JP2018192967A - Air-conditioning system for vehicle - Google Patents

Air-conditioning system for vehicle Download PDF

Info

Publication number
JP2018192967A
JP2018192967A JP2017099362A JP2017099362A JP2018192967A JP 2018192967 A JP2018192967 A JP 2018192967A JP 2017099362 A JP2017099362 A JP 2017099362A JP 2017099362 A JP2017099362 A JP 2017099362A JP 2018192967 A JP2018192967 A JP 2018192967A
Authority
JP
Japan
Prior art keywords
refrigerant
heating element
compressor
circulation path
conditioning system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017099362A
Other languages
Japanese (ja)
Other versions
JP6943014B2 (en
Inventor
隆一 岩田
Ryuichi Iwata
隆一 岩田
功一 藏薗
Koichi Kurazono
功一 藏薗
山内 崇史
Takashi Yamauchi
崇史 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2017099362A priority Critical patent/JP6943014B2/en
Publication of JP2018192967A publication Critical patent/JP2018192967A/en
Application granted granted Critical
Publication of JP6943014B2 publication Critical patent/JP6943014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To make it possible for an air-conditioning system for a vehicle, which has a first circulation passage and a second circulation passage, to cool a heating element whichever the refrigerant is circulated in the first circulation passage or the second circulation passage.SOLUTION: An air-conditioning system for a vehicle comprises: a compressor that compresses a refrigerant; an expansion valve that expands the refrigerant; an indoor device that exchanges heat between the refrigerant and air in a vehicle cabin; an outdoor device that exchanges heat between the refrigerant and outdoor air; and a circulation passage switchable between a first a circulation passage that circulates the refrigerant in the compressor, the outdoor device, the expansion valve, the indoor device, a heating element provided in the vehicle, and the compressor in that order and a second circulation passage that circulates the refrigerant in the compressor, the indoor device, the expansion valve, the outdoor device, the heating element, and the compressor in that order.SELECTED DRAWING: Figure 1

Description

本発明は、車両用空調システムに関する。   The present invention relates to a vehicle air conditioning system.

特許文献1には、空調用の冷凍サイクルを用いて車両の発熱体を冷却する車両用冷却装置が開示されている。   Patent Document 1 discloses a vehicle cooling device that cools a heating element of a vehicle using a refrigeration cycle for air conditioning.

特開2013−147152号公報JP 2013-147152 A

ここで、冷凍サイクルを用いて冷暖房を行う車両用空調システムは、通常、冷房運転時に冷媒を循環させる第一循環経路と、暖房運転時に冷媒を循環させ且つ第一循環経路とは異なる第二循環経路と、を有している。そして、第一循環経路及び第二循環経路を有する車両用空調システムにおいて、冷媒を用いて車両の発熱体を冷却する場合には、第一循環経路及び第二循環経路のいずれの経路で冷媒を循環させても、該冷媒によって発熱体を冷却できることが望ましい。   Here, a vehicle air conditioning system that performs cooling and heating using a refrigeration cycle normally has a first circulation path that circulates refrigerant during cooling operation and a second circulation that circulates refrigerant during heating operation and is different from the first circulation path. And a route. In the vehicle air conditioning system having the first circulation path and the second circulation path, when the vehicle heating element is cooled using the refrigerant, the refrigerant is used in any of the first circulation path and the second circulation path. Even if it is circulated, it is desirable that the heating element can be cooled by the refrigerant.

本発明は、上記事実を考慮し、第一循環経路及び第二循環経路を有する車両用空調システムにおいて、第一循環経路及び第二循環経路のいずれの経路で冷媒を循環させても、該冷媒によって発熱体を冷却できるようにすることを目的とする。   In consideration of the above facts, in the vehicle air conditioning system having the first circulation path and the second circulation path, the present invention provides the refrigerant regardless of which of the first circulation path and the second circulation path is circulated. The purpose of this is to allow the heating element to be cooled.

請求項1の発明は、冷媒を圧縮する圧縮機と、前記冷媒を膨張させる膨張弁と、前記冷媒と車室内の空気との間で熱交換する室内器と、前記冷媒と外気との間で熱交換する室外器と、前記圧縮機、前記室外器、前記膨張弁、前記室内器、車両に設けられた発熱体、及び前記圧縮機の順で前記冷媒を循環させる第一循環経路と、前記圧縮機、前記室内器、前記膨張弁、前記室外器、前記発熱体及び前記圧縮機の順で冷媒を循環させる第二循環経路と、に切り替え可能な循環路と、を備える。   The invention according to claim 1 includes a compressor that compresses the refrigerant, an expansion valve that expands the refrigerant, an indoor unit that exchanges heat between the refrigerant and air in the vehicle interior, and between the refrigerant and outside air. An outdoor unit for heat exchange, the compressor, the outdoor unit, the expansion valve, the indoor unit, a heating element provided in a vehicle, and a first circulation path for circulating the refrigerant in the order of the compressor, A circulation path that can be switched to a second circulation path that circulates refrigerant in the order of the compressor, the indoor unit, the expansion valve, the outdoor unit, the heating element, and the compressor.

請求項1の構成によれば、循環路は、第一循環経路と第二循環経路とに切り替え可能となっている。第一循環経路では、圧縮機、室外器、膨張弁、室内器、車両に設けられた発熱体、及び圧縮機の順で冷媒が循環する。このように、第一循環経路で冷媒を循環させることで、以下のような作用効果を生じさせることができる。   According to the configuration of the first aspect, the circulation path can be switched between the first circulation path and the second circulation path. In the first circulation path, the refrigerant circulates in the order of the compressor, the outdoor unit, the expansion valve, the indoor unit, the heating element provided in the vehicle, and the compressor. Thus, the following effects can be produced by circulating the refrigerant in the first circulation path.

すなわち、第一循環経路では、冷媒が、圧縮機で圧縮されることで高温高圧の状態となって、室外器を通過する。室外器を通過する冷媒は、室外器において外気との間で熱交換される。これにより、室外器を通過する冷媒は、外気へ熱を放出して凝縮する。室外器において凝縮された冷媒は、膨張弁で膨張することで低温低圧の状態となって、室内器及び発熱体をこの順で通過する。室内器を通過する冷媒は、室内器において、車室内の空気との間で熱交換される。これにより、室内器を通過する冷媒が、車室内の空気から熱を奪って蒸発する。この結果、車室内の空気が冷やされる。さらに、発熱体を通過する冷媒は、発熱体との間で熱交換される。これにより、発熱体を通過する冷媒が、発熱体から熱を奪って蒸発する。この結果、発熱体が冷却される。   That is, in the first circulation path, the refrigerant is compressed by the compressor to be in a high temperature and high pressure state and passes through the outdoor unit. The refrigerant passing through the outdoor unit exchanges heat with the outside air in the outdoor unit. Thereby, the refrigerant | coolant which passes an outdoor unit discharges | emits heat to outside air, and is condensed. The refrigerant condensed in the outdoor unit becomes a low-temperature and low-pressure state by being expanded by the expansion valve, and passes through the indoor unit and the heating element in this order. The refrigerant passing through the indoor unit exchanges heat with the air in the passenger compartment in the indoor unit. Thereby, the refrigerant passing through the indoor unit evaporates by taking heat from the air in the passenger compartment. As a result, the air in the passenger compartment is cooled. Further, the refrigerant passing through the heating element is exchanged with the heating element. Thereby, the refrigerant | coolant which passes a heat generating body takes heat from a heat generating body, and evaporates. As a result, the heating element is cooled.

また、第二循環経路では、圧縮機、室内器、膨張弁、室外器、発熱体及び圧縮機の順で冷媒が循環する。このように、第二循環経路で冷媒を循環させることで、以下のような作用効果を生じさせることができる。   In the second circulation path, the refrigerant circulates in the order of the compressor, the indoor unit, the expansion valve, the outdoor unit, the heating element, and the compressor. Thus, the following effects can be produced by circulating the refrigerant in the second circulation path.

