JPH06254554A - Fresh water generating, water feeding and hot water feeding system - Google Patents

Fresh water generating, water feeding and hot water feeding system

Info

Publication number
JPH06254554A
JPH06254554A JP7078693A JP7078693A JPH06254554A JP H06254554 A JPH06254554 A JP H06254554A JP 7078693 A JP7078693 A JP 7078693A JP 7078693 A JP7078693 A JP 7078693A JP H06254554 A JPH06254554 A JP H06254554A
Authority
JP
Japan
Prior art keywords
water
hot water
water supply
heat exchanger
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7078693A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoshida
弘 吉田
Hiroshi Iketani
弘 池谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP7078693A priority Critical patent/JPH06254554A/en
Publication of JPH06254554A publication Critical patent/JPH06254554A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the fresh water generating, water feeding and hot water feeding system combined with a cogeneration system including all of a fresh water generating stage for obtaining pure water from raw water, such as sea water, a water feeding stage for feeding this water and a hot water feeding stage for feeding the hot water of a prescribed temp. CONSTITUTION:This system has a heat exchanger 32 which heats the raw water, such as sea water, by the recovery of waste heat of a prime mover 20 up to the prescribed permissible temp. of a reverse osmosis membrane device 37 by using city water, etc., the reverse osmosis membrane device 37 which is supplied with the raw water heated by this heat exchanger 32 and forms the pure water by pressurizing the raw water to a prescribed pressure by a pressure pump 36, a heat exchanger 34 which cools the permeated water of the reverse osmosis membrane device 37 to a proper temp. by using the raw water and a latent heat recovering device 24 and heat exchanger 28 having water feed pipes 26, 27, a packed bed 24a and a hot water storage section 24b. The apparatus is provided with the hot water feeding stage for bringing the water supplied from the water feed pipe 26 and the high-heat exhaust gases from the prime mover 20 into contact with each other in the latent heat recovering device 24 in the beginning and once storing the hot water in the hot water storage section 24, then circulating this hot water between the hot water storage section 24, the primary side of the heat exchanger 28 and the water feed pipe 27, obtaining the clean hot water by the heat exchanger 28, storing this hot water into a hot water storage tank and feeding such hot water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は海水または河川等からの
原水を純水に製造する造水工程と,この造水工程で得ら
れた水を利用して給水,給湯する給水工程,給湯工程等
の各工程をコ−ジェネレ−ションシステムとの一体的な
組み合わせで構成した造水・給水の給湯システムに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a desalination process for producing raw water from seawater or rivers into pure water, and water supply and hot water supply processes using the water obtained in this desalination process. The present invention relates to a hot water supply system for producing and supplying water, which is configured by integrally combining each process such as the above with a cogeneration system.

【0002】[0002]

【従来の技術】海水や河川の水から純水を得る方法とし
て蒸発を利用するもの,凍結を利用するもの,逆
浸透膜を利用するものが知られている。この内,の方
法は河川だけでなく,海水を含めた原水から純水を得る
工業的手段として最近注目されている技術で,たとえば
特公平4−63755号公報のものが知られている。そ
の概略構成は図3に示すように,原水タンク1からポン
プP1により供給される原水を,ポンプP2により加圧し
て逆浸透膜装置2に供給し,逆浸透膜装置2の膜面を透
過した透過水を送水ポンプP3を介して透過水処理設備
3に供給した後,超純水使用設備4に送るようにした逆
浸透膜装置システムにおいて,原水タンク1と逆浸透膜
装置2との間に,原水タンク1からの原水を加熱する熱
交換器5とこの熱交換器5からの原水を加熱するヒ−ト
ポンプ6とを備えた熱回収装置7を設け,逆浸透膜装置
2からの濃縮水及び前記超純水使用設備4からの使用済
生産水を熱交換器5及びヒ−トポンプ6の蒸発器の加熱
側へ供給し,濃縮水及び使用済生産水の有する低温排熱
の回収により25℃〜30℃に加熱した原水を逆浸透膜
装置2へ供給するように構成されていた。また,コ−ジ
ェネレ−ションシステムによる給湯装置としては,たと
えば,特開平1−296044号公報に示すものがあ
り,図4に示すようにガスエンジン等の排気ガスを伴う
原動機8,その1次側熱源として原動機8の冷却用の温
水を用いた冷却水熱交換器9,充填材を積層して成る充
填層10aと下底に貯湯部10bを備えた潜熱回収器1
0,この潜熱回収器に給水を行う給水管11,原動機8
の排気ガスを潜熱回収器10に供給する排気導管12,
潜熱回収器10からの排気ガスを放出する排気管13,
潜熱回収器10の貯湯部に貯えられた温水を冷却水熱交
換器9により再加熱させ,これを給湯用として供給する
経路14を備えて構成されていた。なお,15は原動機
により駆動される交流発電機,16及び17は夫々温水
ポンプである。
2. Description of the Related Art As a method for obtaining pure water from seawater or river water, there are known methods that use evaporation, those that use freezing, and those that use a reverse osmosis membrane. Of these, the method of (1) is a technology that has recently been attracting attention as an industrial means for obtaining pure water from not only rivers but also raw water including seawater. For example, Japanese Patent Publication No. 4-63755 is known. Its schematic structure is shown in FIG. 3, the raw water supplied by the pump P 1 from the raw water tank 1, pressurized and supplied to the reverse osmosis membrane device 2 by a pump P 2, the film surface of the reverse osmosis membrane apparatus 2 In the reverse osmosis membrane device system, in which the permeated water that has permeated is supplied to the permeated water treatment equipment 3 via the water feed pump P 3, and then sent to the equipment 4 using ultrapure water, the raw water tank 1 and the reverse osmosis membrane equipment 2 Between the reverse osmosis membrane device 2 is provided a heat recovery device 7 having a heat exchanger 5 for heating the raw water from the raw water tank 1 and a heat pump 6 for heating the raw water from the heat exchanger 5. Concentrated water and the used product water from the ultrapure water using equipment 4 are supplied to the heat exchanger 5 and the heating side of the evaporator of the heat pump 6 to remove the low temperature exhaust heat of the concentrated water and the used product water. Raw water heated to 25 ° C to 30 ° C by recovery is supplied to the reverse osmosis membrane device 2. It has been configured to. Further, as a hot water supply device using a cogeneration system, there is, for example, the one disclosed in Japanese Patent Laid-Open No. 1-296044, and as shown in FIG. 4, a prime mover 8 accompanied by exhaust gas from a gas engine or the like, its primary side A cooling water heat exchanger 9 using hot water for cooling the prime mover 8 as a heat source, a packed bed 10a formed by stacking packing materials, and a latent heat recovery device 1 having a hot water storage section 10b on the lower bottom.
0, water supply pipe 11 for supplying water to this latent heat recovery device, motor 8
Exhaust pipe 12 for supplying the exhaust gas of the exhaust gas to the latent heat recovery device 10,
An exhaust pipe 13 for discharging exhaust gas from the latent heat recovery device 10,
The hot water stored in the hot water storage part of the latent heat recovery device 10 is reheated by the cooling water heat exchanger 9 and is provided with a path 14 for supplying the hot water for hot water supply. In addition, 15 is an AC generator driven by a prime mover, and 16 and 17 are hot water pumps, respectively.

