WO2015060169A1 - Power generation plant - Google Patents

Power generation plant Download PDF

Info

Publication number
WO2015060169A1
WO2015060169A1 PCT/JP2014/077405 JP2014077405W WO2015060169A1 WO 2015060169 A1 WO2015060169 A1 WO 2015060169A1 JP 2014077405 W JP2014077405 W JP 2014077405W WO 2015060169 A1 WO2015060169 A1 WO 2015060169A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
condenser
temperature
flow rate
power generation
Prior art date
Application number
PCT/JP2014/077405
Other languages
French (fr)
Japanese (ja)
Inventor
晴輔 三宅
康之 池上
Original Assignee
国立大学法人佐賀大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人佐賀大学 filed Critical 国立大学法人佐賀大学
Publication of WO2015060169A1 publication Critical patent/WO2015060169A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/04Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled condensation heat from one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to a power plant in which a power generation system such as a thermal power generation facility and a waste heat power generation system that generates power using waste heat of the power generation system are combined.
  • Patent Document 1 discloses a technology that uses turbine oil supplied to a bearing of a steam turbine and waste heat of a generator cooler that cools a generator in a casing in a condensate system.
  • heat of turbine oil or the like is recovered by a cooling water (heat medium) circulation system and is heat discarded (waste heat) by the cooler of the cooling water.
  • Energy utilization efficiency can be improved by using heat.
  • the waste heat power generation system includes an evaporation / condensation cycle using a low boiling point liquid as a working medium, and a waste heat turbine rotated by the working medium in a vapor state. Waste heat or the like of the turbine oil is used to evaporate the working medium. According to such a power plant, since the power generation is performed by the original power generation system and the waste heat power generation system, the power generation amount can be increased.
  • seawater In power plants, seawater is exclusively used as cooling water for condensers and cooling water for the coolers. How the cooling seawater is taken and distributed to the power generation system and the waste heat power generation system affects the operating cost and efficiency of the power plant.
  • an object of the present invention is to collect seawater for cooling in a power generation plant in which a power generation system and a waste heat power generation system that generates power using waste heat of the power generation system are combined.
  • the purpose is to optimize the mode of use.
  • a power generation plant uses a power generation system including a steam turbine, a condenser, and a heating source, and a steam circulation system for circulating water or steam through the power generation system, and waste heat of the power generation system.
  • a waste heat power generation system including a waste heat turbine, an evaporator and a condenser, a heat medium cooler including a heat exchanging unit, and a heat medium circulation system, wherein the steam A waste heat circulation system including a heat recovery unit that recovers waste heat generated by the operation of the turbine, a heat release unit that releases heat in the evaporator and the heat exchange unit, and 20 m to 200 m from the sea surface
  • the young deep water cooling system that takes in seawater in the younger deep layer that is the lower layer of the water and drains the seawater through the condenser, the condenser, and the heat exchange unit, and the heat of the waste heat circulation system Medium and the Waka Deep Layer
  • a control unit that controls the flow rate of the seawater in the cooling system, and the control unit is configured to maintain the pressure in the steam circulation system within a predetermined range, and the condenser of the young deep water cooling system.
  • At least the heat exchange part of the young deep water cooling system is adjusted to adjust the flow rate of the seawater passing through At least one of the second control for adjusting the flow rate of the seawater passing therethrough is executed.
  • the control unit executes both the first control and the second control.
  • FIG. 1 is a block diagram schematically showing the configuration of a power plant according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the concept of young deep water.
  • FIG. 3 is a functional block diagram of the supply amount control unit shown in FIG.
  • FIG. 4 is a flowchart showing the operation of the supply amount control unit.
  • FIG. 5 is a flowchart of condenser seawater flow rate control.
  • FIG. 6 is a flowchart of the waste heat circulation system cooling water temperature control.
  • FIG. 7 is a graph showing the relationship between the inlet temperature of the young deep water and the turbine output.
  • FIG. 8 is a graph showing the relationship between the inlet temperature of the young deep water and the net turbine output.
  • FIG. 1 is a block diagram schematically showing the configuration of a power plant according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the concept of young deep water.
  • FIG. 3 is a functional block diagram of the supply amount control unit shown in FIG.
  • FIG. 9 is a graph showing the relationship between the inlet temperature of the young deep water and the cycle thermal efficiency.
  • FIG. 10 is a graph showing the relationship between the inlet temperature of young deep water and the steam generator heat transfer coefficient.
  • FIG. 11 is a graph showing the relationship between the inlet temperature of the young deep water and the condenser heat passage coefficient.
  • FIG. 1 is a block diagram schematically showing a configuration of a power plant G according to an embodiment of the present invention.
  • the power plant G is a power plant using young deep water described later as cooling seawater in the cooling system, and includes a power generation system 1, a waste heat power generation system 2, a cooling water cooler 3 (heat medium cooler), and a supply amount.
  • the control part 4 control part
  • the adjustment part 5 the waste heat circulation system 6, and the young deep water cooling system 7 are provided.
  • the power generation system 1 is a commercial power generation facility equipped with a steam power generation system facility.
  • a power generation system including equipment for oil thermal power generation, coal thermal power generation, or LNG thermal power generation can be exemplified.
  • the power generation system 1 includes a boiler 10 (heating source), a steam generator 11, a steam turbine 12, a condenser 13, a feed pump 14, an equipment cooler 15, a combustion gas passage 101, and a steam circulation system as a schematic equipment configuration. 102.
  • the steam circulation system 102 is a closed circulation line that encloses pure water (working fluid) and circulates water or steam through the steam generator 11, the steam turbine 12, the condenser 13, and the feed water pump 14. .
  • the boiler 10 generates high-temperature combustion gas using petroleum, coal, LNG, or the like as fuel and supplies it to the combustion gas passage 101.
  • the combustion gas passage 101 and the steam circulation system 102 exchange heat in the steam generator 11, and water sent to the steam generator 11 through the steam circulation system 102 by the feed water pump 14 is converted into steam by the heat exchange.
  • the This steam is supplied to the blade portion of the steam turbine 12, and the steam turbine 12 is rotated about the axis of the rotation shaft.
  • a rotating shaft of a generator rotor (not shown) is connected to the rotating shaft of the steam turbine 12, and electric power is generated by the rotation of the generator rotor accompanying the rotation of the steam turbine 12.
  • the steam circulation system 102 is introduced into the condenser 13 on the downstream side of the steam turbine 12. In the condenser 13, heat is exchanged between the steam in the steam circulation system 102 and the cooling water (in this embodiment, young deep water), and the steam is converted into water.