すなわち、第二循環経路では、冷媒が、圧縮機で圧縮されることで高温高圧の状態となって、室内器を通過する。室内器を通過する冷媒は、室内器において、車室内の空気との間で熱交換される。これにより、室内器を通過する冷媒は、車室内の空気へ熱を放出して凝縮する。この結果、車室内の空気が暖められる。室内器において凝縮された冷媒は、膨張弁で膨張することで低温低圧の状態となって、室外器及び発熱体をこの順で通過する。室外器を通過する冷媒は、室外器において、外気との間で熱交換される。これにより、室外器を通過する冷媒は、外気から熱を奪って蒸発する。発熱体を通過する冷媒は、発熱体との間で熱交換される。これにより、発熱体を通過する冷媒は、発熱体から熱を奪って蒸発する。この結果、発熱体が冷却される。   That is, in the second circulation path, the refrigerant is compressed by the compressor to be in a high temperature and high pressure state and passes through the indoor unit. The refrigerant passing through the indoor unit exchanges heat with the air in the passenger compartment in the indoor unit. Thereby, the refrigerant | coolant which passes an indoor unit discharge | releases heat to the air in a vehicle interior, and is condensed. As a result, the air in the passenger compartment is warmed. The refrigerant condensed in the indoor unit becomes a low-temperature and low-pressure state by being expanded by the expansion valve, and passes through the outdoor unit and the heating element in this order. The refrigerant passing through the outdoor unit exchanges heat with the outside air in the outdoor unit. Thereby, the refrigerant | coolant which passes an outdoor unit takes heat from outside air, and evaporates. The refrigerant passing through the heating element is heat exchanged with the heating element. Thereby, the refrigerant passing through the heating element evaporates by taking heat from the heating element. As a result, the heating element is cooled.

以上のように、請求項1の構成によれば、第一循環経路及び第二循環経路のいずれの経路で冷媒を循環させても、該冷媒によって発熱体を冷却できる。   As described above, according to the configuration of the first aspect, the heating element can be cooled by the refrigerant regardless of which of the first circulation path and the second circulation path is circulated.

請求項2の発明では、冷房運転において、気液二相の前記冷媒を前記発熱体へ送って前記発熱体との間での熱交換により該気液二相の冷媒を蒸発させながら、前記第一循環経路にて前記冷媒を循環させ、暖房運転において、気液二相の前記冷媒を前記発熱体へ送って前記発熱体との間での熱交換により該気液二相の冷媒を蒸発させながら、前記第二循環経路にて前記冷媒を循環させる。   In the second aspect of the present invention, in the cooling operation, the gas-liquid two-phase refrigerant is sent to the heating element, and the gas-liquid two-phase refrigerant is evaporated by heat exchange with the heating element. The refrigerant is circulated through one circulation path, and in the heating operation, the gas-liquid two-phase refrigerant is sent to the heating element, and the gas-liquid two-phase refrigerant is evaporated by heat exchange with the heating element. However, the refrigerant is circulated in the second circulation path.

請求項2の構成によれば、冷房運転において、気液二相の冷媒が発熱体へ送られて該気液二相の冷媒が発熱体との間での熱交換により蒸発しながら、第一循環経路にて冷媒が循環する。このように、気液二相の冷媒と発熱体との間の熱交換により冷媒が蒸発することで、発熱体が冷却される。   According to the configuration of claim 2, in the cooling operation, the gas-liquid two-phase refrigerant is sent to the heating element, and the gas-liquid two-phase refrigerant evaporates by heat exchange with the heating element. The refrigerant circulates in the circulation path. In this way, the heat generator is cooled by evaporating the refrigerant by heat exchange between the gas-liquid two-phase refrigerant and the heat generator.

暖房運転においては、気液二相の冷媒が発熱体へ送られて該気液二相の冷媒が発熱体との間での熱交換により蒸発しながら、第二循環経路にて冷媒が循環する。このように、気液二相の冷媒と発熱体との間の熱交換により冷媒が蒸発することで、発熱体が冷却される。   In the heating operation, the gas-liquid two-phase refrigerant is sent to the heating element, and the refrigerant circulates in the second circulation path while the gas-liquid two-phase refrigerant evaporates by heat exchange with the heating element. . In this way, the heat generator is cooled by evaporating the refrigerant by heat exchange between the gas-liquid two-phase refrigerant and the heat generator.

以上のように、請求項2の構成によれば、冷房及び暖房のどちらの運転状態においても、発熱体を冷却できる。   As described above, according to the configuration of the second aspect, the heating element can be cooled in both the cooling and heating operation states.

請求項3の発明では、前記冷房運転及び前記暖房運転において、前記気液二相の冷媒を流通させながら前記発熱体との間で熱交換することで該気液二相の冷媒を強制対流沸騰させる。   According to a third aspect of the present invention, in the cooling operation and the heating operation, the gas-liquid two-phase refrigerant is subjected to forced convection boiling by exchanging heat with the heating element while circulating the gas-liquid two-phase refrigerant. Let

請求項3の構成によれば、冷房運転及び暖房運転において、気液二相の冷媒が、発熱体で流通しながら発熱体との間で熱交換することで強制対流沸騰する。これにより、発熱体が冷却される。このように、冷媒が強制対流沸騰することで発熱体が冷却されるので、冷媒が貯留された状態でプール沸騰することで発熱体が冷却される構成に比べ、熱交換効率が向上する。   According to the configuration of the third aspect, in the cooling operation and the heating operation, the gas-liquid two-phase refrigerant undergoes forced convection boiling by exchanging heat with the heating element while flowing through the heating element. Thereby, a heat generating body is cooled. Thus, since a heat generating body is cooled by forced convection boiling of a refrigerant | coolant, compared with the structure by which a heat generating body is cooled by pool boiling in the state where the refrigerant | coolant was stored, heat exchange efficiency improves.

請求項4の発明は、前記冷媒を気相の冷媒と液相の冷媒に分離して、該気相の冷媒を前記圧縮機へ送り、該液相の冷媒を貯留する貯留部を有するアキュムレータ、を備えており、前記循環路は、前記第一循環経路において、前記圧縮機、前記室外器、前記膨張弁、前記室内器、前記発熱体、前記アキュムレータ及び前記圧縮機の順で前記冷媒を循環させ、前記第二循環経路において、前記圧縮機、前記室内器、前記膨張弁、前記室外器、前記発熱体、前記アキュムレータ及び前記圧縮機の順で冷媒を循環させる。   The invention according to claim 4 is an accumulator having a storage unit that separates the refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, sends the gas-phase refrigerant to the compressor, and stores the liquid-phase refrigerant. The circulation path circulates the refrigerant in the order of the compressor, the outdoor unit, the expansion valve, the indoor unit, the heating element, the accumulator, and the compressor in the first circulation path. In the second circulation path, the refrigerant is circulated in the order of the compressor, the indoor unit, the expansion valve, the outdoor unit, the heating element, the accumulator, and the compressor.

請求項4の構成によれば、第一循環経路を循環する冷媒が、発熱体を通過した後に気液二相となっていた場合でも、液相の冷媒が圧縮機へ送られず、圧縮機への負荷増大が抑制される。さらに、第二循環経路を循環する冷媒が、発熱体を通過した後に気液二相となっていた場合でも、液相の冷媒が圧縮機へ送られず、圧縮機への負荷増大が抑制される。したがって、第一循環経路及び第二循環経路のいずれの経路で冷媒を循環させても、液相の冷媒が圧縮機へ送られず、圧縮機への負荷増大が抑制される。   According to the configuration of claim 4, even when the refrigerant circulating in the first circulation path is in the gas-liquid two-phase after passing through the heating element, the liquid-phase refrigerant is not sent to the compressor. An increase in the load is suppressed. Furthermore, even when the refrigerant circulating in the second circulation path becomes a gas-liquid two-phase after passing through the heating element, the liquid-phase refrigerant is not sent to the compressor, and an increase in the load on the compressor is suppressed. The Therefore, even if the refrigerant is circulated through any of the first circulation path and the second circulation path, the liquid-phase refrigerant is not sent to the compressor, and an increase in load on the compressor is suppressed.

請求項5の発明では、前記循環路は、前記冷媒が前記発熱体を迂回する発熱体迂回路を有する。   According to a fifth aspect of the present invention, the circulation path has a heating element bypass circuit in which the refrigerant bypasses the heating element.

請求項5の構成によれば、発熱体の冷却が不要な場合に、発熱体へ送られる冷媒の全部を発熱体迂回路によって迂回させることで、発熱体の冷却を停止できる。また、発熱体の冷却の程度を小さく抑えたい場合には、発熱体へ送られる冷媒の一部を発熱体迂回路によって迂回させることで、発熱体の冷却の程度を小さくできる。   According to the structure of Claim 5, when cooling of a heat generating body is unnecessary, cooling of a heat generating body can be stopped by detouring all the refrigerant | coolants sent to a heat generating body by a heat generating body detour. When it is desired to keep the degree of cooling of the heating element small, the degree of cooling of the heating element can be reduced by diverting a part of the refrigerant sent to the heating element by the heating element bypass.

