力の低下が防げ、送風機による送風量を著しく減ら
すことが可能となり、冷凍サイクルの効率および信頼性
が改善され、蓄電池の無駄な消耗を回避できるため、一
充電当りの走行距離が向上しかつ総合的にエネルギー効
率の高い電気自動車とすることができる。
INDUSTRIAL APPLICABILITY As described above, the present invention uses an electric motor as a drive source and installs the electric motor and a storage battery in the refrigeration cycle of an air conditioner for a vehicle in which the residual heat of the storage battery is used as a refrigerant evaporation means during heating operation. By
Since it is possible to evaporate the gas-liquid refrigerant only with the storage battery and the heat exchanger outside the vehicle compartment, or with the storage battery, the evaporation amount of the refrigerant in the heat exchanger outside the vehicle compartment is reduced and the evaporation load in the heat exchanger outside the vehicle compartment is reduced. It is possible to prevent the evaporation capacity and heating capacity from decreasing due to frost and refrigerant accumulation, etc., and to significantly reduce the amount of air blown by the blower, improve the efficiency and reliability of the refrigeration cycle, and avoid wasteful consumption of the storage battery. An electric vehicle with improved mileage per charge and overall high energy efficiency can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の電気自動車の暖房運転時の冷凍サイ
クルの説明図。
FIG. 1 is an explanatory view of a refrigeration cycle during heating operation of an electric vehicle of the present invention.

【図2】 本発明の電気自動車の冷房運転時の冷凍サイ
クルの説明図。
FIG. 2 is an explanatory diagram of a refrigeration cycle during cooling operation of the electric vehicle of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 オイルセパレータ 3 四方弁 4 車室外熱交換器 5 車室内熱交換器 6 駆動用電動機 7a 膨張弁 7b 膨張弁 7c 膨張弁 8a 逆止弁 8b 逆止弁 9a 三方弁 9b 三方弁 10a 電磁弁 10b 電磁弁 11 アキュムレータ 12 蓄電池 13 温度センサ 14 制御回路 1 compressor 2 oil separator 3 four-way valve 4 vehicle exterior heat exchanger 5 vehicle interior heat exchanger 6 driving motor 7a expansion valve 7b expansion valve 7c expansion valve 8a check valve 8b check valve 9a three-way valve 9b three-way valve 10a electromagnetic Valve 10b Solenoid valve 11 Accumulator 12 Storage battery 13 Temperature sensor 14 Control circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電動機を駆動源とし、前記電動機および
蓄電池を自動車用空気調和機の冷凍サイクル内に設置し
た電気自動車において、前記蓄電池の余熱を暖房運転時
の冷媒蒸発手段とすることを特徴とする電気自動車。
1. In an electric vehicle having an electric motor as a drive source and the electric motor and a storage battery installed in a refrigeration cycle of an automobile air conditioner, the residual heat of the storage battery is used as a refrigerant evaporation means during heating operation. Electric car to do.
JP7830093A 1993-04-05 1993-04-05 Electric vehicle Pending JPH06293210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7830093A JPH06293210A (en) 1993-04-05 1993-04-05 Electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7830093A JPH06293210A (en) 1993-04-05 1993-04-05 Electric vehicle

Publications (1)

Publication Number Publication Date
JPH06293210A true JPH06293210A (en) 1994-10-21

Family

ID=13658078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7830093A Pending JPH06293210A (en) 1993-04-05 1993-04-05 Electric vehicle

Country Status (1)