【0003】[0003]

【発明が解決しようとする課題】ところで,従来のもの
には次のような問題点があった。 図3の逆浸透膜装置利用の純水製造装置は上記のよう
に構成されるから,それ以前のものが大掛かりな蒸気ボ
イラを熱源としていたものに比べれば,熱回収装置7を
使用しているため優れている。しかしながら,この熱回
収装置7は熱交換器5とヒ−トポンプ6により構成され
ているものであったから,原水の加熱温度は前記のよう
に30℃が限度であるため逆浸透膜装置の温度特性を有
効に活用していないという問題点があった。また,給水
のみで,給湯までは備えていなかった。 また,図4に示すコ−ジェネレ−ションシステムを利
用した給湯装置の場合,潜熱回収器によって極めて熱効
率の高い排熱回収を行うものであるが,給水源としては
水道水を用いているため,水道水が豊富に得られにくい
ような僻地においては使用できないという問題点があっ
た。 本発明は従来のものの上記課題(問題点)を解決し,海
水等の原水から純水を得る造水工程,これを給水する給
水工程,所定温度の給湯を行う給湯工程を全て包含し,
これらの工程を相互に効率良く関連付けて構成した造水
・給水・給湯システムを提供することを目的とする。
However, the conventional device has the following problems. Since the pure water producing apparatus using the reverse osmosis membrane apparatus shown in FIG. 3 is configured as described above, the heat recovery apparatus 7 is used as compared with the previous one using a large-scale steam boiler as a heat source. Because it is excellent. However, since the heat recovery device 7 is composed of the heat exchanger 5 and the heat pump 6, the heating temperature of the raw water is limited to 30 ° C. as described above, so the temperature characteristics of the reverse osmosis membrane device are limited. There was a problem that it was not used effectively. In addition, it was only provided with water, and not provided with hot water. Further, in the case of the hot water supply device using the cogeneration system shown in FIG. 4, the latent heat recovery device performs exhaust heat recovery with extremely high thermal efficiency, but since tap water is used as the water supply source, There is a problem that it cannot be used in remote areas where it is difficult to obtain abundant tap water. The present invention solves the above problems (problems) of conventional ones, and includes all of a fresh water producing process for obtaining pure water from raw water such as seawater, a water supplying process for supplying the same, and a hot water supplying process for supplying hot water at a predetermined temperature.
It is an object of the present invention to provide a desalination / water supply / hot water supply system configured by efficiently associating these processes with each other.

【0004】[0004]

【課題を解決するための手段】本発明の造水・給水・給
湯システムは,上記課題を解決するために,当初は予め
準備した水道水または河川水を用いてコ−ジェネレ−シ
ョンシステムの発電装置駆動用の排気ガスを伴う原動機
の排熱回収により海水,河川水等の原水を,後述する逆
浸透膜装置の所定の許容温度まで加温する第1の熱交換
器,この第1の熱交換器で加温された原水を所定圧力に
加圧する圧力ポンプ及びこの圧力ポンプにより加圧され
た所定温度の原水を供給され,透過水を生成する逆浸透
膜装置を備えた造水工程,上記造水工程で得られた逆浸
透膜装置の透過水を,第2の熱交換器により原水を用い
て適温に冷却して給水するようにした給水工程,上方位
置に第1と第2の各給水管を.中間位置に充填層を,ま
た,下方位置に貯湯部を有する潜熱回収器及び第3の熱
交換器を備え,上記潜熱回収器内において当初は第1の
給水管から供給された水と原動機からの高熱の排気ガス
を接触させて温水を貯湯部に一旦貯えた後,この温水を
貯湯部と上記第3の熱交換器の1次側と第2の給水管間
を循環させ,第3の熱交換器によりクリ−ンな温水を得
て貯湯タンクに貯蔵し,給湯するようにした給湯工程を
備えて構成した。この場合,上記造水工程における原水
タンクと圧力ポンプの間に重金属以外の有機物,バクテ
リア等を濾過するフィルタを設けることが望ましい。ま
た,上記造水工程における貯水タンクにレベルセンサを
備え,貯水タンクの水量が需要との関連で定められる所
定値未満のときは造水工程を駆動し,上記水量が所定値
以上となったときは造水工程を停止することができる。
また,上記給水工程において,第2の熱交換器を経て適
温にした純水を,さらにオゾン発生器等を用いた殺菌装
置により殺菌して飲料水を生成し,または,2次処理に
よって工業用水を生成し,給水することが望ましい。ま
た,上記給湯工程において,貯水タンクと第3の熱交換
器間及び貯湯タンクと第3の熱交換器の間の経路を切り
替える温度調節弁を備え,貯湯タンクの温水の温度が所
定値未満の温度のときは貯水タンクと第3の熱交換器間
を連通し,貯湯タンクの温水の温度が所定値以上となっ
たときは,貯湯タンクと第3の熱交換器の間を連通する
ように各経路を切り替えるようにすることが望ましい。
また,上記給水工程からの純水と給湯工程からの温水と
をシャワ−室に供給することができる。また,上記給湯
工程における貯湯タンクにレベルセンサを備え,貯湯タ
ンクの温水量が需要との関連で定められる所定値未満の
ときは給湯工程を駆動し,上記温水量が所定値以上とな
ったときは給湯工程を停止することができる。なお,本
システムは,造水工程,給水工程,給湯工程の順序で駆
動することが望ましい。また,上記造水・給水・給湯の
各工程の動力源への電源,その他付帯設備への電源は全
て上記コ−ジェネレ−ション発電装置から供給し,コ−
ジェネレ−ションシステムと一体的に構成されることが
望ましい。
In order to solve the above problems, the fresh water / water supply / hot water supply system of the present invention uses tap water or river water initially prepared in advance to generate power in a cogeneration system. A first heat exchanger that heats raw water such as seawater or river water to a predetermined allowable temperature of a reverse osmosis membrane device described below by recovering exhaust heat of a prime mover accompanied by exhaust gas for driving the device, the first heat A desalination process comprising a pressure pump for pressurizing raw water heated by an exchanger to a predetermined pressure and a reverse osmosis membrane device for supplying permeated water to the raw water at a predetermined temperature pressurized by the pressure pump. A permeated water of the reverse osmosis membrane device obtained in the fresh water producing step is a water feeding step in which raw water is cooled to an appropriate temperature by the second heat exchanger to feed the water, and the first and second upper positions are provided. Water supply pipe. A latent heat recovery device having a packed bed at an intermediate position and a hot water storage part at a lower position and a third heat exchanger are provided, and in the latent heat recovery device, the water originally supplied from the first water supply pipe and the prime mover are connected. After hot water is once stored in the hot water storage part by contacting it with the high heat exhaust gas, the hot water is circulated between the hot water storage part, the primary side of the third heat exchanger and the second water supply pipe, The system was equipped with a hot water supply process in which clean hot water was obtained from a heat exchanger and stored in a hot water storage tank for hot water supply. In this case, it is desirable to provide a filter for filtering organic substances other than heavy metals, bacteria, etc. between the raw water tank and the pressure pump in the above desalination process. Further, when a water storage tank in the above-mentioned water production process is equipped with a level sensor, the water production process is driven when the amount of water in the water storage tank is less than a predetermined value determined in relation to demand, and when the above-mentioned water amount exceeds a predetermined value. Can stop the water production process.
Further, in the water supply step, pure water that has been brought to an appropriate temperature through the second heat exchanger is further sterilized by a sterilizer using an ozone generator or the like to produce drinking water, or industrial water is subjected to secondary treatment. It is desirable to generate and supply water. Further, in the hot water supply process, a temperature control valve is provided for switching paths between the hot water storage tank and the third heat exchanger and between the hot water storage tank and the third heat exchanger, and the temperature of the hot water in the hot water storage tank is less than a predetermined value. When the temperature is high, the water storage tank and the third heat exchanger are communicated with each other, and when the temperature of the hot water in the hot water storage tank exceeds a predetermined value, the hot water storage tank and the third heat exchanger are communicated with each other. It is desirable to switch each route.
Further, pure water from the water supply process and hot water from the hot water supply process can be supplied to the shower chamber. Further, a level sensor is provided in the hot water storage tank in the hot water supply process, and when the hot water amount in the hot water storage tank is less than a predetermined value determined in relation to demand, the hot water supply process is driven, and when the hot water amount becomes equal to or higher than the predetermined value. Can stop the hot water supply process. In addition, it is desirable to drive this system in the order of a fresh water producing process, a water supplying process, and a hot water supplying process. Further, the power source for the power source of each process of the above-mentioned water production, water supply, and hot water supply, and the power source for other incidental equipment are all supplied from the above cogeneration power generator.
It is desirable to be configured integrally with the generation system.