請求項6の発明では、前記循環路は、前記冷媒が前記圧縮機を迂回する圧縮機迂回路を有し、前記圧縮機迂回路には、前記冷媒を圧送するポンプが設けられている。   According to a sixth aspect of the present invention, the circulation path includes a compressor bypass circuit in which the refrigerant bypasses the compressor, and the compressor bypass circuit is provided with a pump for pumping the refrigerant.

請求項6の構成によれば、圧縮機の駆動が停止している状態において、ポンプを駆動して冷媒を圧送できる。したがって、圧縮機の駆動が停止している状態においても、発熱体を冷却できる。   According to the structure of Claim 6, in the state which the drive of the compressor has stopped, a pump can be driven and a refrigerant | coolant can be pumped. Therefore, the heating element can be cooled even when the compressor is stopped.

本発明は、上記構成としたので、第一循環経路及び第二循環経路を有する車両用空調システムにおいて、第一循環経路及び第二循環経路のいずれの経路で冷媒を循環させても、該冷媒によって発熱体を冷却できる。   Since the present invention is configured as described above, in the vehicle air conditioning system having the first circulation path and the second circulation path, the refrigerant can be circulated through any of the first circulation path and the second circulation path. Can cool the heating element.

本実施形態に係る車両用空調システムの冷房運転状態における概略構成図である。It is a schematic block diagram in the air_conditioning | cooling driving | running state of the vehicle air conditioning system which concerns on this embodiment. 本実施形態に係る車両用空調システムの暖房運転状態における概略構成図である。It is a schematic block diagram in the heating operation state of the vehicle air conditioning system which concerns on this embodiment. 第一変形例に係る車両用空調システムの暖房運転状態における概略構成図である。It is a schematic block diagram in the heating operation state of the vehicle air conditioning system which concerns on a 1st modification. 第二変形例に係る車両用空調システムの暖房運転状態における概略構成図である。It is a schematic block diagram in the heating operation state of the vehicle air conditioning system which concerns on a 2nd modification.

以下に、本発明に係る実施形態の一例を図面に基づき説明する。   Below, an example of an embodiment concerning the present invention is described based on a drawing.

(車両用空調システム10)
まず、車両用空調システム10の構成について説明する。図1及び図2には、車両用空調システム10の概略構成図が示されている。
(Vehicle air conditioning system 10)
First, the configuration of the vehicle air conditioning system 10 will be described. The schematic block diagram of the vehicle air conditioning system 10 is shown by FIG.1 and FIG.2.

車両用空調システム10は、車両の車室内における空気の温度等を調節(調整)するシステムであり、車両の車室を暖房及び冷房する機能を有している。さらに、車両用空調システム10は、車両に設けられた発熱体80を冷却する機能を有している。発熱する発熱体80としては、例えば、車両として電気自動車及びハイブリッド電気自動車等が用いられる場合の二次電池、車両として燃料電池自動車が用いられる場合の燃料電池などが挙げられる。なお、二次電池及び燃料電池は、温度が上昇して温度が所定温度を超えると、電池性能が低下し且つ劣化しやすくなる。   The vehicle air-conditioning system 10 is a system that adjusts (adjusts) the temperature of air in the passenger compartment of the vehicle, and has a function of heating and cooling the passenger compartment of the vehicle. Furthermore, the vehicle air conditioning system 10 has a function of cooling a heating element 80 provided in the vehicle. Examples of the heating element 80 that generates heat include a secondary battery when an electric vehicle and a hybrid electric vehicle are used as a vehicle, and a fuel cell when a fuel cell vehicle is used as a vehicle. Note that, when the temperature of the secondary battery and the fuel cell rise and the temperature exceeds a predetermined temperature, the battery performance is deteriorated and easily deteriorated.

車両用空調システム10は、具体的には、図1及び図2に示されるように、ヒートポンプ式の空調システムであり、圧縮機12と、室内器30と、室外器50と、膨張弁16と、アキュムレータ18と、循環路20と、を備えている。   Specifically, as shown in FIGS. 1 and 2, the vehicle air conditioning system 10 is a heat pump type air conditioning system, and includes a compressor 12, an indoor unit 30, an outdoor unit 50, an expansion valve 16, and the like. The accumulator 18 and the circulation path 20 are provided.

圧縮機12は、冷媒(熱媒体)を圧縮する機能を有している。この圧縮機12は、冷媒を吸入する吸入口12Aと、冷媒を送り出す送出口12Bと、を有している。圧縮機12には、圧縮機12を駆動する駆動部13が設けられている。圧縮機12は、駆動部13によって駆動されて冷媒を圧縮することで高温高圧の状態となった冷媒を、送出口12Bから送り出す。   The compressor 12 has a function of compressing a refrigerant (heat medium). The compressor 12 has an inlet 12A for sucking refrigerant and an outlet 12B for sending refrigerant. The compressor 12 is provided with a drive unit 13 that drives the compressor 12. The compressor 12 is driven by the drive unit 13 to send out the refrigerant that has become a high-temperature and high-pressure state by compressing the refrigerant from the outlet 12B.

膨張弁16は、冷媒を膨張させる機能を有している。冷媒は、膨張弁16による膨張によって減圧されることで、低温低圧の状態となって、膨張弁16から送り出される。   The expansion valve 16 has a function of expanding the refrigerant. The refrigerant is depressurized by expansion by the expansion valve 16, thereby becoming a low temperature and low pressure state, and is sent out from the expansion valve 16.

室内器30は、車室から取り込んだ車室内の空気(以下、車内空気という)と冷媒との間で熱交換する熱交換器33と、熱交換器33によって冷媒との間で熱交換された車内空気を車室内へ放出する送風機37と、を有している。室内器30では、車室内から取り込んだ車内空気を、熱交換器33によって、冷媒との間で熱交換して、該車内空気を送風機37によって車室内へ放出する。   The indoor unit 30 was heat-exchanged between the air in the vehicle compartment (hereinafter referred to as vehicle interior air) taken in from the vehicle compartment and the refrigerant, and the heat exchanger 33 exchanged heat with the refrigerant. And a blower 37 for releasing the air in the vehicle into the vehicle interior. In the indoor unit 30, the vehicle interior air taken from the vehicle interior is heat-exchanged with the refrigerant by the heat exchanger 33, and the vehicle interior air is discharged into the vehicle interior by the blower 37.

具体的には、室内器30では、車両用空調システム10の冷房運転において、熱交換器33における熱交換よって、冷媒が車内空気から熱を奪って車内空気を冷却し、その冷気を送風機37によって車室内へ放出する。このとき、冷媒は、蒸発して液相から気液二相に変化する。また、室内器30では、車両用空調システム10の暖房運転において、熱交換器33おける熱交換によって、冷媒が車内空気へ熱を放出して車内空気を加熱し、その熱気を送風機37によって車室内へ放出する。このとき、冷媒は、少なくとも一部が凝縮して気相から液相に変化する。   Specifically, in the indoor unit 30, in the cooling operation of the vehicle air conditioning system 10, the refrigerant takes heat from the air in the vehicle by heat exchange in the heat exchanger 33, cools the air in the vehicle, and cools the cold air by the blower 37. Release into the passenger compartment. At this time, the refrigerant evaporates and changes from the liquid phase to the gas-liquid two phase. Further, in the indoor unit 30, in the heating operation of the vehicle air conditioning system 10, the refrigerant releases heat to the vehicle interior air by heat exchange in the heat exchanger 33 to heat the vehicle interior air, and the hot air is blown by the blower 37 to the vehicle interior. To release. At this time, at least a part of the refrigerant condenses and changes from the gas phase to the liquid phase.

室外器50は、車外から取り込んだ外気と冷媒との間で熱交換する熱交換器53と、熱交換器53によって冷媒との間で熱交換された外気を車外へ放出する送風機57と、を有している。室外器50では、車外から取り込んだ外気を、熱交換器53によって、冷媒との間で熱交換して、該外気を送風機57によって車外へ放出する。   The outdoor unit 50 includes a heat exchanger 53 that exchanges heat between outside air taken from outside the vehicle and the refrigerant, and a blower 57 that discharges outside air heat-exchanged between the refrigerant and the refrigerant by the heat exchanger 53 to the outside of the vehicle. Have. In the outdoor unit 50, the outside air taken from the outside of the vehicle is heat-exchanged with the refrigerant by the heat exchanger 53, and the outside air is discharged outside the vehicle by the blower 57.