  • a pressure sensor 41 for detecting the pressure in the steam circulation system 102 is disposed on the outlet side (downstream side) of the steam turbine 12 in the steam circulation system 102.
  • the operation efficiency of the steam turbine 12 tends to become better as the pressure difference between the inlet side (upstream side) and the outlet side (condenser 13) of the steam turbine 12 in the steam circulation system 102 increases. Therefore, the pressure in the steam circulation system 102, particularly the degree of vacuum of the condenser 13, greatly affects the system efficiency of the power generation system 1.
  • the pressure sensor 41 is arranged to monitor whether or not the pressure in the steam circulation system 102 (condenser 13) is maintained within an appropriate range.
  • the operating efficiency of the steam turbine 12 increases as the vacuum level of the condenser 13 increases, but reaches a certain level when the vacuum level reaches a certain value. This is because as the degree of vacuum is increased, it is necessary to increase the area of the heat exchanging portion or increase the amount of cooling water in the condenser 13, which increases equipment costs and operating costs. Therefore, there is no need to increase the degree of vacuum.
  • the degree of vacuum changes with temperature.
  • the degree of vacuum of the condenser 13 can vary depending on the temperature of seawater that serves as cooling water in the condenser 13. When the temperature of the cooling water increases, the degree of vacuum tends to decrease, and when the temperature of the cooling water decreases, the degree of vacuum tends to increase. For this reason, it is desirable to select the water temperature of the seawater introduced into the condenser 13 so that the degree of vacuum (pressure) of the steam circulation system 102 (condenser 13) can be maintained in an appropriate range.
  • the device cooler 15 is arranged to cool various devices (including the steam turbine 12 and the generator described above) provided in the power generation system 1.
  • the turbine oil supplied to the bearing of the steam turbine 12 is cooled in the equipment cooler 15.
  • cooling of bearing oil such as the feed water pump 14 and a fuel pushing fan and hydrogen gas for cooling the generator in the casing is also performed in the equipment cooler 15.
  • the device cooler 15 is a device for recovering waste heat of heat generated by the operation of the steam turbine 12, and by extension, waste heat of heat generated by device operation of the power generation system 1. Waste heat recovered by the equipment cooler 15 is transferred to the waste heat power generation system 2 by a waste heat circulation system 6 to be described later and used as a heat source for power generation.
  • the waste heat power generation system 2 is a system that generates power using the waste heat of the power generation system 1, and includes an evaporator 21, a waste heat turbine 22, a condenser 23, a circulation pump 24, and a working medium circulation system 25.
  • the working medium circulation system 25 is a closed circulation line that sequentially passes through the evaporator 21, the waste heat turbine 22, and the condenser 23.
  • the working medium circulation system 25 is filled with a low-boiling working medium having a vaporization temperature of about 30 ° C., for example, chlorofluorocarbon, and the working medium circulates inside the working medium circulation system 25 by a circulation pump 24.
  • the working medium is given heat and converted into steam.
  • the heat source is waste heat of the power generation system 1 collected by the equipment cooler 15. This steam is supplied to the blade portion of the waste heat turbine 22, and the waste heat turbine 22 is rotated about the axis of the rotation shaft.
  • a rotating shaft of a generator rotor (not shown) is connected to the rotating shaft of the waste heat turbine 22.
  • the working medium in the vapor state is introduced into a condenser 23 disposed on the downstream side of the waste heat turbine 22 and is converted into a liquid state by being cooled.
  • the cold heat source is young deep water.
  • the waste heat circulation system 6 is a cooling water (heat medium) circulation system, and includes a heat recovery unit that recovers waste heat and a heat release unit that dissipates the recovered heat.
  • the cooling water cooler 3 includes a heat exchange unit 31 that cools the cooling water circulating in the waste heat circulation system 6.
  • the cold heat source in the heat exchange unit 31 is young deep water.
  • the heat recovery unit of the waste heat circulation system 6 is disposed in the equipment cooler 15 of the power generation system 1, and the heat release unit is disposed in the evaporator 21 and the cooling water cooler 3 of the waste heat power generation system 2.
  • the waste heat circulation system 6 includes an evaporator pipe 61 that passes through the evaporator 21, a heat exchange section pipe 62 that passes through the heat exchange section 31 of the cooling water cooler 3, and a short circuit that does not pass through any device. And a pipe 63.
  • the evaporator pipe 61, the heat exchange section pipe 62, and the short-circuit pipe 63 are pipes arranged in parallel, and merge with each other on the upstream side and the downstream side of these pipes. In FIG. 1, these merging portions are represented as an upstream merging portion 601 and a downstream merging portion 602.
  • the waste heat circulation system 6 includes an outward piping 64 that connects the upstream junction 601 and the device cooler 15, and a return piping 65 that connects the downstream junction 602 and the appliance cooler 15.
  • a heat recovery part 6A of the waste heat circulation system 6 is arranged.
  • the upstream end of the forward piping 64 is connected to the downstream side of the heat recovery unit 6A, and the downstream end of the return piping 65 is connected to the upstream side of the heat recovery unit 6A.
  • the evaporator pipe 61 is provided with a first heat release part 6B1, and the heat exchange part pipe 62 is provided with a second heat release part 6B2.
  • the first heat release part 6B1 is arranged in the evaporator 21 and the second heat release part 6B2 is arranged in the cooling water cooler 3.
  • a cooling water circulation pump 66 is provided in the middle of the outward piping 64. The cooling water circulates in the waste heat circulation system 6 by driving the cooling water circulation pump 66.
  • the cooling water circulating inside the waste heat circulation system 6 exchanges heat with waste heat of various devices of the power generation system 1 in the device cooler 15 in the heat recovery unit 6A, and the temperature is raised to about 60 ° C.
  • the cooling water whose temperature has been raised is transferred to the downstream side by the cooling water circulation pump 66 and travels toward the first heat release part 6B1 and the second heat release part 6B2.
  • the heated cooling water exchanges heat with the working medium of the working medium circulation system 25 and converts the working medium into steam.
  • the heated cooling water is heat-exchanged with the young deep water and cooled.
  • the cooling water cooled by these heat exchanges goes to the heat recovery section 6A through the return pipe 65.
  • a temperature sensor 42 that measures the temperature of the cooling water (heat medium) circulating inside the waste heat circulation system 6 is arranged.