Country Link
JP (1) JPH06293210A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1134640A (en) * 1997-07-24 1999-02-09 Denso Corp Vehicle air conditioner
JP2002005532A (en) * 1999-10-20 2002-01-09 Denso Corp Freezing cycle apparatus
JP2011235857A (en) * 2010-05-13 2011-11-24 Honda Motor Co Ltd Air conditioner for vehicle
JP2012214175A (en) * 2011-04-01 2012-11-08 Nippon Soken Inc Cooling apparatus
WO2013054831A1 (en) * 2011-10-12 2013-04-18 日産自動車株式会社 Electric vehicle
WO2014049928A1 (en) * 2012-09-25 2014-04-03 株式会社デンソー Refrigeration cycle device
US9067476B2 (en) 2010-11-30 2015-06-30 Hyundai Motor Company Temperature control apparatus for vehicle
CN106985632A (en) * 2017-04-24 2017-07-28 南京协众汽车空调集团有限公司 A kind of multi-functional pump type heat electric air-conditioning system of multiple and its method of work
CN107867200A (en) * 2017-12-08 2018-04-03 珠海长欣汽车智能系统有限公司 A kind of vehicle temperature control system with oil

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1134640A (en) * 1997-07-24 1999-02-09 Denso Corp Vehicle air conditioner
JP2002005532A (en) * 1999-10-20 2002-01-09 Denso Corp Freezing cycle apparatus
JP2011235857A (en) * 2010-05-13 2011-11-24 Honda Motor Co Ltd Air conditioner for vehicle
US9067476B2 (en) 2010-11-30 2015-06-30 Hyundai Motor Company Temperature control apparatus for vehicle
JP2012214175A (en) * 2011-04-01 2012-11-08 Nippon Soken Inc Cooling apparatus
WO2013054831A1 (en) * 2011-10-12 2013-04-18 日産自動車株式会社 Electric vehicle
JPWO2013054831A1 (en) * 2011-10-12 2015-03-30 日産自動車株式会社 Electric vehicle
WO2014049928A1 (en) * 2012-09-25 2014-04-03 株式会社デンソー Refrigeration cycle device
JP2014066410A (en) * 2012-09-25 2014-04-17 Denso Corp Refrigeration cycle device
US9694646B2 (en) 2012-09-25 2017-07-04 Denso Corporation Refrigeration cycle device
CN106985632A (en) * 2017-04-24 2017-07-28 南京协众汽车空调集团有限公司 A kind of multi-functional pump type heat electric air-conditioning system of multiple and its method of work
CN107867200A (en) * 2017-12-08 2018-04-03 珠海长欣汽车智能系统有限公司 A kind of vehicle temperature control system with oil

Similar Documents

Publication Publication Date Title
US10814692B2 (en) Multiple circuit heat pump system for vehicle
CN110525169B (en) Integrated passenger cabin heat pump air conditioner and three-electric heating management system for pure electric vehicle
US10974566B2 (en) Heat pump system for vehicle
CN106985632B (en) Multi-connected multifunctional heat pump type electric air conditioning system and working method thereof
US11179994B2 (en) Heat pump for automobile
US11155138B2 (en) Heat pump system for heating or cooling a battery module by using a chiller for a vehicle
JP7271395B2 (en) Vehicle heat pump system
JP5892774B2 (en) Control method of heat pump system for vehicle
JP2021037931A (en) Heat pump system for vehicles
KR101448790B1 (en) Heat pump system for vehicle
CN112848836A (en) Heat pump system for vehicle
JP2009154868A (en) Vehicular air conditioner using heat pump
JP2007069733A (en) Heating element cooling system using air conditioner for vehicle
JP2021195115A (en) Vehicular heat pump system
JP2021195116A (en) Vehicular heat pump system
JP2013220712A (en) Onboard device temperature-adjusting apparatus
JP2022013571A (en) Heat pump system for vehicle
CN108638785B (en) Novel electric automobile heat pump air conditioning system based on phase change energy storage defrosting and control method thereof
JPH05344606A (en) Cooling system of electric automobile
CN211468120U (en) Heat pump vehicle air conditioner with battery thermal management function
CN215971023U (en) Vehicle thermal management system and vehicle
JPH06293210A (en) Electric vehicle
JPH07156645A (en) Electric vehicle
CN115716395A (en) Thermal management system and thermal management method for electric vehicle and electric vehicle
JP2012171522A (en) Air conditioner for vehicle