具体的には、室外器50では、車両用空調システム10の暖房運転において、熱交換器53における熱交換によって、冷媒が外気から熱を奪って外気を冷却し、その冷気を送風機57によって車外へ放出する。このとき、冷媒は、蒸発して液相から気液二相に変化する。また、室外器50では、車両用空調システム10の冷房運転において、熱交換器53における熱交換よって、冷媒が外気へ熱を放出して外気を加熱し、その熱気を送風機57によって車外へ放出する。このとき、冷媒は、少なくとも一部が凝縮して気相から液相に変化する。   Specifically, in the outdoor unit 50, during the heating operation of the vehicle air conditioning system 10, the refrigerant removes heat from the outside air by heat exchange in the heat exchanger 53 to cool the outside air, and the cold air is blown out of the vehicle by the blower 57. discharge. At this time, the refrigerant evaporates and changes from the liquid phase to the gas-liquid two phase. In the outdoor unit 50, in the cooling operation of the vehicle air conditioning system 10, the refrigerant releases heat to the outside air by heat exchange in the heat exchanger 53 to heat the outside air, and the hot air is released to the outside by the blower 57. . At this time, at least a part of the refrigerant condenses and changes from the gas phase to the liquid phase.

アキュムレータ18は、気相の冷媒と液相の冷媒を分離して、気相の冷媒を圧縮機12へ送る機能を有している。アキュムレータ18は、気相の冷媒と分離された液相の冷媒を貯留する貯留部18Aを有している。   The accumulator 18 has a function of separating the gas-phase refrigerant and the liquid-phase refrigerant and sending the gas-phase refrigerant to the compressor 12. The accumulator 18 has a reservoir 18A that stores a liquid-phase refrigerant separated from a gas-phase refrigerant.

循環路20は、冷媒を循環させる流路であり、冷媒の循環経路を切り替える切替手段としての四方弁40を有している。四方弁40は、第一ポート41、第二ポート42、第三ポート43及び第四ポート44を有している。四方弁40では、第一ポート41と第二ポート42とが連通し且つ第三ポート43と第四ポート44とが連通する第一連通状態(図1に示す状態)と、第一ポート41と第四ポート44とが連通し且つ第二ポート42と第三ポート43とが連通する第二連通状態(図2に示す状態)と、に切り替え可能となっている。四方弁40には、四方弁40を第一連通状態と第二連通状態と切り替える駆動部49が設けられている。   The circulation path 20 is a flow path for circulating the refrigerant, and has a four-way valve 40 as switching means for switching the refrigerant circulation path. The four-way valve 40 has a first port 41, a second port 42, a third port 43, and a fourth port 44. In the four-way valve 40, the first port 41 and the second port 42 communicate with each other, and the third port 43 and the fourth port 44 communicate with each other. And the fourth port 44 can communicate with each other and the second port 42 and the third port 43 can communicate with each other in the second communication state (the state shown in FIG. 2). The four-way valve 40 is provided with a drive unit 49 that switches the four-way valve 40 between the first communication state and the second communication state.

さらに、循環路20は、第一流路21と、第二流路22と、第三流路23と、第四流路24と、第五流路25と、第六流路26と、を有している。第一流路21は、圧縮機12の送出口12Bと、四方弁40の第一ポート41と、を連通している。第二流路22は、四方弁40の第二ポート42と、室外器50と、を連通している。第三流路23は、室外器50と、膨張弁16と、を連通している。第四流路24は、膨張弁16と、室内器30と、を連通している。第五流路25は、室内器30と、四方弁40の第四ポート44と、を連通している。第六流路26は、四方弁40の第三ポート43と、圧縮機12の吸入口12Aと、を連通している。なお、図1及び図2には、循環路20を循環する冷媒の流通方向が、矢印にて示されている。以下、冷媒の流通方向を「冷媒流通方向」と称する。   Furthermore, the circulation path 20 includes a first flow path 21, a second flow path 22, a third flow path 23, a fourth flow path 24, a fifth flow path 25, and a sixth flow path 26. doing. The first flow path 21 communicates the outlet 12 </ b> B of the compressor 12 and the first port 41 of the four-way valve 40. The second flow path 22 communicates the second port 42 of the four-way valve 40 and the outdoor unit 50. The third flow path 23 communicates the outdoor unit 50 and the expansion valve 16. The fourth flow path 24 communicates the expansion valve 16 and the indoor unit 30. The fifth flow path 25 communicates the indoor unit 30 with the fourth port 44 of the four-way valve 40. The sixth flow path 26 communicates the third port 43 of the four-way valve 40 and the suction port 12A of the compressor 12. In FIGS. 1 and 2, the flow direction of the refrigerant circulating in the circulation path 20 is indicated by arrows. Hereinafter, the refrigerant distribution direction is referred to as “refrigerant distribution direction”.

第六流路26には、前述の発熱体80及び前述のアキュムレータ18がこの順で配置されている。したがって、発熱体80は、四方弁40の第三ポート43に対する冷媒流通方向下流側であって、アキュムレータ18に対する冷媒流通方向上流側に配置されている。また、アキュムレータ18は、発熱体80に対する冷媒流通方向下流側であって、圧縮機12に対する冷媒流通方向上流側に配置されている。第六流路26は、発熱体80と熱的に接触しており、第六流路26を流通する冷媒と発熱体80との間で熱交換がなされる。   In the sixth flow path 26, the heating element 80 and the accumulator 18 described above are arranged in this order. Therefore, the heating element 80 is disposed downstream of the third port 43 of the four-way valve 40 in the refrigerant flow direction and upstream of the accumulator 18 in the refrigerant flow direction. The accumulator 18 is disposed downstream of the heat generator 80 in the refrigerant flow direction and upstream of the compressor 12 in the refrigerant flow direction. The sixth channel 26 is in thermal contact with the heating element 80, and heat exchange is performed between the refrigerant flowing through the sixth channel 26 and the heating element 80.

車両用空調システム10における冷房運転は、四方弁40が第一連通状態(図1に示す状態)となっている場合に、第一連通状態を維持した状態で、開始される。また、当該冷房運転は、四方弁40が第二連通状態となっている場合には、駆動部49によって第一連通状態へ切り替えられてから、開始される。   The cooling operation in the vehicle air conditioning system 10 is started in a state in which the four-way valve 40 is maintained in the first continuous state when the four-way valve 40 is in the first continuous state (the state shown in FIG. 1). In addition, when the four-way valve 40 is in the second communication state, the cooling operation is started after being switched to the first continuous state by the drive unit 49.

四方弁40が第一連通状態へ切り替わることで、図1に示されるように、循環路20は、第一流路21、第二流路22、第三流路23、第四流路24、第五流路25、第六流路26、及び第一流路21の順で、連通した状態となる。これにより、車両用空調システム10における冷房運転において、圧縮機12、室外器50、膨張弁16、室内器30、発熱体80、アキュムレータ18、及び圧縮機12の順で、冷媒を循環させる第一循環経路(図1に示す経路)が形成される。   When the four-way valve 40 is switched to the first continuous state, as shown in FIG. 1, the circulation path 20 includes a first flow path 21, a second flow path 22, a third flow path 23, a fourth flow path 24, The fifth flow path 25, the sixth flow path 26, and the first flow path 21 are communicated in this order. Thereby, in the cooling operation in the vehicle air conditioning system 10, the refrigerant is circulated in the order of the compressor 12, the outdoor unit 50, the expansion valve 16, the indoor unit 30, the heating element 80, the accumulator 18, and the compressor 12. A circulation path (path shown in FIG. 1) is formed.

一方、車両用空調システム10における暖房運転は、四方弁40が第二連通状態(図2に示す状態)となっている場合に、第二連通状態を維持した状態で、開始される。また、当該暖房運転は、四方弁40が第一連通状態となっている場合には、駆動部49によって第二連通状態へ切り替えられてから、開始される。   On the other hand, the heating operation in the vehicle air conditioning system 10 is started in a state where the second communication state is maintained when the four-way valve 40 is in the second communication state (the state shown in FIG. 2). The heating operation is started after the four-way valve 40 is switched to the second communication state by the drive unit 49 when the four-way valve 40 is in the first communication state.