  • the temperature of the cooling water In the state where the cooling water passes through the waste heat power generation system 2 and reaches the return pipe 65, if the temperature of the cooling water is too high, the amount of heat that can be recovered in the equipment cooler 15 is reduced, and the power generation system 1 is cooled. Performance decreases.
  • the fact that the temperature of the cooling water is below a certain value means that the cooling water is excessively cooled in the cooling water cooler 3. In other words, the young deep water is excessively used, which is not desirable.
  • the temperature sensor 42 is arranged to monitor whether or not the cooling water in the return pipe 65 of the waste heat circulation system 6 is maintained at an appropriate temperature.
  • the young deep water cooling system 7 is a system that supplies the young deep water as a cooling medium to the power generation system 1, the waste heat power generation system 2, and the cooling water cooler 3.
  • the young deep water cooling system 7 takes seawater (young deep water) in the young deep layer, which is a lower layer of 20 m to 200 m from the sea surface, and the condenser 13 of the power generation system 1 and the condenser 23 of the waste heat power generation system 2. And the said seawater is drained via the heat exchanger 31 of the cooling water cooler 3.
  • the young depth water cooling system 7 includes an intake pipe 71, a condenser pipe 72, a cooler pipe 73, a condenser pipe 74, a water discharge pipe 75, and a young depth water pump 76.
  • the intake pipe 71 is a pipe for taking seawater from a young depth.
  • the condenser pipe 72 is a pipe extending from the downstream end of the intake pipe 71 to the upstream end of the water discharge pipe 75 via the condenser 13.
  • the cooler pipe 73 is a pipe that extends from the downstream end of the water intake pipe 71 to the upstream end of the water discharge pipe 75 via the cooling water cooler 3.
  • the condenser pipe 74 is a pipe that branches from the cooler pipe 73 on the upstream side of the cooling water cooler 3 and merges with the cooler pipe 73 on the downstream side of the cooling water cooler 3 via the condenser 23.
  • the water discharge pipe 75 is a pipe for returning the young deep water that has been heat-exchanged in each pipe to the sea.
  • the young deep water pump 76 takes the young deep water from the upstream end of the intake pipe 71, transfers the young deep water in the young deep water cooling system 7, and transfers the young deep water from the downstream end of the water discharge pipe 75. Generate power.
  • the young deep water flowing through the condenser pipe 72 exchanges heat with the steam flowing through the steam circulation system 102 in the condenser 13 to condense the steam into water.
  • the cooler pipe 73 includes the heat exchange unit 31 described above inside the cooling water cooler 3, and the young deep water flowing through the cooler pipe 73 is connected to the heat exchange unit pipe 62 (second heat release unit 6 ⁇ / b> B ⁇ b> 2) in the heat exchange unit 31. Heat exchange with the flowing cooling water is performed to lower the temperature of the cooling water.
  • the young deep water flowing through the condenser pipe 74 exchanges heat with the vaporized working medium flowing through the working medium circulation system 25 in the condenser 23 to convert the working medium into a liquid.
  • FIG. 2 is a diagram showing the concept of young deep water.
  • deep water refers to seawater that exists in a region 200 m or more deeper than the seawater surface, and is defined as seawater that does not reach sunlight and does not mix with surface seawater.
  • Seawater existing within a depth of 20 m from the seawater surface can be said to be surface water that is well received by sunlight and affected by wind and waves.
  • Young deep water is defined as seawater that exists between these deep water and surface water. That is, seawater existing between a depth of 20 m that is not affected by wind and waves and a depth of 200 m, the limit of sunlight reaching the sea, is defined as young deep water.
  • this young deep water is defined as a power plant. Used as cooling water for G.
  • This young deep-sea water has good water quality, and marine organisms such as jellyfish and shellfish are hardly inhabited, so it is possible to prevent marine organisms from entering and attaching to the power plant.
  • the seawater temperature of the young deep layer water includes a temperature range (for example, a constant temperature range of 18 ° C. or lower) in which the condenser vacuum degree is in an appropriate range throughout the year. Can take water.
  • the young deep layer water having the water temperature in the desired temperature range is supplied to the condenser 13 by the young deep layer water cooling system 7 and exchanges heat with the steam in the steam circulation system 102.
  • the power generation system 1 is set so that the degree of vacuum of the condenser 13 is in an appropriate range and the efficiency of the steam turbine 12 is optimized when cooling water having the water temperature is given.
  • the pressure on the inlet side and the pressure on the outlet side of the steam turbine 12 in the steam circulation system 102 are supplied to the condenser 13 in the cooling water in the temperature range. Is set so that the power generation system 1 is optimized. Therefore, the power generation efficiency of the power generation system 1 can be maximized by supplying the young deep water.
  • the water temperature of the young deep water after the heat exchange in the condenser 13 is about 25 ° C to 30 ° C. With such a water temperature, there is little temperature difference with the water temperature of the sea surface layer, and water can be discharged to the surface layer. For this reason, in this embodiment, as shown in FIG. 2, while the intake of the intake pipe 71 of the young depth water cooling system 7 is arrange
  • the countermeasure for the hot waste water treatment which is a problem in the power plant is substantially unnecessary or can be significantly reduced.
  • the adjustment unit 5 includes first, second, third, fourth, fifth, sixth, and seventh valves 50, 51, 52, 53, 54, 55, and 56, and flows through the young deep water cooling system 7.
  • the flow rate and flow path of the young deep water and the flow rate and flow path of the cooling water flowing through the waste heat circulation system 6 are adjusted.
  • These first to seventh valves 50 to 56 are flow rate adjusting valves, and the supply amount control unit 4 controls the opening and closing and the opening degree (flow rate).
  • the first valve 50 is disposed in the condenser pipe 72 of the young depth water cooling system 7 and adjusts the flow rate of the young depth water supplied to the condenser 13.
  • the first valve 50 may be disposed downstream of the young deep water pump 76 and upstream of the branch portion between the condenser pipe 72 and the cooler pipe 73.
  • the second valve 51 is disposed in the cooler pipe 73 and adjusts the flow rate of the young deep water supplied to the cooling water cooler 3 and the condenser 23. Note that a booster pump 57 and a third valve 52 are attached to the cooler pipe 73 in parallel with the second valve 51.
  • bulb 53 is arrange
  • the fifth valve 54 is disposed in the short circuit pipe 63 and adjusts the flow rate of the cooling water passing through the short circuit pipe 63.