【0005】[0005]

【作用】本発明の造水・給水・給湯システムにおける造
水工程では,海水または河川水等の原水を,エンジンか
らの高熱を利用して得た温水(たとえば85℃の温水)
を熱源として逆浸透膜装置の許容温度(たとえば40
℃)まで常時加温した状態で,逆浸透膜装置に対して所
定の圧力をかけて供給するようにしたから,逆浸透膜装
置の温度特性が有効に利用され透過水量は大幅に増大さ
れる。なお,この場合,上記逆浸透膜装置の熱源として
の温水は,当初は現地に持参した水または現地の河川水
を用い,その後の補給水は造水工程で得られた水を使用
する。また,給水工程では,逆浸透膜装置より得られた
純水は貯水タンクに貯蔵され,給水に供される。なお,
この給水工程における貯水タンクの水を殺菌して飲料水
を,また,2次処理して工業用水を生成することができ
る。また,逆浸透膜装置に加温された原水を供給するに
当たってはフィルタを用いれば,有機物等が適正に除去
される。また,給湯工程としては,貯水タンクより熱交
換器を循環する水が潜熱回収器の貯湯部より供給される
循環温水で温水に温められた上,貯湯タンクに貯えら
れ,給湯に供される。なお,潜熱回収器は貯水タンクか
ら当初は供給される水をエンジンの排気ガスとの直接接
触方式で温水とし,その貯湯部に貯え,また,その貯湯
部の温水を上記熱交換器を経て潜熱回収器の上方に戻す
経路を循環温水として循環させる。この循環温水が所定
量になったときは貯水タンクから潜熱回収器への給水は
中止する。さらに,貯水タンク及び貯湯タンクには夫々
の貯蔵量を検知するレベルセンサが備えられており,こ
れらのセンサの検知に基づき貯水タンク及び貯湯タンク
に夫々貯えられる純水及び温水が本システムが運転体制
に入った後は,常時,所定量を保持するように制御され
る。
In the water production process in the water production / water supply / hot water supply system of the present invention, raw water such as seawater or river water is obtained by utilizing high heat from the engine (for example, hot water at 85 ° C).
As a heat source, the allowable temperature of the reverse osmosis device (for example, 40
The temperature characteristics of the reverse osmosis membrane device are effectively used and the amount of permeated water is significantly increased because the reverse osmosis membrane device is supplied with a predetermined pressure while being constantly heated up to ℃). . In this case, the hot water as the heat source of the reverse osmosis membrane device is initially the water brought to the site or the river water at the site, and the supplementary water thereafter is the water obtained in the desalination process. In the water supply process, the pure water obtained from the reverse osmosis device is stored in the water storage tank and supplied for water supply. In addition,
In this water supply process, the water in the water storage tank can be sterilized to produce drinking water, and the secondary treatment can be performed to produce industrial water. In addition, when a heated raw water is supplied to the reverse osmosis membrane device, a filter is used to properly remove organic substances and the like. Further, in the hot water supply process, the water circulating in the heat exchanger from the water storage tank is warmed to hot water by the circulating hot water supplied from the hot water storage part of the latent heat recovery device, and then stored in the hot water storage tank and used for hot water supply. The latent heat recovery unit uses the water initially supplied from the water storage tank as hot water by direct contact with the exhaust gas of the engine, stores it in the hot water storage unit, and heats the hot water in the hot water storage unit through latent heat through the heat exchanger. The route returning to above the collector is circulated as circulating hot water. When the circulating hot water reaches a predetermined amount, water supply from the water storage tank to the latent heat recovery device is stopped. In addition, the water storage tank and the hot water storage tank are equipped with level sensors that detect the amount of each storage, and the pure water and hot water stored in the water storage tank and the hot water storage tank are operated by this system based on the detection of these sensors. After entering, it is constantly controlled to maintain a predetermined amount.

【0006】[0006]