四方弁40が第二連通状態へ切り替わることで、図2に示されるように、循環路20は、第一流路21、第五流路25、第四流路24、第三流路23、第二流路22、第六流路26、及び第一流路21の順で、連通した状態となる。これにより、車両用空調システム10における暖房運転において、圧縮機12、室内器30、膨張弁16、室外器50、発熱体80、アキュムレータ18、及び圧縮機12の順で、冷媒を循環させる第二循環経路(図2に示す経路)が形成される。なお、第二循環経路と第一循環経路とでは、第二流路22、第三流路23、第四流路24、及び第五流路25における冷媒流通方向が逆になり、第一流路21及び第六流路26における冷媒流通方向は同じである。   By switching the four-way valve 40 to the second communication state, as shown in FIG. 2, the circulation path 20 includes the first flow path 21, the fifth flow path 25, the fourth flow path 24, the third flow path 23, The two flow paths 22, the sixth flow path 26, and the first flow path 21 are communicated in this order. Thereby, in the heating operation in the vehicle air conditioning system 10, the refrigerant is circulated in the order of the compressor 12, the indoor unit 30, the expansion valve 16, the outdoor unit 50, the heating element 80, the accumulator 18, and the compressor 12. A circulation path (path shown in FIG. 2) is formed. In the second circulation path and the first circulation path, the refrigerant flow directions in the second flow path 22, the third flow path 23, the fourth flow path 24, and the fifth flow path 25 are reversed, and the first flow path The refrigerant flow directions in 21 and the sixth flow path 26 are the same.

以上のように、四方弁40が第一連通状態(図1に示す状態)と第二連通状態(図2に示す状態)とに切り替わることで、循環路20は、第一循環経路と第二循環経路とに切り替わるようになっている。   As described above, the four-way valve 40 is switched between the first communication state (the state shown in FIG. 1) and the second communication state (the state shown in FIG. 2), so that the circulation path 20 is connected to the first circulation path and the first communication path. It is designed to switch to a two-circulation path.

また、車両用空調システム10では、冷房運転において、室内器30での冷媒流量、及び室内器30における送風機37の出力などを調整することで、気液二相の冷媒が室内器30から発熱体80へ送り出される。室内器30での冷媒流量は、圧縮機12での駆動制御及び、膨張弁16の開度等によって調整される。   Further, in the vehicle air conditioning system 10, in the cooling operation, by adjusting the refrigerant flow rate in the indoor unit 30 and the output of the blower 37 in the indoor unit 30, the gas-liquid two-phase refrigerant is transferred from the indoor unit 30 to the heating element. To 80. The refrigerant flow rate in the indoor unit 30 is adjusted by drive control in the compressor 12, the opening degree of the expansion valve 16, and the like.

さらに、車両用空調システム10では、暖房運転において、室外器50での冷媒流量、及び室外器50における送風機57の出力などを調整することで、気液二相の冷媒が室外器50から発熱体80へ送り出される。室外器50での冷媒流量は、圧縮機12での駆動制御及び、膨張弁16の開度等によって調整される。   Furthermore, in the vehicle air conditioning system 10, in the heating operation, the refrigerant flow rate in the outdoor unit 50 and the output of the blower 57 in the outdoor unit 50 are adjusted so that the gas-liquid two-phase refrigerant is heated from the outdoor unit 50 to the heating element. To 80. The refrigerant flow rate in the outdoor unit 50 is adjusted by drive control in the compressor 12, the opening degree of the expansion valve 16, and the like.

また、車両用空調システム10では、気液二相の冷媒が第六流路26を流通しながら、発熱体80との間で熱交換されることで、冷媒が強制対流沸騰して、発熱体80が冷却される構成となっている。   In the vehicle air conditioning system 10, the gas-liquid two-phase refrigerant circulates through the sixth flow path 26 and exchanges heat with the heating element 80, whereby the refrigerant undergoes forced convection boiling, and the heating element. 80 is configured to be cooled.

(車両用空調システム10の作用効果)
次に、車両用空調システム10の作用効果について説明する。
(Operational effect of the vehicle air conditioning system 10)
Next, the effect of the vehicle air conditioning system 10 will be described.

車両用空調システム10では、循環路20は、四方弁40を切り替えることで、第一循環経路(図1に示す経路)と第二循環経路(図2に示す経路)とに切り替え可能となっている。そして、車両用空調システム10では、冷房運転において、図1に示されるように、第一循環経路で冷媒を循環させる。第一循環経路では、圧縮機12、室外器50、膨張弁16、室内器30、発熱体80、アキュムレータ18及び圧縮機12の順で冷媒が循環する。   In the vehicle air conditioning system 10, the circulation path 20 can be switched between a first circulation path (path shown in FIG. 1) and a second circulation path (path shown in FIG. 2) by switching the four-way valve 40. Yes. In the vehicle air conditioning system 10, in the cooling operation, as shown in FIG. 1, the refrigerant is circulated through the first circulation path. In the first circulation path, the refrigerant circulates in the order of the compressor 12, the outdoor unit 50, the expansion valve 16, the indoor unit 30, the heating element 80, the accumulator 18, and the compressor 12.

第一循環経路で循環する冷媒は、圧縮機12で圧縮されることで高温高圧の状態となって、室外器50を通過する。室外器50を通過する冷媒は、室外器50において外気との間で熱交換される。これにより、室外器50を通過する冷媒は、外気へ熱を放出して凝縮する。室外器50において凝縮された冷媒は、膨張弁16で膨張することで、低温低圧の状態となって、室内器30及び発熱体80をこの順で通過する。室内器30を通過する冷媒は、室内器30において、車室内の空気との間で熱交換される。これにより、室内器30を通過する冷媒は、車室内の空気から熱を奪って蒸発する。この結果、車室内の空気が冷やされ、その冷気が送風機37によって車室内へ放出される。発熱体80を通過する冷媒は、気液二相で発熱体80を通過して発熱体80との間で熱交換される。これにより、発熱体80を通過する冷媒が、発熱体80から熱を奪って蒸発する。この結果、発熱体80が冷却される。本実施形態では、気液二相の冷媒が、発熱体80で流通しながら発熱体80との間で熱交換することで強制対流沸騰して、発熱体80を冷却する。   The refrigerant circulating in the first circulation path is compressed by the compressor 12 to be in a high temperature and high pressure state and passes through the outdoor unit 50. The refrigerant passing through the outdoor unit 50 exchanges heat with the outside air in the outdoor unit 50. As a result, the refrigerant passing through the outdoor unit 50 is condensed by releasing heat to the outside air. The refrigerant condensed in the outdoor unit 50 is expanded by the expansion valve 16 to be in a low temperature and low pressure state, and passes through the indoor unit 30 and the heating element 80 in this order. The refrigerant passing through the indoor unit 30 exchanges heat with the air in the passenger compartment in the indoor unit 30. Thereby, the refrigerant | coolant which passes the indoor unit 30 takes heat from the air of a vehicle interior, and evaporates. As a result, the air in the passenger compartment is cooled, and the cool air is discharged by the blower 37 into the passenger compartment. The refrigerant passing through the heating element 80 passes through the heating element 80 in a gas-liquid two-phase and is heat-exchanged with the heating element 80. Thereby, the refrigerant passing through the heating element 80 takes heat from the heating element 80 and evaporates. As a result, the heating element 80 is cooled. In this embodiment, the gas-liquid two-phase refrigerant is forced to convection boil by exchanging heat with the heating element 80 while flowing through the heating element 80, thereby cooling the heating element 80.

一方、暖房運転においては、図2に示されるように、第二循環経路で冷媒を循環させる。第二循環経路では、圧縮機12、室内器30、膨張弁16、室外器50、発熱体80、アキュムレータ18及び圧縮機12の順で冷媒が循環する。   On the other hand, in the heating operation, as shown in FIG. 2, the refrigerant is circulated through the second circulation path. In the second circulation path, the refrigerant circulates in the order of the compressor 12, the indoor unit 30, the expansion valve 16, the outdoor unit 50, the heating element 80, the accumulator 18, and the compressor 12.