  • bulb 55 is arrange
  • the seventh valve 56 is disposed downstream of the branch portion of the condenser pipe 74 and upstream of the cooling water cooler 3 in the cooler pipe 73, and passes through the cooling water cooler 3 (heat exchange unit 31). Adjust the water flow rate.
  • the supply amount control unit 4 controls the operations of the first to seventh valves 50 to 56, the young deep water pump 76 and the booster pump 57 to maintain the pressure in the steam circulation system 102 within a predetermined range.
  • the first control for adjusting the flow rate of the young deep layer water passing through the condenser 13 of the young deep water cooling system 7 is performed.
  • 2nd control which adjusts the flow volume of the young deep layer water which passes the heat exchange part 31 of the water cooler 3 is performed.
  • the supply amount control unit 4 also controls the flow rate of the cooling water in the waste heat circulation system 6.
  • FIG. 3 is a functional block diagram of the supply amount control unit 4.
  • the supply amount control unit 4 is an arithmetic unit composed of a personal computer or the like, and by executing a predetermined program, the flow rate control unit 43, the vacuum degree determination unit 44, the temperature determination unit 45, the pump control unit 46, and the reference data It operates so as to functionally include the storage unit 47.
  • the flow rate control unit 43 controls the opening and closing of the first to seventh valves 50 to 56 and the opening degree (flow rate) to thereby control the flow rate and flow path of the young deep water flowing through the young deep water cooling system 7, and waste heat circulation.
  • the flow rate and flow path of the cooling water flowing through the system 6 are adjusted.
  • the degree of vacuum determination unit 44 has the degree of vacuum on the outlet side of the steam turbine 12 in the steam circulation system 102 (the degree of vacuum of the condenser 13) within a predetermined reference value range. It is determined whether or not.
  • the temperature determination unit 45 determines whether or not the cooling water temperature near the downstream junction 602 in the waste heat circulation system 6 is within a predetermined reference temperature range.
  • the pump control unit 46 adjusts the total amount of young deep water flowing through the young deep water cooling system 7 by controlling the drive of the young deep water pump 76. Furthermore, the pump control unit 46 controls the driving of the booster pump 57 as necessary, so that the flow rate of the cooling water in the waste heat circulation system 6 and the young deep layer water passing through the heat exchange unit 31 of the cooling water cooler 3 is controlled. Adjust.
  • the reference data storage unit 47 stores the above-described reference value of the degree of vacuum, the reference temperature, and the allowable reference range defined by the characteristics of the power plant G. In addition, the reference data storage unit 47 stores the reference flow rate of the young deep water that flows to the condenser 13, the condenser 23, and the heat exchange unit 31.
  • the flow rate control unit 43 sets the flow rate of the young deep water passing through the condenser 13 to the reference flow rate. Decrease.
  • the degree-of-vacuum determination unit 44 determines that the detection value of the pressure sensor 41 is higher than the reference value, the flow rate of young deep water is increased with respect to the reference flow rate (first control).
  • the flow rate control unit 43 allows the young deep layer water to flow through the heat exchange unit 31 of the cooling water cooler 3 when the temperature determination unit 45 determines that the detection value of the temperature sensor 42 is higher than a predetermined reference temperature. Alternatively, control is performed to increase the flow rate of the young deep water with respect to a predetermined reference flow rate. On the other hand, when the temperature determination unit 45 determines that the detected value of the temperature sensor 42 is lower than a predetermined reference temperature, the flow rate control unit 43 performs control to increase the flow rate of the cooling water that passes through the short-circuit pipe 63. (Second control).
  • FIG. 4 to FIG. This will be described based on the flowchart.
  • the opening degree of the first valve 50 is adjusted so that the reference flow rate seawater is supplied to the condenser 13.
  • the fourth valve 53 and the seventh valve 56 are operated at the minimum opening in the normal operation state.
  • the temperature adjustment of the cooling water in the waste heat circulation system 6 is assumed to be maintained at the reference temperature by the opening balance between the fifth valve 54 and the sixth valve 55.
  • step S1 when a predetermined sampling period (for example, every 1 to 10 minutes) arrives (YES in step S1), supply amount control unit 4 detects a detected value from pressure sensor 41, that is, steam circulation system 102. The value of the degree of vacuum on the outlet side of the steam turbine 12 (the degree of vacuum of the condenser 13) is acquired (step S2). Subsequently, the degree-of-vacuum determination unit 44 compares the detected value with a reference value stored in the reference data storage unit 47, and whether or not the detected value matches the reference value or a predetermined value. It is determined whether it is within the reference range (step S3).
  • the supply amount control unit 4 controls the condenser seawater flow rate in order to return the detected value to the reference value or the reference range. (Step S20).
  • the detected value from the temperature sensor 42 that is, the value of the cooling water temperature near the downstream junction 602 in the waste heat circulation system 6. Is acquired (step S4).
  • the temperature determination unit 45 compares the detected temperature value with the reference temperature stored in the reference data storage unit 47, and whether or not the detected temperature value matches the reference temperature, or the reference It is determined whether it is within the range (step S5).
  • the waste heat circulation system cooling water temperature control is performed to return the cooling water temperature to the reference temperature or the reference range. (Step S30).
  • FIG. 5 is a flowchart showing details of the condenser seawater flow rate control (first control) in step S20.
  • the degree-of-vacuum determination unit 44 stores the pressure data acquired in the previous step S2 in a memory (not shown) (step S21).
  • the degree-of-vacuum determination unit 44 determines whether the degree of vacuum of the condenser 13 stored in the memory is higher than a reference value or a reference range (whether it is close to atmospheric pressure) (step). S22).
  • the flow control unit 43 increases the opening degree of the first valve 50 from the current state. Thereby, the flow volume of the seawater supplied to the condenser 13 is increased with respect to a predetermined reference flow volume (step S24). Therefore, the temperature of the condenser 13 decreases and the degree of vacuum of the condenser 13 changes in a direction approaching absolute vacuum.
  • the flow control unit 43 makes the opening degree of the first valve 50 smaller than the current state.
  • step S25 the flow volume of the seawater supplied to the condenser 13 is reduced with respect to a predetermined reference flow volume (step S25). Therefore, the temperature of the condenser 13 rises and the degree of vacuum of the condenser 13 changes in a direction approaching atmospheric pressure.