【実施例】以下図1及び図2に示す一実施例により本発
明を具体的に説明する。同図において,20はガスエン
ジン,ディ−ゼルエンジン,ガスタ−ビン等の排気ガス
を伴う原動機,21はそのオイルパン,22は原動機2
0により駆動される交流発電機等のコ−ジェネレ−ショ
ン発電装置である。23は原動機20の排気ガス等の排
熱を潜熱回収器24に供給する排気導管である。潜熱回
収器24は中間位置に充填材を積層して成る充填層24
a及び下底部に位置する貯湯部24bを備えて構成され
る。なお,25は潜熱回収器24の充填層24aの上方
位置と外気と連通する排気管,26及び27は夫々シャ
ワ−状の蛇口を先端部に有する給水管で,これらの蛇口
が潜熱回収器24の充填層24aの上方位置に臨むよう
に配置される。なお,Lは貯湯部24bの温水量を監視
し,その温水量が所定の高位レベル(H),低位レベル
(L)になつたことを検出したときは,それらの検知信
号を出すレベルセンサである。28は第3の熱交換器
で,その1次側の配置としては潜熱回収器24の貯湯部
24bと給水管27とを潜熱回収用ポンプP3を介して
結ぶ循環経路29の配管が用いられ,その2次側の配管
として経路52,52aを介して後述する温度調節弁5
0及び供給ポンプ51により供給される貯湯タンク48
からの温水が循環される経路30に連結される配管が使
用される。31は排気導管23に,たとえばジャケット
状に取付けられる配管で,この配管としては排気導管2
3を通過する排気ガス等の排熱を回収して第1の熱交換
器32の1次側とラジェ−タ33を結ぶ循環経路31a
の配管が用いられる。熱交換器32の2次側となる配管
には,海水または河川水等の原水が水中ポンプ33Pに
より揚水し,第2の熱交換器34の2次側配管を介して
供給されるようになっている。なお,熱交換器34の2
次側配管については後述する。35は前処理としてのフ
ィルタで,砂濾過器,活性炭等の濾過層を備え,原水中
のCa,Na,Mg等の重金属以外の有機物,バクテリ
ア等の不純物を除去する。36は加圧用の圧力ポンプ
で,同ポンプ36により,たとえば50[kg/cm2
G]程度の所要圧力となるように原水を加圧する。37
は逆浸透膜装置で,同装置37を透過して得られた純水
は熱交換器34の2次側に供給され,同交換器34の1
次側を通過する原水により給水可能な温度(たとえば,
20℃〜25℃)へと冷却し,この透過水を貯水タンク
38にて貯蔵するようにしている。なお,逆浸透膜装置
37で発生する濃縮水は経路37aで外部に放水される
ようになっている。39は貯水タンク38に配置された
レベルセンサである。40は貯水タンク38からの給水
用の配管より成る経路で,経路40は冷水供給ポンプP
1 を経て二方に分かれ,一方の経路41は潜熱回収器2
4の給水管26及び後述する経路54に連結され,他方
の経路42はシャワ−室43〜45の給水管43a〜4
5aへ,また,殺菌装置46を経て飲料水を生成する経
路46aへ,また,限界濾過膜装置等の2次処理装置4
7を経て工業用水を生成する経路47aへ,さらに他の
給水源へと連結されるようになっている。なお,V3
電磁弁である。40aは貯水タンク38の上端部と経路
41を結ぶ経路で,この経路40a中に経路41,42
の圧力を保持させるための冷水圧力調整弁V1 が設けら
れる。43c〜45cは夫々各シャワ−室43〜45に
配置されたシャワ−用の蛇口で,これらの各蛇口43c
〜45cには夫々経路42から冷水が,また次に述べる
貯湯タンク48からの温水を経路48aから各経路43
b〜45bを介して供給され,各蛇口43c〜45cか
ら適温のシャワ−温水が供給できるようになっている。
48は貯湯タンク,49は同タンク48内に配置された
レベルセンサ,50は三方弁より成る温度調節弁,51
は供給ポンプである。なお,温度調節弁50は貯水タン
ク38と第3の熱交換器28を結ぶ経路54−52a間
及び貯湯タンク48と第3の熱交換器28を結ぶ経路5
2−52a間の経路を温度検知により切り替える機能を
有する。貯湯タンク48は熱交換器28の2次側の配管
を通過して加温された温水が経路30,53を経て同タ
ンク48に供給されて貯えられ,同タンク48で貯えら
れた温水は温水供給ポンプP2 により経路48aを経
て,前記のようにシャワ−室43〜45に供給する一
方,他方では経路52から温度調節弁50,供給ポンプ
51及び経路52aを経て熱交換器28の2次側配管に
循環されるようになっている。54は貯水タンク38か
ら経路40,41を介して当初の水及び補給水を供給す
るための補給供給経路で,温度調節弁50の分岐経路に
連結される。48bはポンプP2 と貯湯タンク48の上
部とを結ぶ経路で,同経路48b中に温水側圧力調整弁
2 を挿入することにより,経路48aの圧力を所定値
に保持させるようになっている。経路41と52間には
調整用の経路41aが設けられ,同経路41aには,調
整時のみに開状態とする常時閉状態の弁V4 が設けられ
ている。なお,図1の系統図では簡単のため,原水を一
旦貯蔵する原水タンク,各経路の配管中に通常設けられ
るその他の常時開状態の弁,加圧用のポンプ36の前後
に設けられる圧力計並びに造水工程,給水工程,給湯工
程の駆動・停止をおこなわせるスイッチやこのスイッチ
の制御回路などの諸要素及び制御回路は通常の諸要素を
用いれば良いため図示を省略しているが,実際の装置と
しては当然,これらの諸要素及び制御回路も設けられて
いるものとする。以上の20〜54により,本発明の造
水・給水・給湯システムが構成される。なお,図示しな
いが,上記の本発明のシステムの動力源への電源,その
他付帯設備への電源は,全てコ−ジェネレ−ション発電
装置22から供給し,コ−ジェネレ−ションシステムと
一体的に構成するのが望ましい。また,このシステムは
水道水が全くないという僻地でも造水・給水・給湯を行
うことを前提としているので,本システムをそのような
現地に設置する際に,たとえば貯水タンク38または/
及び貯湯タンク48に立ち上がり用の水道水及び生活用
水として水を収納して移搬するようにするのが望まし
い。あるいは,立ち上がり用の水に限れば,現地の河川
水を用いても良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to an embodiment shown in FIGS. In the figure, 20 is a prime mover with exhaust gas from a gas engine, diesel engine, gas turbine, etc., 21 is an oil pan thereof, and 22 is a prime mover 2.
It is a cogeneration power generator such as an AC generator driven by 0. Reference numeral 23 is an exhaust conduit for supplying exhaust heat of exhaust gas of the prime mover 20 to the latent heat recovery unit 24. The latent heat recovery unit 24 is a packing layer 24 formed by stacking packing materials at intermediate positions.
a and a hot water storage portion 24b located on the lower bottom portion. Incidentally, 25 is an exhaust pipe communicating with the position above the packed bed 24a of the latent heat recovery unit 24 and the outside air, and 26 and 27 are water supply pipes each having a shower-shaped faucet at the tip, and these faucets are the latent heat recovery unit 24. Is disposed so as to face the upper position of the filling layer 24a. In addition, L is a level sensor that monitors the amount of hot water in the hot water storage unit 24b and, when detecting that the amount of hot water reaches a predetermined high level (H) or low level (L), outputs a detection signal for them. is there. 28 is a third heat exchanger, and as the arrangement on the primary side thereof, the piping of the circulation path 29 that connects the hot water storage portion 24b of the latent heat recovery unit 24 and the water supply pipe 27 via the latent heat recovery pump P 3 is used. , A temperature control valve 5 which will be described later via the paths 52 and 52a as the secondary side piping.
0 and the hot water storage tank 48 supplied by the supply pump 51
The piping connected to the path 30 through which the hot water from is circulated is used. Reference numeral 31 is a pipe attached to the exhaust pipe 23, for example, in a jacket shape.
A circulation path 31a connecting the primary side of the first heat exchanger 32 and the radiator 33 by collecting exhaust heat of exhaust gas passing through
Piping is used. Raw water such as seawater or river water is pumped up by the submersible pump 33P to the piping on the secondary side of the heat exchanger 32, and is supplied through the secondary piping of the second heat exchanger 34. ing. In addition, 2 of the heat exchanger 34