第二循環経路で循環する冷媒は、圧縮機12で圧縮されることで高温高圧の状態となって、室内器30を通過する。室内器30を通過する冷媒は、室内器30において、車室内の空気との間で熱交換される。これにより、室内器30を通過する冷媒は、車内空気へ熱を放出して凝縮する。この結果、車室内の空気が暖められ、その熱気が送風機37によって車室内へ放出される。室内器30において凝縮された冷媒は、膨張弁16で膨張することで低温低圧の状態となって、室外器50及び発熱体80をこの順で通過する。室外器50を通過する冷媒は、室外器50において、外気との間で熱交換される。これにより、室外器50を通過する冷媒は、外気から熱を奪って蒸発する。発熱体80を通過する冷媒は、気液二相で発熱体80を通過して発熱体80との間で熱交換される。これにより、発熱体80を通過する冷媒が、発熱体80から熱を奪って蒸発する。この結果、発熱体80が冷却される。本実施形態では、気液二相の冷媒が、発熱体80で流通しながら発熱体80との間で熱交換することで強制対流沸騰して、発熱体80を冷却する。   The refrigerant circulating in the second circulation path is compressed by the compressor 12 to be in a high temperature and high pressure state, and passes through the indoor unit 30. The refrigerant passing through the indoor unit 30 exchanges heat with the air in the passenger compartment in the indoor unit 30. Thereby, the refrigerant | coolant which passes the indoor unit 30 discharge | releases heat to vehicle interior air, and is condensed. As a result, the air in the passenger compartment is warmed and the hot air is released by the blower 37 into the passenger compartment. The refrigerant condensed in the indoor unit 30 is expanded at the expansion valve 16 to be in a low temperature and low pressure state, and passes through the outdoor unit 50 and the heating element 80 in this order. The refrigerant passing through the outdoor unit 50 exchanges heat with the outside air in the outdoor unit 50. Thereby, the refrigerant | coolant which passes the outdoor unit 50 takes heat from outside air, and evaporates. The refrigerant passing through the heating element 80 passes through the heating element 80 in a gas-liquid two-phase and is heat-exchanged with the heating element 80. Thereby, the refrigerant passing through the heating element 80 takes heat from the heating element 80 and evaporates. As a result, the heating element 80 is cooled. In this embodiment, the gas-liquid two-phase refrigerant is forced to convection boil by exchanging heat with the heating element 80 while flowing through the heating element 80, thereby cooling the heating element 80.

以上のように、車両用空調システム10によれば、第一循環経路及び第二循環経路のいずれの経路で冷媒を循環させても、冷媒によって発熱体80を冷却できる。言い換えれば、車両用空調システム10では、冷房及び暖房のどちらの運転状態においても、発熱体80を冷却できる。   As described above, according to the vehicle air conditioning system 10, the heating element 80 can be cooled by the refrigerant regardless of which of the first circulation path and the second circulation path is circulated. In other words, the vehicle air conditioning system 10 can cool the heating element 80 in both the cooling and heating operation states.

さらに、車両用空調システム10の構成によれば、冷房運転及び暖房運転において、気液二相の冷媒が、発熱体80で流通しながら発熱体80との間で熱交換することで強制対流沸騰して、発熱体80を冷却する。このため、冷媒が貯留された状態でプール沸騰して発熱体80を冷却する構成(比較例)に比べ、熱交換効率が向上する。   Furthermore, according to the configuration of the vehicle air-conditioning system 10, forced convection boiling is performed by heat exchange between the gas-liquid two-phase refrigerant and the heating element 80 while circulating in the heating element 80 in the cooling operation and the heating operation. Then, the heating element 80 is cooled. For this reason, compared with the structure (comparative example) which cools the heat generating body 80 by pool boiling in the state where the refrigerant | coolant was stored, heat exchange efficiency improves.

また、車両用空調システム10では、第一循環経路(冷房運転)及び第二循環経路(暖房運転)において、冷媒を気液二相で流通可能な第六流路26に発熱体80が配置されている。そして、第六流路26では、要素(例えば、膨張弁、室内器、流路)を追加せずに、冷媒流量、冷房運転における冷房負荷、暖房運転における暖房負荷を調整することで、冷媒を気液二相で流通できる。このため、簡易な構成で、冷媒を用いて、発熱体80を冷却できる。車両用空調システム10を簡易な構成とできるので、車両用空調システム10の体格の小型化を図ることができる。   In the vehicle air-conditioning system 10, the heating element 80 is disposed in the sixth flow path 26 through which the refrigerant can be circulated in a gas-liquid two-phase in the first circulation path (cooling operation) and the second circulation path (heating operation). ing. In the sixth flow path 26, the refrigerant is adjusted by adjusting the refrigerant flow rate, the cooling load in the cooling operation, and the heating load in the heating operation without adding elements (for example, an expansion valve, an indoor unit, and a flow path). It can be distributed in two phases. For this reason, the heat generating body 80 can be cooled using a refrigerant with a simple configuration. Since the vehicle air conditioning system 10 can have a simple configuration, the size of the vehicle air conditioning system 10 can be reduced.

また、車両用空調システム10では、第一循環経路を循環する冷媒は、発熱体80を通過した後、アキュムレータ18で、気相の冷媒と液相の冷媒を分離されて、気相の冷媒が圧縮機12へ送られる。このため、第一循環経路を循環する冷媒が、発熱体80を通過した後に気液二相となっていた場合でも、液相の冷媒が圧縮機12へ送られず、圧縮機12への負荷増大が抑制される。   In the vehicle air conditioning system 10, the refrigerant circulating in the first circulation path passes through the heating element 80, and then the gas-phase refrigerant and the liquid-phase refrigerant are separated by the accumulator 18. It is sent to the compressor 12. For this reason, even when the refrigerant circulating in the first circulation path becomes a gas-liquid two-phase after passing through the heating element 80, the liquid-phase refrigerant is not sent to the compressor 12, and the load on the compressor 12 is increased. Increase is suppressed.

同様に、第二循環経路を循環する冷媒が、発熱体80を通過した後に気液二相となっていた場合でも、液相の冷媒が圧縮機12へ送られず、圧縮機12への負荷増大が抑制される。したがって、第一循環経路及び第二循環経路のいずれの経路で冷媒を循環させても、液相の冷媒が圧縮機12へ送られず、圧縮機12への負荷増大が抑制される。   Similarly, even when the refrigerant circulating in the second circulation path is in a gas-liquid two-phase after passing through the heating element 80, the liquid-phase refrigerant is not sent to the compressor 12, and the load on the compressor 12 is increased. Increase is suppressed. Therefore, even if the refrigerant is circulated through any of the first circulation path and the second circulation path, the liquid-phase refrigerant is not sent to the compressor 12, and an increase in load on the compressor 12 is suppressed.

(循環路20の第一変形例)
循環路20は、図3に示されるように、冷媒が発熱体80を迂回する発熱体迂回路122を有していてもよい。図3に示す構成では、発熱体迂回路122の上流端が、第六流路26における発熱体80に対する冷媒流通方向上流側に接続(連通)されている。発熱体迂回路122の下流端は、第六流路26における発熱体80とアキュムレータ18との間に接続(連通)されている。発熱体迂回路122には、発熱体迂回路122を開閉する開閉弁124が設けられている。第六流路26における発熱体迂回路122の上流端と発熱体80との間には、第六流路26を開閉する開閉弁129が設けられている。
(First modification of circulation path 20)
As shown in FIG. 3, the circulation path 20 may have a heating element bypass circuit 122 in which the refrigerant bypasses the heating element 80. In the configuration shown in FIG. 3, the upstream end of the heating element bypass 122 is connected (communication) to the upstream side in the refrigerant flow direction with respect to the heating element 80 in the sixth flow path 26. The downstream end of the heating element bypass 122 is connected (communication) between the heating element 80 and the accumulator 18 in the sixth flow path 26. The heating element bypass circuit 122 is provided with an on-off valve 124 that opens and closes the heating element bypass circuit 122. An open / close valve 129 that opens and closes the sixth flow path 26 is provided between the upstream end of the heat generating element bypass circuit 122 in the sixth flow path 26 and the heat generation element 80.

図3に示す構成では、冷房運転及び暖房運転において、発熱体80を冷却する場合には、開閉弁124を閉じると共に開閉弁129を開く。これにより、冷媒は、発熱体迂回路122を流通せずに、発熱体80へ送られる。   In the configuration shown in FIG. 3, when cooling the heating element 80 in the cooling operation and the heating operation, the on-off valve 124 is closed and the on-off valve 129 is opened. Thus, the refrigerant is sent to the heating element 80 without flowing through the heating element bypass 122.

一方、冷房運転及び暖房運転において、発熱体80の冷却が不要な場合には、開閉弁124を開くと共に開閉弁129を閉じる。これにより、冷媒は、発熱体80に送られず、発熱体迂回路122を流通する。このように、開閉弁124、129の開閉を制御することで、冷媒が発熱体80を通過するか否かが切り替えられる。すなわち、開閉弁124、129が、冷媒が発熱体80を通過するか否かを切り替える切替手段として機能する。   On the other hand, in the cooling operation and the heating operation, when the heating element 80 does not need to be cooled, the on-off valve 124 is opened and the on-off valve 129 is closed. As a result, the refrigerant is not sent to the heating element 80 and flows through the heating element detour 122. In this manner, whether the refrigerant passes through the heating element 80 is switched by controlling the opening / closing of the on-off valves 124 and 129. That is, the on-off valves 124 and 129 function as switching means for switching whether or not the refrigerant passes through the heating element 80.