  • the degree-of-vacuum determination unit 44 checks whether or not a predetermined time has elapsed since the start of the increase or decrease in the flow rate of the seawater supplied to the condenser 13 (step S26). After a predetermined time has elapsed (YES in step S26), the vacuum degree determination unit 44 acquires the detection value of the pressure sensor 41 (step S27), and the vacuum degree of the condenser 13 returns to the reference value or the reference range. It is confirmed whether or not (step S28).
  • step S28 If the degree of vacuum has not returned to the reference value or the reference range (NO in step S28), the flow control unit 43 maintains an increase or decrease in the flow rate of seawater. The process returns to step S21, the pressure data acquired in step S27 is stored in the memory, and the processes in and after step S22 are repeated. On the other hand, when the degree of vacuum has returned to the reference value or the reference range (YES in step S28), the process ends. By performing the above processing, the degree of vacuum on the outlet side of the steam turbine 12 in the steam circulation system 102 can be maintained within the allowable reference range.
  • FIG. 6 is a flowchart showing details of the waste heat circulation system cooling water temperature control (second control) in step S30.
  • the temperature determination unit 45 stores the temperature data acquired in the previous step S4 in a memory (not shown) (step S301). Next, the temperature determination unit 45 determines whether or not the temperature stored in the memory is higher than a reference value or a reference range (step S302). When the temperature is higher than the reference value or the reference range (YES in step S302), the flow control unit 43 determines whether or not the fifth valve 54 is open (step S303).
  • step S306 the flow control unit 43 decreases the opening of the fifth valve 54 (step S306). Thereby, the flow volume of the cooling water which passes the short circuit piping 63 is decreased, and the temperature of the cooling water in the downstream junction part 602 of the waste heat circulation system 6 is reduced.
  • step S307 the flow control unit 43 increases the opening degree of the fourth and seventh valves 53 and 56, and the cooling water cooler 3 is connected to the young deep water cooling system. 7 and the flow rate of the cooling water in the waste heat circulation system 6 are increased (step S307). Thereby, the cooling water is cooled in the cooling water cooler 3, and the temperature of the cooling water in the downstream junction 602 changes in a decreasing direction.
  • the flow rate control unit 43 indicates that the fourth valve 53 and the seventh valve 56 of the cooling water cooler 3 have the minimum opening. It is determined whether or not the vehicle is in operation (step S305).
  • step S305 When the valves 53 and 57 of the cooling water cooler 3 are operated at the minimum opening (YES in step S305), the opening of the fifth valve 54 is increased (step S308). Thereby, the cooling water flow rate of the short circuit piping 63 is increased, and the temperature of the cooling water in the downstream junction 602 is increased.
  • the flow controller 43 reduces the opening of the fourth valve 53 and the seventh valve 56, The flow rate of the seawater of the young deep water cooling system 7 and the cooling water of the waste heat circulation system 6 in the cooling water cooler 3 is reduced (step S309). Thereby, the cooling of the cooling water in the cooling water cooler 3 is suppressed, and the temperature of the cooling water in the downstream junction 602 can be increased.
  • the temperature determination unit 45 confirms whether or not the temperature control of the cooling water in the downstream junction 602 of the waste heat circulation system 6 has been performed for a predetermined time (step S310). After a predetermined time has elapsed (YES in step S310), the temperature determination unit 45 acquires the temperature detection value of the temperature sensor 42 (step S311), and the temperature of the cooling water in the downstream junction 602 of the waste heat circulation system 6 is the reference. It is confirmed whether or not the value or the reference range has been lowered (step S312).
  • step S312 If the temperature of the cooling water has returned to the reference value or the reference range (YES in step S312), the process ends. On the other hand, when the temperature of the cooling water has not returned to the reference value or the reference range (NO in step S312), the process returns to step S301, the temperature data acquired in step S311 is stored in the memory, and step S302 is performed. The following process is repeated.
  • the young deep water cooling system 7 for taking seawater from the young deep layer where the water quality is good and marine organisms such as jellyfish and shellfish hardly live. Since it is provided, marine organisms can be prevented from entering the power plant G, and marine organisms can be prevented from attaching and breeding to the condenser 13 and the cooling water cooler 3. Can be suppressed. Further, the supply amount control unit 4 performs the first control, so that the pressure in the steam circulation system 102 can be maintained within a predetermined range, thereby maintaining the vacuum efficiency of the steam turbine 12 at a high level. Can do.
  • the supply amount control unit 4 performs the second control, the temperature of the cooling water is maintained within a predetermined range, so that the cooling efficiency of the cooling water can be increased.
  • the amount of seawater used is sufficient to maintain the pressure in the steam circulation system 102 within the predetermined range in the condenser 13, and the temperature of the cooling water within the predetermined range at the heat exchanging unit 31. Since the amount is sufficient to maintain, the amount of seawater used (water intake) can be minimized.
  • the seawater temperature of the young deep water is considerably lower than that of the surface water, and the water temperature after use at the power plant G is not much different from the surface water. Therefore, the wastewater is discharged near the surface of the sea after waste heat recovery. It doesn't matter. In other words, warm drainage measures are virtually unnecessary. Accordingly, it is possible to suppress facility operation costs and the like while enjoying the merit of water intake from the above-mentioned younger generation.
  • Waka Deep Water is characterized by rich nutrient salts and rare metals. Therefore, the utility of the power generation system G can be further increased by extracting the nutrient salt from the young deep water after use in the power plant G and using it secondarily in the fishery or recovering the rare metals. Can be increased. Furthermore, an energy saving effect (carbon dioxide reduction effect) can be achieved by using the heat or cold of the young deep layer water for air conditioning.
  • the conditions of the experiment using the above experimental system are as follows. While the temperature of the hot water introduced into the steam generator 11 (hot water inlet temperature T WSI ) is kept constant at 30 ° C., the temperature of the young deep layer water (cold water inlet temperature T CSI ) introduced into the condenser (condenser 13). ) was changed in three stages of 8 ° C, 9 ° C and 10 ° C. The flow rate m WS of warm water and the flow rate m CS of young deep layer water were both 400 m 3 / h.
  • the working fluid composition Y E (ammonia mass fraction) at the inlet of the evaporator 11 is 0.94 kg / kg or 0.98 kg / kg, and the working fluid flow rate W MF is 7 t / h or 12 t / h. did. In addition, it means that the intake depth of young deep water becomes deep, so that cold water inlet temperature TCSI becomes low.
  • FIG. 7 is a graph showing the relationship between the cold water inlet temperature T CSI (inlet temperature young deep water) and a turbine output W T.
  • FIG. 8 is a graph showing the relationship between the cold water inlet temperature T CSI and the net turbine output W net .