The secondary piping will be described later. Reference numeral 35 denotes a filter as a pretreatment, which is provided with a sand filter, a filter layer such as activated carbon, and removes organic substances other than heavy metals such as Ca, Na and Mg in the raw water and impurities such as bacteria. Reference numeral 36 is a pressure pump for pressurization, and by the pump 36, for example, 50 [kg / cm 2
Pressurize the raw water so that the required pressure is about G]. 37
Is a reverse osmosis membrane device, and the pure water obtained by passing through the device 37 is supplied to the secondary side of the heat exchanger 34.
The temperature at which the raw water passing through the secondary side can supply water (for example,
It is cooled to 20 ° C. to 25 ° C., and the permeated water is stored in the water storage tank 38. The concentrated water generated in the reverse osmosis membrane device 37 is discharged to the outside through the path 37a. Reference numeral 39 is a level sensor arranged in the water storage tank 38. Reference numeral 40 is a path composed of a pipe for supplying water from the water storage tank 38, and the path 40 is a cold water supply pump P.
It splits into two via 1 and one path 41 is latent heat recovery device 2
No. 4, which is connected to the water supply pipe 26 of FIG.
5a, a path 46a for producing drinking water through the sterilizer 46, and a secondary treatment device 4 such as an ultrafiltration membrane device.
It is adapted to be connected to a path 47a for producing industrial water via 7 and to another water supply source. Note that V 3 is a solenoid valve. 40a is a route connecting the upper end of the water storage tank 38 and the route 41. Routes 41 and 42 are provided in the route 40a.
A chilled water pressure adjusting valve V 1 for maintaining the above pressure is provided. Reference numerals 43c to 45c are shower faucets arranged in the shower chambers 43 to 45, respectively.
To 45c, cold water from the route 42 and hot water from the hot water storage tank 48 described below from the route 48a to the routes 43, respectively.
It is supplied via b-45b, and shower hot water of an appropriate temperature can be supplied from each faucet 43c-45c.
Reference numeral 48 is a hot water storage tank, 49 is a level sensor arranged in the same tank 48, 50 is a temperature control valve consisting of a three-way valve, 51
Is a supply pump. In addition, the temperature control valve 50 is provided between the path 54-52a connecting the water storage tank 38 and the third heat exchanger 28, and the path 5 connecting the hot water storage tank 48 and the third heat exchanger 28.
It has a function of switching the path between 2-52a by temperature detection. In the hot water storage tank 48, warm water that has been heated by passing through the secondary pipe of the heat exchanger 28 is supplied to and stored in the same tank 48 via paths 30 and 53, and the warm water stored in the same tank 48 is warm water. While being supplied to the shower chambers 43 to 45 by the supply pump P 2 through the path 48a, the secondary side of the heat exchanger 28 is supplied from the path 52 through the temperature control valve 50, the supply pump 51 and the path 52a. It is circulated to the side pipe. Reference numeral 54 is a replenishment supply path for supplying the initial water and the replenishment water from the water storage tank 38 via the paths 40 and 41, and is connected to the branch path of the temperature control valve 50. Reference numeral 48b is a path connecting the pump P 2 and the upper portion of the hot water storage tank 48, and the pressure of the path 48a is kept at a predetermined value by inserting the hot water side pressure adjusting valve V 2 into the path 48b. . Between paths 41 and 52 route 41a for adjustment is provided in the path 41a, the valve V 4 normally closed state to an open state only during adjustment is provided. In the system diagram of FIG. 1, for simplicity, a raw water tank for temporarily storing raw water, other normally open valves normally provided in the piping of each path, pressure gauges provided before and after the pump 36 for pressurization, Although various elements and control circuits such as a switch for driving and stopping the fresh water production process, the water supply process, and the hot water supply process, and a control circuit for this switch may be formed by using normal elements, they are not shown in the drawing. As a matter of course, these various elements and a control circuit are provided as the device. The above 20 to 54 compose the fresh water / water supply / hot water supply system of the present invention. Although not shown, power for the power source of the system of the present invention and power for other incidental equipment are all supplied from the cogeneration system 22 and integrated with the cogeneration system. It is desirable to configure. In addition, since this system is premised on performing fresh water, water supply, and hot water supply even in remote areas where there is no tap water, when installing this system at such a site, for example, the water storage tank 38 or /
Further, it is desirable that the hot water storage tank 48 stores and transports water as rising tap water and domestic water. Alternatively, local river water may be used as long as it is water for starting up.