以上のように、図3に示す構成では、発熱体80の冷却が不要な場合に、発熱体80へ送られる冷媒の全部を発熱体迂回路122によって迂回させることで、発熱体80の冷却を停止できる。図3に示す構成では、第六流路26及び発熱体迂回路122のそれぞれに開閉弁を設けていたが、これに限られない。例えば、四方弁40の第三ポート43と発熱体80とが連通した状態と、四方弁40の第三ポート43と発熱体迂回路122とが連通した状態と、に切り替える切替弁(三方弁)等を、第六流路26と発熱体迂回路122との分岐部分(接続部分)に設けた構成であってもよい。   As described above, in the configuration shown in FIG. 3, when cooling of the heating element 80 is not necessary, all of the refrigerant sent to the heating element 80 is bypassed by the heating element bypass circuit 122, thereby cooling the heating element 80. You can stop. In the configuration illustrated in FIG. 3, the on-off valves are provided in each of the sixth flow path 26 and the heating element bypass 122, but the configuration is not limited thereto. For example, a switching valve (three-way valve) that switches between a state in which the third port 43 of the four-way valve 40 and the heating element 80 communicate with each other and a state in which the third port 43 of the four-way valve 40 and the heating element bypass circuit 122 communicate with each other. Or the like may be provided at a branch portion (connection portion) between the sixth flow path 26 and the heating element bypass route 122.

図3に示す構成では、発熱体80へ送られる冷媒の全部を発熱体迂回路122によって迂回させる構成とされていたが、これに限られない。例えば、発熱体80へ送られる冷媒の一部を発熱体迂回路122によって迂回させる構成であってもよい。具体的には、例えば、図3に示す構成において、開閉弁124を無くし、且つ、開閉弁129に替えて、第六流路26を流通する冷媒の流量を調整可能な調整弁を設ける構成とすることができる。また、例えば、図3に示す構成において、開閉弁129を無くし、且つ、開閉弁124に替えて、発熱体迂回路122を流通する冷媒の流量を調整可能な調整弁を設ける構成としてもよい。この構成によれば、発熱体80の冷却の程度を小さく抑えたい場合に、第六流路26又は発熱体迂回路122での冷媒の流量を調整して、発熱体80へ送られる冷媒の一部を発熱体迂回路122によって迂回させることで、発熱体80の冷却の程度を小さくできる。   In the configuration shown in FIG. 3, all of the refrigerant sent to the heating element 80 is bypassed by the heating element bypass 122, but is not limited thereto. For example, a configuration in which a part of the refrigerant sent to the heating element 80 is bypassed by the heating element bypass 122 may be used. Specifically, for example, in the configuration shown in FIG. 3, the on-off valve 124 is eliminated, and an on-off valve 129 is provided instead of an on-off valve 129 and an adjustment valve capable of adjusting the flow rate of the refrigerant flowing through the sixth flow path 26 is provided. can do. Further, for example, in the configuration shown in FIG. 3, the on-off valve 129 may be eliminated, and an on-off valve 124 may be provided instead of an on-off valve 124 that can provide an adjustment valve that can adjust the flow rate of the refrigerant flowing through the heating element bypass circuit 122. According to this configuration, when it is desired to reduce the degree of cooling of the heating element 80 to a small level, the refrigerant flow rate in the sixth flow path 26 or the heating element bypass 122 is adjusted to reduce the amount of refrigerant sent to the heating element 80. The degree of cooling of the heating element 80 can be reduced by bypassing the part by the heating element bypass circuit 122.

(循環路20の第二変形例)
循環路20は、図4に示されるように、冷媒が圧縮機12を迂回する圧縮機迂回路233を有していてもよい。図4に示す構成では、圧縮機迂回路233の上流端は、アキュムレータ18の貯留部18Aに接続(連通)されている。圧縮機迂回路233の下流端は、第一流路21に接続(連通)されている。圧縮機迂回路233には、圧縮機迂回路233を開閉する開閉弁235と、冷媒を圧送するポンプ237とが、冷媒流通方向に沿ってこの順で配置されている。
(Second modification of circulation path 20)
As shown in FIG. 4, the circulation path 20 may have a compressor bypass circuit 233 in which the refrigerant bypasses the compressor 12. In the configuration shown in FIG. 4, the upstream end of the compressor bypass 233 is connected (communication) to the storage portion 18 </ b> A of the accumulator 18. The downstream end of the compressor bypass 233 is connected (communication) to the first flow path 21. In the compressor bypass 233, an on-off valve 235 for opening and closing the compressor bypass 233 and a pump 237 for pumping the refrigerant are arranged in this order along the refrigerant flow direction.

図4に示す構成では、圧縮機12が駆動している状態において、開閉弁235が閉じられる。そして、車両用空調システム10の冷房運転及び暖房運転を停止している状態、すなわち圧縮機12の駆動を停止している状態において、開閉弁235を開くと共にポンプ237を駆動して冷媒を圧送できる。これにより、冷媒を第一循環経路又は第二循環経路で循環させて、発熱体80を冷却することができる。   In the configuration shown in FIG. 4, the on-off valve 235 is closed while the compressor 12 is driven. And in the state which has stopped the air_conditionaing | cooling operation and heating operation of the vehicle air conditioning system 10, ie, the state which stopped the drive of the compressor 12, the on-off valve 235 can be opened and the pump 237 can be driven, and a refrigerant | coolant can be pumped. . Thereby, the heat generating body 80 can be cooled by circulating the refrigerant in the first circulation path or the second circulation path.

(他の変形例)
本実施形態では、第六流路26に単一の発熱体80が配置されていたが、これに限られない。例えば、第六流路26に複数の発熱体が配置される構成であってもよい。この場合は、第六流路26を流通する冷媒と、複数の発熱体のそれぞれとの間で熱交換がなされる。さらに、この場合では、冷媒流通方向の最下流側に配置される発熱体において冷媒が気液二相となるように、冷房運転において、室内器30での冷媒流量、及び室内器30における送風機37の出力などが調整され、暖房運転において、室外器50での冷媒流量、及び室外器50における送風機57の出力などを調整される。
(Other variations)
In the present embodiment, the single heating element 80 is disposed in the sixth flow path 26, but the present invention is not limited to this. For example, a configuration in which a plurality of heating elements are arranged in the sixth flow path 26 may be used. In this case, heat exchange is performed between the refrigerant flowing through the sixth flow path 26 and each of the plurality of heating elements. Furthermore, in this case, in the cooling operation, the refrigerant flow rate in the indoor unit 30 and the blower 37 in the indoor unit 30 so that the refrigerant is in a gas-liquid two-phase in the heating element arranged on the most downstream side in the refrigerant flow direction. In the heating operation, the refrigerant flow rate in the outdoor unit 50, the output of the blower 57 in the outdoor unit 50, and the like are adjusted.

また、本実施形態では、第六流路26にアキュムレータ18が設けられていたが、これに限られない。例えば、冷媒が発熱体80において蒸発(沸騰)した結果、冷媒のほとんどが気相となる場合には、アキュムレータ18が設けられていない構成であってもよい。   In the present embodiment, the accumulator 18 is provided in the sixth flow path 26, but the present invention is not limited to this. For example, when most of the refrigerant is in a gas phase as a result of the refrigerant evaporating (boiling) in the heating element 80, the accumulator 18 may not be provided.

本発明は、上記の実施形態に限るものではなく、その主旨を逸脱しない範囲内において種々の変形、変更、改良が可能である。例えば、上記に示した変形例は、適宜、複数を組み合わせて構成してもよい。   The present invention is not limited to the above-described embodiment, and various modifications, changes, and improvements can be made without departing from the spirit of the present invention. For example, the modification examples described above may be appropriately combined.