  • FIG. 9 is a graph showing the relationship between the cold water inlet temperature T CSI and the cycle thermal efficiency ⁇ th of the experimental system.
  • FIG. 10 is a graph showing the relationship between the cold water inlet temperature T CSI and the steam generator heat passage coefficient U E.
  • FIG. 11 is a graph showing the relationship between the cold water inlet temperature T CSI and the condenser heat passage coefficient U C.
  • this invention is not limited to this.
  • an example in which one cooling water cooler 3 is used is shown.
  • a plurality of cooling water coolers 3 are provided.
  • one of the plurality of cooling water coolers 3 may be used for the waste heat power generation system 2 as in the present embodiment, and the rest may be used for cooling the waste heat of the power generation system 1.
  • the cooling water is exemplified as the heat medium circulating in the waste heat circulation system 6, and the cooling water cooler 3 is exemplified as the heat medium cooler.
  • cooling water instead of cooling water, cooling oil or cooling gas may be used as the heating medium of the waste heat circulation system 6, and the cooling medium or cooling gas may be cooled by the deep layer water in the heating medium cooler.
  • the supply amount control unit 4 performs both the condenser seawater flow rate control (first control) in step S20 of FIG. 4 and the heat circulation system cooling water temperature control (second control) in step S30.
  • first control condenser seawater flow rate control
  • second control heat circulation system cooling water temperature control
  • the supply amount control unit 4 may be configured to execute at least one of the first control and the second control.
  • a power generation plant uses a power generation system including a steam turbine, a condenser, and a heating source, and a steam circulation system for circulating water or steam through the power generation system, and waste heat of the power generation system.
  • a waste heat power generation system including a waste heat turbine, an evaporator and a condenser, a heat medium cooler including a heat exchanging unit, and a heat medium circulation system, wherein the steam A waste heat circulation system including a heat recovery unit that recovers waste heat generated by the operation of the turbine, a heat release unit that releases heat in the evaporator and the heat exchange unit, and 20 m to 200 m from the sea surface
  • the young deep water cooling system that takes in seawater in the younger deep layer that is the lower layer of the water and drains the seawater through the condenser, the condenser, and the heat exchange unit, and the heat of the waste heat circulation system Medium and the Waka Deep Layer
  • a control unit that controls the flow rate of the seawater in the cooling system, and the control unit is configured to maintain the pressure in the steam circulation system within a predetermined range, and the condenser of the young deep water cooling system.
  • At least the heat exchange part of the young deep water cooling system is adjusted to adjust the flow rate of the seawater passing through At least one of the second control for adjusting the flow rate of the seawater passing therethrough is executed.
  • the control unit executes both the first control and the second control.
  • this configuration it is equipped with a young deep water cooling system that takes in seawater from a young deep layer that has good water quality and is rarely inhabited by marine organisms such as jellyfish and shellfish. Adhesion can be suppressed.
  • the control unit performs the first control, the pressure in the steam circulation system can be maintained within a predetermined range, and thereby the vacuum efficiency of the condenser can be maintained at a high level. it can.
  • the cooling efficiency of the heat medium can be increased.
  • the amount of seawater used is an amount sufficient to maintain the pressure in the steam circulation system within a predetermined range in the condenser, and the temperature of the heat medium in the heat exchanger is within a predetermined range.
  • the amount of water used can be minimized because the amount is limited to an amount sufficient to maintain the inside. Accordingly, it is possible to suppress facility operation costs and the like while enjoying the merit of water intake from the above-mentioned younger generation.
  • the temperature of the cooling water introduced into the condenser is limited to a certain temperature range in the power generation system.
  • the cooling water introduced into the condenser is seawater near the sea level. For this reason, the temperature of the cooling water changes depending on the season, and this change in water temperature affects the vacuum efficiency of the condenser.
  • the seawater temperature in the younger layers is lower than that near the sea surface, and the temperature range is constant throughout the season. Therefore, the power generation system can be made highly efficient by taking seawater from a young deep region having seawater temperature that does not affect the vacuum efficiency of the condenser.
  • the apparatus further includes a pressure sensor disposed on an outlet side of the steam turbine in the steam circulation system, and the first control of the control unit is performed when a detection value of the pressure sensor is lower than a predetermined reference value
  • the flow rate of seawater passing through the condenser is decreased with respect to a predetermined reference flow rate, and when the detected value is higher than the reference value, the flow rate of seawater is increased with respect to the reference flow rate. Control is desirable.
  • the degree of vacuum of the steam circulation system is monitored by the pressure sensor, and the flow rate of the seawater passing through the condenser can be optimized based on the monitoring result.
  • the waste heat circulation system includes an upstream side of the evaporator pipe passing through the evaporator, a heat exchange part pipe passing through the heat exchange part, and the evaporator pipe and the heat exchange part pipe.
  • a temperature sensor for detecting the temperature of the heat medium is further provided, and the second control of the control unit is configured such that when the detected value of the temperature sensor is higher than a predetermined reference temperature, the flow rate of seawater passing through the heat exchange unit It is desirable to include a control to increase the value with respect to a predetermined reference flow rate.
  • the temperature of the heat medium in the return pipe can be monitored by the temperature sensor, and the flow rate of the seawater passing through the heat exchange unit can be optimized based on the monitoring result.
  • the waste heat circulation system further includes a short-circuit pipe that directly connects the upstream merging section and the downstream merging section, and the second control of the control section has a predetermined value detected by the temperature sensor. It is desirable to include control for increasing the flow rate of the heating medium passing through the short-circuit pipe when the temperature is lower than the reference temperature.
  • the short-circuit pipe is further provided as a circulation path of the heat medium, it is easy to perform control for maintaining the temperature of the heat medium within a predetermined range in the waste heat circulation system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

This power generation plant (G) includes: a power generation system (1); a waste heat power generation system (2) that generates electric power by utilizing waste heat of the power generation system; and a cooling water cooler (3). Seawater that is taken in by a quasi-deep seawater cooling system (7) from a quasi-deep layer, that is, a below layer 20m-200m below sea level, is supplied as cooling seawater to a steam condenser (13) of the power generation system (1), a condenser (23) of the waste heat power generation system (2), and the cooling water cooler (3). A supply amount control unit (4) executes first control, whereby the flow rate of seawater passing through the steam condenser (13) is adjusted, in order to maintain the pressure inside a steam circulation system (102) of the power generation system (1) within a predetermined range and second control, whereby the flow rate of seawater passing through a heat-exchange unit (31) of the cooling water cooler (3) is adjusted, in order to maintain the temperature of cooling water in a waste heat circulation system (6) within a predetermined range.