【0007】以上の構成において,先ず第1のステップ
として上記のように予め準備した立ち上がり用の水を熱
交換器32の1次側の配管に入れ,原動機20を初めと
するコ−ジェネレ−ション発電系統と造水系統のみを駆
動し,コ−ジェネレ−ション給湯システムは次のステッ
プで駆動するものとする。即ち,原動機20を駆動し
て,コ−ジェネレ−ション発電装置22を駆動すると,
発電装置22は所要の電力を発生して供給する。一方,
原動機20からの排気ガスが排気導管23を介して潜熱
回収器24に供給される。従って,第1の熱交換器32
はその1次側に排気導管23の排熱を回収して得られ約
85℃の温水が循環される。一方,第1の熱交換器32
の2次側には海水,河川水等の原水が水中ポンプ33P
により揚水されて,第2の熱交換器34の1次側を経て
供給される。従って,第1の熱交換器32を通過した原
水は約40℃に加温され,図示しない原水タンクに一旦
貯えられた後,フィルタ35に供給され,フィルタ35
により重金属以外の有機物,バクテリア等が濾過され,
圧力ポンプ36を介して,たとえば50[kg/cm2
G]等の所定の圧力に加圧されて,逆浸透膜装置37に
供給される。よって,逆浸透膜装置37の膜面を透過し
た純水はまだ40℃程度の温度のものであるが,第2の
熱交換器34の2次側を通過する際,同交換器34の1
次側を通過する原水によって20℃〜25℃程度の温度
の淡水に冷却されて,貯水タンク38に一旦貯えられ
る。また,経路は図示しないが,熱交換器32に対する
補給水は貯水タンク38から必要に応じて補給される。
貯水タンク38の水量はレベルセンサ39により監視さ
れており,その量が所定量に到達すると,ポンプP1
駆動により経路42への給水が行われ,シャワ−室43
〜45への給水と殺菌装置46を経ての飲料水の給水及
び2次処理装置47を経ての工業用水の給水が可能にな
る。一方,これまで停止状態であったコ−ジェネレ−シ
ョン給湯システムの系統も駆動される。このコ−ジェネ
レ−ション給湯工程の第1ステップとしては,電磁弁V
3を開き,冷水供給ポンプP1を駆動して貯水タンク38
からの冷水が経路40,41を経て潜熱回収器24の給
水管26に給水される。従って,潜熱回収器24内にお
いて給水管26からの水と高熱の排気ガスが直接接触
し,いわゆる潜熱回収方式でその貯湯部24bに温水を
貯える。貯湯部24bの温水量が所定の高位レベル
(H)以上になると,これがレベルセンサLで検知さ
れ,この検知信号に基づき電磁弁V3を閉ざすと共に,
ポンプP3が駆動され循環経路29により貯湯部24b
の温水が第3の熱交換器28の1次側と潜熱回収器24
のもう一つの給水管27へ循環される。なお,電磁弁V
3は貯湯部24bが低位レベル(L)になると再度,開
かれ,貯湯部24bの温水を(H)〜(L)間に保持さ
せる。一方,この時点では貯湯タンク48側の経路52
には温水はなく,よって温度調節弁50は温度検知によ
り経路54→52aの方向へ通過させる経路が形成され
ているから,貯水タンク38の水を経路40,41,5
4,ポンプ51及び経路52aを経て熱交換器28の2
次側に供給され,熱交換器28の1次側の温水により徐
々に加温され温水が経路30,53を経て貯湯タンク4
8へ供給され,同タンク48内に貯え始められる。次
に,貯湯タンク48内の温水の温度が所定の温度に到達
すると,これが温度調節弁で検知され,温度調節弁50
の経路は54→52aの経路が閉ざされ,これに代わっ
て経路52→52a方向の経路に切り替わるから,貯湯
タンク48の温水が熱交換器28の2次側に循環され,
貯湯タンク48内に所定温度の温水が貯えられてゆく。
この貯湯タンク48の温水はレベルセンサ49により監
視されており,その量が所定量に到達すると,給湯経路
48aから給湯され,各シャワ−室43〜45の蛇口4
3c〜45cにも温水が給湯されるようになる。上記の
ように本発明の造水・給水・給湯の各系統は先ず造水工
程,次いで給水工程,最後に給湯工程が稼働状態とな
り,全系統が運転状態となる。なお,たとえば休日,夜
間などの需要側の変動により,上記各系統の需要が減少
し,各タンク38及び48における貯水量及び貯湯量が
夫々所定量以上になったことが,各レベルセンサ39及
び49により検出されたときは,レベルセンサ39の作
動指令によって造水工程を,またレベルセンサ49の作
動指令によって供給ポンプ51を停止させて給湯系統を
夫々一旦停止させ,各タンク38及48の貯水量及び貯
湯量が常時,所定量となるように自動調整するようにし
ている。ところで,本発明のシステムの内,純水を製造
する造水工程では,上記のように原水を逆浸透膜装置3
7に対して加圧して供給する前に熱交換器32により逆
浸透膜装置37の最高許容温度である,たとえば40℃
にまで加温するものであるから,逆浸透膜装置37は図
2に示すように,その温度特性としては基準温度(25
℃)と同一の透過水量を得るのに膜面積で63%で良く
なり,膜面積を一定とした場合には透過水量は基準温度
の1.59倍,即ち,59%も透過水量を増大できるよ
うにしている点に,本発明の第1の特徴がある。また,
本システムにおける給水工程,給湯工程は上記の造水工
程で生成された純水をもとに給水と温水の貯湯とを行う
ものであるから,水道水のない僻地における給水・給湯
に好適である点に本発明の第2の特徴がある。さらに,
貯水タンク,貯湯タンクには夫々レベルセンサが備えら
れているため,各タンクの貯水量,貯湯量を需要の変動
に拘わらず,常時,所定量にすることができる点に本発
明の第3の特徴がある。また,本システムの造水工程,
給水工程及び給湯工程への動力源への電源,その他付帯
設備への電源はすべて上記コ−ジェネレ−ション発電装
置22から供給し,コ−ジェネレ−ションシステムと一
体的に構成し,各別の系統毎の動力源は不要とした点に
本発明の第4の特徴がある。
In the above structure, as the first step, the water for rising prepared in advance as described above is put into the pipe on the primary side of the heat exchanger 32, and the cogeneration including the prime mover 20 is started. Only the power generation system and the desalination system are driven, and the cogeneration hot water supply system is driven in the next step. That is, when the prime mover 20 is driven and the cogeneration power generator 22 is driven,
The power generator 22 generates and supplies required electric power. on the other hand,
Exhaust gas from the prime mover 20 is supplied to the latent heat recovery unit 24 via an exhaust conduit 23. Therefore, the first heat exchanger 32
The hot water of about 85 ° C., which is obtained by recovering the exhaust heat of the exhaust conduit 23, is circulated on the primary side thereof. On the other hand, the first heat exchanger 32
The raw water such as seawater and river water is on the secondary side of the submersible pump 33P.
Is pumped up and supplied via the primary side of the second heat exchanger 34. Therefore, the raw water that has passed through the first heat exchanger 32 is heated to about 40 ° C., once stored in a raw water tank (not shown), and then supplied to the filter 35,
Filter organic substances other than heavy metals, bacteria, etc.
Via the pressure pump 36, for example, 50 [kg / cm 2
G] is supplied to the reverse osmosis membrane device 37 after being pressurized to a predetermined pressure. Therefore, the pure water which has permeated the membrane surface of the reverse osmosis membrane device 37 is still at a temperature of about 40 ° C., but when passing through the secondary side of the second heat exchanger 34, the pure water of the exchanger 34
It is cooled to fresh water having a temperature of about 20 ° C. to 25 ° C. by the raw water passing through the next side and is temporarily stored in the water storage tank 38. Although not shown in the drawing, the makeup water for the heat exchanger 32 is supplied from the water storage tank 38 as needed.
The amount of water in the water storage tank 38 is monitored by the level sensor 39, and when the amount reaches a predetermined amount, water is supplied to the path 42 by driving the pump P 1 and the shower chamber 43.
To 45 and drinking water via the sterilizer 46 and industrial water via the secondary treatment device 47. On the other hand, the system of the cogeneration hot water supply system that has been stopped until now is also driven. As the first step of this cogeneration hot water supply process, the solenoid valve V
Open 3 and drive the cold water supply pump P 1 to store water 38
The cold water from is supplied to the water supply pipe 26 of the latent heat recovery unit 24 via the paths 40 and 41. Therefore, in the latent heat recovery unit 24, the water from the water supply pipe 26 and the high-temperature exhaust gas come into direct contact with each other, and hot water is stored in the hot water storage unit 24b by a so-called latent heat recovery method. When the amount of warm water in the hot water storage portion 24b becomes equal to or higher than a predetermined high level (H), this is detected by the level sensor L, and the solenoid valve V 3 is closed based on this detection signal,
The pump P 3 is driven and the circulating path 29 causes the hot water storage portion 24b.
Hot water of the third heat exchanger 28 and the latent heat recovery unit 24.
It is circulated to another water supply pipe 27 of the. The solenoid valve V
3 is opened again when the hot water storage portion 24b reaches the low level (L), and the hot water in the hot water storage portion 24b is held between (H) and (L). On the other hand, at this point, the path 52 on the hot water storage tank 48 side
Since there is no warm water in the temperature control valve 50, the temperature control valve 50 is provided with a path for passing in the direction of the path 54 → 52a by the temperature detection.
4, 2 of the heat exchanger 28 via the pump 51 and the path 52a
The hot water is supplied to the secondary side and gradually warmed by the hot water on the primary side of the heat exchanger 28, and the hot water passes through the paths 30 and 53 and the hot water storage tank 4
It is supplied to the tank 8 and stored in the same tank 48. Next, when the temperature of the hot water in the hot water storage tank 48 reaches a predetermined temperature, this is detected by the temperature control valve, and the temperature control valve 50
The route of 54 → 52a is closed and the route of 52 → 52a is switched to the route of 52 → 52a, so that the hot water in the hot water storage tank 48 is circulated to the secondary side of the heat exchanger 28.
Hot water of a predetermined temperature is stored in the hot water storage tank 48.
The hot water in the hot water storage tank 48 is monitored by a level sensor 49, and when the amount reaches a predetermined amount, hot water is supplied from the hot water supply path 48a and the faucet 4 of each of the shower chambers 43 to 45 is supplied.
Hot water is also supplied to 3c to 45c. As described above, in each of the fresh water / water supply / hot water supply system of the present invention, the fresh water production process, then the water supply process, and finally the hot water supply process are activated, and all the systems are in operation. It is to be noted that the level sensor 39 and the level sensor 39 indicate that the demand of each of the above systems has decreased due to fluctuations in the demand side such as holidays and nights, and the amount of stored water and the amount of stored hot water in each of the tanks 38 and 48 have exceeded a predetermined amount. When it is detected by 49, the water production process is stopped by the operation command of the level sensor 39, and the supply pump 51 is stopped by the operation command of the level sensor 49 to temporarily stop the hot water supply system. The amount of hot water and the amount of stored hot water are always automatically adjusted to a predetermined amount. By the way, in the desalination process for producing pure water in the system of the present invention, the raw water is supplied to the reverse osmosis membrane device 3 as described above.
7 is the maximum permissible temperature of the reverse osmosis membrane device 37 before being pressurized and supplied to the heat exchanger 32, for example, 40 ° C.
As shown in FIG. 2, the reverse osmosis membrane device 37 has a temperature characteristic of a reference temperature (25
℃) to obtain the same amount of permeated water, the membrane area is 63%, and if the membrane area is constant, the permeated water amount is 1.59 times the reference temperature, that is, the permeated water amount can be increased by 59%. The first feature of the present invention lies in this point. Also,
The water supply process and hot water supply process in this system perform water supply and hot water storage based on the pure water generated in the above-mentioned water production process, and are therefore suitable for water supply and hot water supply in remote areas without tap water. The point is the second feature of the present invention. further,
Since the water storage tank and the hot water storage tank are each provided with a level sensor, the third embodiment of the present invention is that the water storage amount and the hot water storage amount of each tank can be constantly set to a predetermined amount irrespective of fluctuations in demand. There are features. In addition, the water production process of this system,
Power for the power source for the water supply process and hot water supply process, and the power for other incidental equipment are all supplied from the cogeneration system 22 and are integrated with the cogeneration system, and are separated from each other. A fourth feature of the present invention is that a power source for each system is unnecessary.