10 車両用空調システム
12 圧縮機
16 膨張弁
18 アキュムレータ
20 循環路
30 室内器
50 室外器
80 発熱体
122 発熱体迂回路
233 圧縮機迂回路
237 ポンプ
DESCRIPTION OF SYMBOLS 10 Vehicle air conditioning system 12 Compressor 16 Expansion valve 18 Accumulator 20 Circulation path 30 Indoor unit 50 Outdoor unit 80 Heating element 122 Heating element detour 233 Compressor detour 237 Pump

Claims (6)

冷媒を圧縮する圧縮機と、
前記冷媒を膨張させる膨張弁と、
前記冷媒と車室内の空気との間で熱交換する室内器と、
前記冷媒と外気との間で熱交換する室外器と、
前記圧縮機、前記室外器、前記膨張弁、前記室内器、車両に設けられた発熱体、及び前記圧縮機の順で前記冷媒を循環させる第一循環経路と、前記圧縮機、前記室内器、前記膨張弁、前記室外器、前記発熱体及び前記圧縮機の順で冷媒を循環させる第二循環経路と、に切り替え可能な循環路と、
を備える車両用空調システム。
A compressor for compressing the refrigerant;
An expansion valve for expanding the refrigerant;
An indoor unit that exchanges heat between the refrigerant and the air in the passenger compartment;
An outdoor unit that exchanges heat between the refrigerant and the outside air;
A first circulation path for circulating the refrigerant in the order of the compressor, the outdoor unit, the expansion valve, the indoor unit, a heating element provided in a vehicle, and the compressor, the compressor, the indoor unit, A circulation path that can be switched to a second circulation path for circulating the refrigerant in the order of the expansion valve, the outdoor unit, the heating element, and the compressor;
A vehicle air conditioning system comprising:
冷房運転において、気液二相の前記冷媒を前記発熱体へ送って前記発熱体との間での熱交換により該気液二相の冷媒を蒸発させながら、前記第一循環経路にて前記冷媒を循環させ、
暖房運転において、気液二相の前記冷媒を前記発熱体へ送って前記発熱体との間での熱交換により該気液二相の冷媒を蒸発させながら、前記第二循環経路にて前記冷媒を循環させる
請求項1に記載の車両用空調システム。
In the cooling operation, the refrigerant in the first circulation path is sent while the gas-liquid two-phase refrigerant is sent to the heating element and the gas-liquid two-phase refrigerant is evaporated by heat exchange with the heating element. Circulate
In the heating operation, the refrigerant in the second circulation path is sent while the gas-liquid two-phase refrigerant is sent to the heating element and the gas-liquid two-phase refrigerant is evaporated by heat exchange with the heating element. The vehicle air conditioning system according to claim 1.
前記冷房運転及び前記暖房運転において、前記気液二相の冷媒を流通させながら前記発熱体との間で熱交換することで該気液二相の冷媒を強制対流沸騰させる
請求項2に記載の車両用空調システム。
3. The forced convection boiling of the gas-liquid two-phase refrigerant by exchanging heat with the heating element while circulating the gas-liquid two-phase refrigerant in the cooling operation and the heating operation. Air conditioning system for vehicles.
前記冷媒を気相の冷媒と液相の冷媒に分離して、該気相の冷媒を前記圧縮機へ送り、該液相の冷媒を貯留する貯留部を有するアキュムレータ、を備えており、
前記循環路は、
前記第一循環経路において、前記圧縮機、前記室外器、前記膨張弁、前記室内器、前記発熱体、前記アキュムレータ及び前記圧縮機の順で前記冷媒を循環させ、
前記第二循環経路において、前記圧縮機、前記室内器、前記膨張弁、前記室外器、前記発熱体、前記アキュムレータ及び前記圧縮機の順で冷媒を循環させる
請求項1〜3のいずれか1項に記載の車両用空調システム。
An accumulator having a storage section for separating the refrigerant into a gas phase refrigerant and a liquid phase refrigerant, sending the gas phase refrigerant to the compressor, and storing the liquid phase refrigerant;
The circuit is
In the first circulation path, the refrigerant is circulated in the order of the compressor, the outdoor unit, the expansion valve, the indoor unit, the heating element, the accumulator, and the compressor.
The refrigerant is circulated in the order of the compressor, the indoor unit, the expansion valve, the outdoor unit, the heating element, the accumulator, and the compressor in the second circulation path. The vehicle air conditioning system described in 1.
前記循環路は、前記冷媒が前記発熱体を迂回する発熱体迂回路を有する
請求項1〜4のいずれか1項に記載の車両用空調システム。
The vehicle air conditioning system according to any one of claims 1 to 4, wherein the circulation path includes a heating element bypass circuit in which the refrigerant bypasses the heating element.
前記循環路は、前記冷媒が前記圧縮機を迂回する圧縮機迂回路を有し、
前記圧縮機迂回路には、前記冷媒を圧送するポンプが設けられている
請求項1〜5のいずれか1項に記載の車両用空調システム。
The circulation path has a compressor bypass circuit in which the refrigerant bypasses the compressor,
The vehicular air conditioning system according to any one of claims 1 to 5, wherein the compressor bypass circuit is provided with a pump that pumps the refrigerant.
JP2017099362A 2017-05-18 2017-05-18 Vehicle air conditioning system Active JP6943014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017099362A JP6943014B2 (en) 2017-05-18 2017-05-18 Vehicle air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017099362A JP6943014B2 (en) 2017-05-18 2017-05-18 Vehicle air conditioning system

Publications (2)

Publication Number Publication Date
JP2018192967A true JP2018192967A (en) 2018-12-06
JP6943014B2 JP6943014B2 (en) 2021-09-29

Family

ID=64569162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017099362A Active JP6943014B2 (en) 2017-05-18 2017-05-18 Vehicle air conditioning system

Country Status (1)

Country Link
JP (1) JP6943014B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024163A (en) * 1988-03-08 1990-01-09 Mitsubishi Electric Corp Cooling device for semiconductor element for power
JPH06255346A (en) * 1993-03-02 1994-09-13 Seiko Epson Corp Electric vehicle
JPH1123081A (en) * 1997-07-01 1999-01-26 Denso Corp Air conditioner having cooler for heat generating instrument
JPH11337193A (en) * 1998-05-25 1999-12-10 Nippon Soken Inc Cooler for heating object
JP2010002121A (en) * 2008-06-19 2010-01-07 Daikin Ind Ltd Refrigerating device
JP2012218673A (en) * 2011-04-13 2012-11-12 Toyota Motor Corp Heat exchange apparatus
JP2012243982A (en) * 2011-05-20 2012-12-10 Nippon Soken Inc Cooling apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024163A (en) * 1988-03-08 1990-01-09 Mitsubishi Electric Corp Cooling device for semiconductor element for power
JPH06255346A (en) * 1993-03-02 1994-09-13 Seiko Epson Corp Electric vehicle
JPH1123081A (en) * 1997-07-01 1999-01-26 Denso Corp Air conditioner having cooler for heat generating instrument
JPH11337193A (en) * 1998-05-25 1999-12-10 Nippon Soken Inc Cooler for heating object
JP2010002121A (en) * 2008-06-19 2010-01-07 Daikin Ind Ltd Refrigerating device
JP2012218673A (en) * 2011-04-13 2012-11-12 Toyota Motor Corp Heat exchange apparatus
JP2012243982A (en) * 2011-05-20 2012-12-10 Nippon Soken Inc Cooling apparatus

Also Published As

Publication number Publication date
JP6943014B2 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
JP5187786B2 (en) Vehicle heat pump system
JP6361029B2 (en) Air conditioner for vehicles
US20120304674A1 (en) Climate control system for a vehicle and method for controlling temperature
JP6304578B2 (en) Air conditioner for vehicles
US20170021698A1 (en) Vehicle-mounted temperature adjustment device, vehicle air-conditioning device, and battery temperature adjustment device
CN111688432B (en) Vehicle-mounted temperature adjusting device
WO2015011919A1 (en) Vehicle air conditioner
JP6590321B2 (en) Air conditioner for vehicles
JP2013217631A (en) Refrigeration cycle device
JP2012505796A (en) Method and system for cooling and heating
JPWO2016059791A1 (en) Air conditioner for vehicles
JP2021054279A (en) Cooling system
EP3666565B1 (en) Automotive air conditioning system
JP6760226B2 (en) Combined heat exchanger
WO2015008463A1 (en) Vehicle air conditioner and constituent unit thereof
JP2014156143A (en) Vehicular air-conditioning device
JP7127764B2 (en) vehicle air conditioning system
JP2018165104A (en) Thermal management system in vehicle cabin
JP6315222B2 (en) Units for vehicle air conditioners
JP2024043183A (en) Vehicle temperature control system and temperature control method
KR20200055196A (en) Cooling and heating system for vehicle
JP2015209090A (en) Air conditioner for vehicle
KR102644748B1 (en) Cooling and heating system for vehicle
JP2018192967A (en) Air-conditioning system for vehicle
JP2017172948A (en) Heat exchanging unit and vehicle air conditioning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210823

R150 Certificate of patent or registration of utility model

Ref document number: 6943014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150