Description

発電プラントPower plant
 本発明は、例えば火力発電設備のような発電システムと、この発電システムの廃熱を利用して発電を行う廃熱発電システムとが組み合わされた発電プラントに関する。 The present invention relates to a power plant in which a power generation system such as a thermal power generation facility and a waste heat power generation system that generates power using waste heat of the power generation system are combined.
 火力発電設備のような発電システムを備える発電プラントにおいては、エネルギー利用効率を向上させることが求められる。その一つの手段として、発電システムで発生する廃熱を回収し、他のシステムの動作エネルギーとして利用することが挙げられる。特許文献1には、蒸気タービンの軸受に供給されるタービン油や、発電機をケーシング内で冷却する発電機冷却器の廃熱を、復水系統において利用する技術が開示されている。一般に、タービン油等の熱は、冷却水(熱媒)の循環系統によって回収され、前記冷却水のクーラーによって熱廃棄(廃熱)されているが、特許文献1の技術によれば、前記廃熱の利用によりエネルギー利用効率を向上させることができる。 In a power plant equipped with a power generation system such as a thermal power generation facility, it is required to improve energy use efficiency. One means is to recover waste heat generated in the power generation system and use it as operating energy for other systems. Patent Document 1 discloses a technology that uses turbine oil supplied to a bearing of a steam turbine and waste heat of a generator cooler that cools a generator in a casing in a condensate system. In general, heat of turbine oil or the like is recovered by a cooling water (heat medium) circulation system and is heat discarded (waste heat) by the cooler of the cooling water. Energy utilization efficiency can be improved by using heat.
 また、前記廃熱を利用して発電を行う廃熱発電システムを備えた発電プラントも知られている。前記廃熱発電システムは、低沸点の液体を作動媒体とする蒸発・凝縮サイクルと、蒸気状態の前記作動媒体によって回転される廃熱タービンとを備える。前記タービン油の廃熱等は、前記作動媒体を蒸発させるために利用される。このような発電プラントによれば、本来の発電システムと、廃熱発電システムとによって発電が行われるので、発電量を増加させることができる。 Also known is a power plant equipped with a waste heat power generation system that generates power using the waste heat. The waste heat power generation system includes an evaporation / condensation cycle using a low boiling point liquid as a working medium, and a waste heat turbine rotated by the working medium in a vapor state. Waste heat or the like of the turbine oil is used to evaporate the working medium. According to such a power plant, since the power generation is performed by the original power generation system and the waste heat power generation system, the power generation amount can be increased.
 発電プラントにおいて、復水器用の冷却水、上記クーラー用の冷却水には海水が専ら用いられている。この冷却用の海水を、どの様にして取水し、また、前記発電システム及び前記廃熱発電システムに分配するかは、発電プラントの運用コストや効率に影響を与えることになる。 In power plants, seawater is exclusively used as cooling water for condensers and cooling water for the coolers. How the cooling seawater is taken and distributed to the power generation system and the waste heat power generation system affects the operating cost and efficiency of the power plant.
特開2004-36535号公報JP 2004-36535 A
 本発明の目的は、上記の問題に鑑みて、発電システムと、この発電システムの廃熱を利用して発電を行う廃熱発電システムとが組み合わされた発電プラントにおいて、冷却用の海水の取水及び利用の態様を最適化することにある。 In view of the above problems, an object of the present invention is to collect seawater for cooling in a power generation plant in which a power generation system and a waste heat power generation system that generates power using waste heat of the power generation system are combined. The purpose is to optimize the mode of use.
 本発明の一局面に係る発電プラントは、蒸気タービン、復水器及び加熱源と、これらを通して水乃至は蒸気を循環させる蒸気循環系統とを備えた発電システムと、前記発電システムの廃熱を利用して発電を行うシステムであって、廃熱タービン、蒸発器及び凝縮器を備えた廃熱発電システムと、熱交換部を備えた熱媒クーラーと、熱媒の循環系統であって、前記蒸気タービンの動作によって発生された熱の廃熱を回収する熱回収部と、前記蒸発器及び前記熱交換部において熱を放出する熱放出部とを含む廃熱循環系統と、海水面より20m~200mの下層範囲である若深層において海水を取水し、前記復水器、前記凝縮器及び前記熱交換部を経由して前記海水を排水する若深層水冷却系統と、前記廃熱循環系統の前記熱媒及び前記若深層水冷却系統の前記海水の流量を制御する制御部と、を備え、前記制御部は、前記蒸気循環系統内の圧力を所定範囲内に維持するために、前記若深層水冷却系統の前記復水器を経由する前記海水の流量を調整する第1制御と、前記廃熱循環系統内における前記熱媒の温度を所定範囲内に維持するために、少なくとも前記若深層水冷却系統の前記熱交換部を経由する前記海水の流量を調整する第2制御と、のうちの少なくとも一方を実行する。好ましくは、前記制御部は、前記第1制御及び前記第2制御の双方を実行する。 A power generation plant according to one aspect of the present invention uses a power generation system including a steam turbine, a condenser, and a heating source, and a steam circulation system for circulating water or steam through the power generation system, and waste heat of the power generation system. A waste heat power generation system including a waste heat turbine, an evaporator and a condenser, a heat medium cooler including a heat exchanging unit, and a heat medium circulation system, wherein the steam A waste heat circulation system including a heat recovery unit that recovers waste heat generated by the operation of the turbine, a heat release unit that releases heat in the evaporator and the heat exchange unit, and 20 m to 200 m from the sea surface The young deep water cooling system that takes in seawater in the younger deep layer that is the lower layer of the water and drains the seawater through the condenser, the condenser, and the heat exchange unit, and the heat of the waste heat circulation system Medium and the Waka Deep Layer A control unit that controls the flow rate of the seawater in the cooling system, and the control unit is configured to maintain the pressure in the steam circulation system within a predetermined range, and the condenser of the young deep water cooling system. In order to maintain the temperature of the heating medium in the waste heat circulation system within a predetermined range, at least the heat exchange part of the young deep water cooling system is adjusted to adjust the flow rate of the seawater passing through At least one of the second control for adjusting the flow rate of the seawater passing therethrough is executed. Preferably, the control unit executes both the first control and the second control.