【0008】[0008]

【発明の効果】本発明は上記のようにコ−ジェネレ−シ
ョンシステムと一体的に構成される逆浸透膜装置を用い
た造水工程及び給水工程並びに潜熱回収器を用いた給湯
システムを相互に関連付けて効率的に組合わせて構成し
た造水・給水・給湯システムであるから,次のような優
れた効果を有する。 先ず,本システムの造水工程及びこの造水工程で得ら
れた純水の給水にあたっては次の効果がある。 (イ)逆浸透膜装置に供給する原水はコ−ジェネレ−シ
ョン温水生成装置を用いることにより逆浸透膜装置の最
高許容温度(たとえば,40℃)まで加温するようにし
たから,従来のヒ−トポンプ主体の熱回収装置による加
温温度(25℃〜30℃)に比べ透過水量を大幅に増大
できる。即ち,図2の温度特性によれば,従来のもので
30℃の原水を使用するものに比べて,1.587/
1.176≒1.349即ち,約34.9%も透過水量
が増大できることが確認された。さらに,図2の温度特
性より判るように,近い将来,逆透過膜装置の最高許容
温度が現在の約40℃よりさらに増大されることも十分
考えられるので,この場合には,コ−ジェネレ−ション
温水生成装置では40℃以上に原水を加温することは十
分可能であるから,この許容温度の上昇に伴い,原水を
加温すれば,さらに,透過水量を増大させることが可能
である。 (ロ)また,本発明のものでは,逆浸透膜装置への供給
側の原水を約40℃に加温したため,透過水の温度もそ
の分上昇して約40℃となったが,この透過水の冷却は
原水を用いて冷却するようにしたため,特別の冷却源を
必要とせず,冷却することができる。 (ハ)また,逆浸透膜装置に原水を加圧供給する前に,
フィルタ35により重金属以外の有機物,バクテリアを
除去し,逆浸透膜装置37により重金属成分を除去する
ように分担したから,原水として河川水は勿論,海水を
用いても純水を効率良く得ることができる。 (ニ)さらに,透過水を殺菌装置を通せば飲料水として
使用でき,殺菌を行わなくても手洗いやシャワ−用の水
としては十分に使用ができる。また,さらに所要の2次
処理を行うことにより工業用水の生成も容易に行うこと
ができる。 次に,本システムにおける給水工程,給湯工程では,
上記の造水工程で生成された純水をもとに給水や給湯を
おこなうものであるから,水道水のない僻地における給
水,給湯に好適である。 さらに,貯水タンク,貯湯タンクには夫々レベルセン
サが備えられているため,各タンクの貯水量,貯湯量を
需要の変動に対応して常時,所定量にすることができ,
さらに給水または給湯が所定量以下となるときは,随
時,造水工程,給湯工程の機能を停止して余分なエネル
ギ−の消費を防止することができる。 なお,本システムにおける造水工程・給水工程及び給
湯工程への動力の電源,その他付帯設備への電源は,全
て上記コ−ジェネレ−ション発電装置22から供給し,
コ−ジェネレ−ションシステムと一体的に構成されるよ
うにすれば,各別の系統毎の動力源は不要となる。
As described above, the present invention provides a water producing process and a water supplying process using the reverse osmosis membrane device integrally formed with the cogeneration system, and a hot water supplying system using a latent heat recovery device. Since it is a water production, water supply, and hot water supply system that is efficiently combined in association with each other, it has the following excellent effects. First, the water producing process of this system and the supply of pure water obtained in this water producing process have the following effects. (A) The raw water supplied to the reverse osmosis membrane device is heated up to the maximum allowable temperature (for example, 40 ° C.) of the reverse osmosis membrane device by using the cogeneration hot water generator, so that -The amount of permeated water can be significantly increased as compared with the heating temperature (25 ° C to 30 ° C) by the heat recovery device mainly composed of a pump. That is, according to the temperature characteristics of FIG. 2, it is 1.587 / compared with the conventional one using raw water of 30 ° C.
1.176≈1.349, that is, it was confirmed that the permeated water amount could be increased by about 34.9%. Further, as can be seen from the temperature characteristics of FIG. 2, it is fully conceivable that the maximum permissible temperature of the reverse permeable membrane device will be further increased from the present approximately 40 ° C. in the near future. Since it is sufficiently possible to heat the raw water to 40 ° C or higher in the hot water generator, it is possible to further increase the amount of permeated water by warming the raw water as the allowable temperature rises. (B) Further, in the case of the present invention, since the raw water on the supply side to the reverse osmosis device is heated to about 40 ° C., the temperature of the permeated water also rises by that amount to about 40 ° C. Since water is cooled using raw water, it can be cooled without requiring a special cooling source. (C) In addition, before pressurizing the raw water to the reverse osmosis membrane device,
Since the filter 35 removes organic substances and bacteria other than heavy metals and the reverse osmosis membrane device 37 removes heavy metal components, it is possible to efficiently obtain pure water not only by using river water but also by using seawater as raw water. it can. (D) Furthermore, if the permeated water is passed through a sterilizer, it can be used as drinking water, and can be sufficiently used as water for hand washing and showers without sterilization. Further, industrial water can be easily produced by further performing the required secondary treatment. Next, in the water supply process and hot water supply process in this system,
Since water and hot water are supplied on the basis of the pure water generated in the above-mentioned water-producing process, it is suitable for water supply and hot water supply in remote areas without tap water. Further, since the water storage tank and the hot water storage tank are each provided with a level sensor, the water storage amount and the hot water storage amount of each tank can be constantly set to a predetermined amount in response to fluctuations in demand,
Further, when the water supply or hot water supply falls below a predetermined amount, the functions of the fresh water producing process and the hot water supplying process can be stopped at any time to prevent the consumption of extra energy. In addition, power supply for power generation in the system, water supply process, hot water supply process, and other auxiliary equipment are all supplied from the cogeneration power generator 22.
If it is configured integrally with the cogeneration system, a separate power source for each system becomes unnecessary.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す配管も含む系統図であ
る。
FIG. 1 is a system diagram including piping showing an embodiment of the present invention.

【図2】本発明と従来例を比較するために示した透過流
速補正係数−温度の特性図である。
FIG. 2 is a characteristic diagram of permeation flow velocity correction coefficient-temperature shown for comparing the present invention with a conventional example.

【図3】従来の逆浸透膜装置を利用した純水製造装置の
概略構成を示す系統図である。
FIG. 3 is a system diagram showing a schematic configuration of a pure water production apparatus using a conventional reverse osmosis membrane apparatus.

【図4】コ−ジェネレ−ションシステムによる水道水を
給水源とする給湯装置の構成を示す系統図である。
FIG. 4 is a system diagram showing a configuration of a hot water supply device that uses tap water as a water supply source by a cogeneration system.

【符号の説明】[Explanation of symbols]

20:原動機 24:潜熱回収器 28,32,34:熱交換器 36:圧力ポンプ 37:逆浸透膜装置 38:貯水タンク 39,49:レベルセンサ 48:貯湯タンク 50:温度調節弁 51:供給ポンプ 20: prime mover 24: latent heat recovery device 28, 32, 34: heat exchanger 36: pressure pump 37: reverse osmosis membrane device 38: water storage tank 39, 49: level sensor 48: hot water storage tank 50: temperature control valve 51: supply pump

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 次の構成の造水工程,給水工程及び給湯
工程を備えたことを特徴とする造水・給水・給湯システ
ム。 a.当初は予め準備した水道水または河川水を用いてコ
−ジェネレ−ションシステムの発電装置駆動用の排気ガ
スを伴う原動機の排熱回収により海水,河川水等の原水
を,後述する逆浸透膜装置の所定の許容温度まで加温す
る第1の熱交換器,この第1の熱交換器で加温された原
水を所定圧力に加圧する圧力ポンプ及びこの圧力ポンプ
により加圧された所定温度の原水を供給され,透過水を
生成する逆浸透膜装置を備えた造水工程。 b.上記造水工程で得られた逆浸透膜装置の透過水を,
第2の熱交換器により原水を用いて適温に冷却し給水す
るようにした給水工程。 c.上方位置に第1と第2の各給水管を.中間位置に充
填層を,また,下方位置に貯湯部を有する潜熱回収器及
び第3の熱交換器を備え,上記潜熱回収器内において当
初は第1の給水管から供給された水と原動機からの高熱
の排気ガスを接触させて温水を貯湯部に一旦貯えた後,
この温水を貯湯部と上記第3の熱交換器の1次側と第2
の給水管間を循環させ,第3の熱交換器によりクリ−ン
な温水を得て貯湯タンクに貯蔵し,給湯するようにした
給湯工程。
1. A water production / water supply / hot water supply system comprising a water production process, a water supply process, and a hot water supply process having the following configurations. a. Initially, tap water or river water prepared in advance was used to recover raw water such as seawater and river water by recovering the exhaust heat of the prime mover accompanied by exhaust gas for driving the power generator of the cogeneration system, and the reverse osmosis membrane device described later. First heat exchanger for heating up to a predetermined allowable temperature of, a pressure pump for pressurizing the raw water heated by the first heat exchanger to a predetermined pressure, and raw water of a predetermined temperature pressurized by this pressure pump A desalination process equipped with a reverse osmosis membrane device that is supplied with water and produces permeate. b. The permeated water of the reverse osmosis membrane device obtained in the above desalination process is
A water supply process in which raw water is cooled to an appropriate temperature by the second heat exchanger to supply water. c. Install the first and second water supply pipes in the upper position. A latent heat recovery device having a packed bed at an intermediate position and a hot water storage part at a lower position and a third heat exchanger are provided, and in the latent heat recovery device, the water originally supplied from the first water supply pipe and the prime mover are connected. After contacting hot exhaust gas from the
This hot water is supplied to the hot water storage section and the primary side of the third heat exchanger and the second side.
The hot water supply process in which the hot water is circulated between the water supply pipes, the clean hot water is obtained by the third heat exchanger, and the hot water is stored in the hot water storage tank for hot water supply.
【請求項2】 上記造水工程における原水タンクと圧力
ポンプの間に重金属以外の有機物,バクテリア等を濾過
するフィルタを設けるようにした請求項1記載の造水・
給水・給湯システム。
2. The desalination apparatus according to claim 1, wherein a filter for filtering organic substances other than heavy metals, bacteria and the like is provided between the raw water tank and the pressure pump in the desalination process.
Water and hot water supply system.
【請求項3】 上記造水工程における貯水タンクにレベ
ルセンサを備え,貯水タンクの水量が需要との関連で定
められる所定値未満のときは造水工程を駆動し,上記水
量が所定値以上となったときは造水工程を停止するよう
にした請求項1または2のいずれかに記載の造水・給水
・給湯システム。
3. The water storage tank in the water production process is provided with a level sensor, and when the water amount in the water storage tank is less than a predetermined value determined in relation to demand, the water production process is driven so that the water amount is above a predetermined value. The desalination / water supply / hot water supply system according to claim 1 or 2, wherein the desalination process is stopped when the temperature becomes low.
【請求項4】 上記給水工程において,第2の熱交換器
を経て適温にした純水を,さらにオゾン発生器等を用い
た殺菌装置により殺菌して飲料水を生成し,または,上
記純水を2次処理によって工業用水を生成し,給水する
ようにした請求項1記載の造水・給水・給湯システム。
4. In the water supply step, pure water that has been brought to an appropriate temperature through the second heat exchanger is further sterilized by a sterilizer using an ozone generator or the like to produce drinking water, or the pure water is used. The water production / water supply / hot water supply system according to claim 1, wherein the industrial water is generated by a secondary treatment to supply the water.
【請求項5】 上記給湯工程において,貯水タンクと第
3の熱交換器間及び貯湯タンクと第3の熱交換器の間の
経路を切り替える温度調節弁を備え,貯湯タンクの温水
の温度が所定値未満の温度のときは貯水タンクと第3の
熱交換器間を連通し,貯湯タンクの温水の温度が所定値
以上となったときは,貯湯タンクと第3の熱交換器の間
を連通するように各経路を切り替えるようにした請求項
1記載の造水・給水・給湯システム。
5. In the hot water supply step, a temperature control valve is provided for switching paths between the water storage tank and the third heat exchanger and between the hot water storage tank and the third heat exchanger, and the temperature of the hot water in the hot water storage tank is set to a predetermined value. When the temperature is lower than the value, the water storage tank and the third heat exchanger are communicated with each other, and when the temperature of the hot water in the hot water storage tank exceeds a predetermined value, the hot water storage tank and the third heat exchanger are communicated with each other. The desalination / water supply / hot water supply system according to claim 1, wherein each path is switched so as to do so.
【請求項6】 上記給水工程からの純水と給湯工程から
の温水とをシャワ−室に供給するようにした請求項1記
載の造水・給水・給湯システム。
6. The fresh water / water supply / hot water supply system according to claim 1, wherein pure water from the water supply step and hot water from the hot water supply step are supplied to the shower chamber.
【請求項7】 上記給湯工程における貯湯タンクにレベ
ルセンサを備え,貯湯タンクの温水量が需要との関連で
定められる所定値未満のときは給湯工程を駆動し,上記
温水量が所定値以上となったときは給湯工程を停止する
ようにした請求項1または4のいずれかに記載の造水・
給水・給湯システム。
7. A hot water storage tank in the hot water supply process is provided with a level sensor, and when the hot water amount in the hot water storage tank is less than a predetermined value determined in relation to demand, the hot water supply process is driven to set the hot water amount to a predetermined value or more. The hot water supply process is stopped when the temperature rises.
Water and hot water supply system.
【請求項8】 本システムを,造水工程,給水工程,給
湯工程の順序で駆動するようにした請求項1記載の造水
・給水・給湯システム。
8. The water / water supply / hot water supply system according to claim 1, wherein the system is driven in the order of a water supply process, a water supply process, and a hot water supply process.
【請求項9】 上記造水・給水・給湯の各工程の動力源
への電源,その他付帯設備への電源は全て上記コ−ジェ
ネレ−ション発電装置から供給し,コ−ジェネレ−ショ
ンシステムと一体的に構成されるようにした請求項1,
2,4,5,6又は8のいずれかに記載の造水・給水・
給湯システム。
9. The power source for the power source of each process of the above-mentioned water production, water supply, and hot water supply, and the power source for other incidental equipment are all supplied from the above cogeneration system and integrated with the cogeneration system. Claim 1, which is configured as
Water production / water supply according to any of 2, 4, 5, 6 or 8
Hot water supply system.
JP7078693A 1993-03-08 1993-03-08 Fresh water generating, water feeding and hot water feeding system Pending JPH06254554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7078693A JPH06254554A (en) 1993-03-08 1993-03-08 Fresh water generating, water feeding and hot water feeding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7078693A JPH06254554A (en) 1993-03-08 1993-03-08 Fresh water generating, water feeding and hot water feeding system

Publications (1)

Publication Number Publication Date
JPH06254554A true JPH06254554A (en) 1994-09-13

Family

ID=13441563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7078693A Pending JPH06254554A (en) 1993-03-08 1993-03-08 Fresh water generating, water feeding and hot water feeding system

Country Status (1)

Country Link
JP (1) JPH06254554A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8221628B2 (en) 2010-04-08 2012-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system to recover waste heat to preheat feed water for a reverse osmosis unit
US8505324B2 (en) 2010-10-25 2013-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Independent free cooling system
US9314742B2 (en) 2010-03-31 2016-04-19 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for reverse osmosis predictive maintenance using normalization data
CN108558125A (en) * 2018-02-14 2018-09-21 中国国际贸易中心股份有限公司 It is suitable for the stain disease processing method and system of public building comprehensive utilization

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9314742B2 (en) 2010-03-31 2016-04-19 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for reverse osmosis predictive maintenance using normalization data
US8221628B2 (en) 2010-04-08 2012-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system to recover waste heat to preheat feed water for a reverse osmosis unit
US8505324B2 (en) 2010-10-25 2013-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Independent free cooling system
CN108558125A (en) * 2018-02-14 2018-09-21 中国国际贸易中心股份有限公司 It is suitable for the stain disease processing method and system of public building comprehensive utilization

Similar Documents

Publication Publication Date Title
US20070221362A1 (en) Disinfection System
US6539718B2 (en) Method of and apparatus for producing power and desalinated water
JP4156236B2 (en) Potable water distillation system
JP4762048B2 (en) Desalination power plant
CN103370279B (en) Seawater desalination system
JPH06254553A (en) Apparatus for producing pure water
US20090152183A1 (en) Disinfection System Improvements
JPH0463755B2 (en)
CN103052437B (en) Membrane separation device and membrane separating method
KR101402482B1 (en) A Seawater Desalination System for Small Craft
MX2007003302A (en) Seawater desalination plant.
JP5598083B2 (en) Waste heat recovery system and cogeneration system
JPH06254554A (en) Fresh water generating, water feeding and hot water feeding system
JP2006247647A (en) Self-propelling drinking water making method using hybrid vehicle and self-propelling drinking water making device
JP3640410B2 (en) Power generation and desalination equipment using seawater temperature difference
JP3100219U (en) Cooling water system for ship engine
US20070220905A1 (en) Cooling Water for a Natural Gas Conversion Complex
JP7379827B2 (en) Hot water production and waste hot water reuse methods
JPS61141985A (en) Seawater desalting system
WO2015060169A1 (en) Power generation plant
JP7379828B2 (en) Hot water production and waste hot water reuse methods
JPH10192853A (en) Waste water treatment apparatus, membrane filter apparatus therefor and membrane filter method
JPH0544498Y2 (en)
JPS58156392A (en) Desalinator using waste heat of engine
JP2002022274A (en) Waste heat recovering system