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
図1は、本発明の一実施形態に係る発電プラントの構成を概略的に示すブロック図である。FIG. 1 is a block diagram schematically showing the configuration of a power plant according to an embodiment of the present invention. 図2は、若深層水の概念を示す図である。FIG. 2 is a diagram showing the concept of young deep water. 図3は、図1に示す供給量制御部の機能ブロック図である。FIG. 3 is a functional block diagram of the supply amount control unit shown in FIG. 図4は、供給量制御部の動作を示すフローチャートである。FIG. 4 is a flowchart showing the operation of the supply amount control unit. 図5は、復水器海水流量制御のフローチャートである。FIG. 5 is a flowchart of condenser seawater flow rate control. 図6は、廃熱循環系統冷却水温度制御のフローチャートである。FIG. 6 is a flowchart of the waste heat circulation system cooling water temperature control. 図7は、若深層水の入口温度とタービン出力との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the inlet temperature of the young deep water and the turbine output. 図8は、若深層水の入口温度とタービン正味出力との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the inlet temperature of the young deep water and the net turbine output. 図9は、若深層水の入口温度とサイクル熱効率との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the inlet temperature of the young deep water and the cycle thermal efficiency. 図10は、若深層水の入口温度と蒸気発生器熱通過係数との関係を示すグラフである。FIG. 10 is a graph showing the relationship between the inlet temperature of young deep water and the steam generator heat transfer coefficient. 図11は、若深層水の入口温度と復水器熱通過係数との関係を示すグラフである。FIG. 11 is a graph showing the relationship between the inlet temperature of the young deep water and the condenser heat passage coefficient.
 以下、図面に基づいて、本発明の実施形態につき詳細に説明する。図1は、本発明の一実施形態に係る発電プラントGの構成を概略的に示すブロック図である。発電プラントGは、後記で説明する若深層水を冷却系統における冷却用海水として用いた発電プラントであって、発電システム1、廃熱発電システム2、冷却水クーラー3(熱媒クーラー)、供給量制御部4(制御部)、調整部5、廃熱循環系統6及び若深層水冷却系統7を備えている。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. FIG. 1 is a block diagram schematically showing a configuration of a power plant G according to an embodiment of the present invention. The power plant G is a power plant using young deep water described later as cooling seawater in the cooling system, and includes a power generation system 1, a waste heat power generation system 2, a cooling water cooler 3 (heat medium cooler), and a supply amount. The control part 4 (control part), the adjustment part 5, the waste heat circulation system 6, and the young deep water cooling system 7 are provided.
 発電システム1は、汽力発電方式の設備を備えた商用電力の発電設備である。発電システム1としては、例えば、石油火力発電、石炭火力発電、或いはLNG火力発電の設備を備えた発電システムを例示できる。発電システム1は、概略的な設備構成として、ボイラー10(加熱源)、蒸気発生器11、蒸気タービン12、復水器13、給水ポンプ14、機器冷却器15、燃焼ガス通路101及び蒸気循環系統102を備えている。 The power generation system 1 is a commercial power generation facility equipped with a steam power generation system facility. As the power generation system 1, for example, a power generation system including equipment for oil thermal power generation, coal thermal power generation, or LNG thermal power generation can be exemplified. The power generation system 1 includes a boiler 10 (heating source), a steam generator 11, a steam turbine 12, a condenser 13, a feed pump 14, an equipment cooler 15, a combustion gas passage 101, and a steam circulation system as a schematic equipment configuration. 102.
 蒸気循環系統102は、純水(作動流体)が封入され、蒸気発生器11、蒸気タービン12、復水器13及び給水ポンプ14を通して水乃至は蒸気を循環させる、閉鎖された循環管路である。ボイラー10は、石油、石炭、LNG等を燃料として高温燃焼ガスを生成し、燃焼ガス通路101に供給する。燃焼ガス通路101と蒸気循環系統102とは、蒸気発生器11において熱交換を行い、給水ポンプ14により蒸気循環系統102を通して蒸気発生器11に送水される水は、前記熱交換によって蒸気に変換される。この蒸気は蒸気タービン12の羽根部に供給され、蒸気タービン12が回転軸の軸回りに回転される。蒸気タービン12の回転軸には図略の発電機ローターの回転軸が連結されており、蒸気タービン12の回転に伴う発電機ローターの回転により、電力が発生される。蒸気循環系統102は、蒸気タービン12の下流側において復水器13に導入されている。復水器13において蒸気循環系統102内の蒸気と冷却水(本実施形態では若深層水)とが熱交換され、前記蒸気は水に変換される。 The steam circulation system 102 is a closed circulation line that encloses pure water (working fluid) and circulates water or steam through the steam generator 11, the steam turbine 12, the condenser 13, and the feed water pump 14. . The boiler 10 generates high-temperature combustion gas using petroleum, coal, LNG, or the like as fuel and supplies it to the combustion gas passage 101. The combustion gas passage 101 and the steam circulation system 102 exchange heat in the steam generator 11, and water sent to the steam generator 11 through the steam circulation system 102 by the feed water pump 14 is converted into steam by the heat exchange. The This steam is supplied to the blade portion of the steam turbine 12, and the steam turbine 12 is rotated about the axis of the rotation shaft. A rotating shaft of a generator rotor (not shown) is connected to the rotating shaft of the steam turbine 12, and electric power is generated by the rotation of the generator rotor accompanying the rotation of the steam turbine 12. The steam circulation system 102 is introduced into the condenser 13 on the downstream side of the steam turbine 12. In the condenser 13, heat is exchanged between the steam in the steam circulation system 102 and the cooling water (in this embodiment, young deep water), and the steam is converted into water.
 蒸気循環系統102の、蒸気タービン12の出口側(下流側)には、蒸気循環系統102内の圧力を検出する圧力センサ41が配置されている。蒸気タービン12の動作効率は、蒸気循環系統102における蒸気タービン12の入口側(上流側)と出口側(復水器13)との圧力差が大きい程、良好となる傾向がある。従って、蒸気循環系統102内の圧力、特に復水器13の真空度がどの程度であるかが、発電システム1のシステム効率に大きな影響を与える。圧力センサ41は、蒸気循環系統102(復水器13)内の圧力が適正範囲に維持されているか否かをモニターするために配置されている。 A pressure sensor 41 for detecting the pressure in the steam circulation system 102 is disposed on the outlet side (downstream side) of the steam turbine 12 in the steam circulation system 102. The operation efficiency of the steam turbine 12 tends to become better as the pressure difference between the inlet side (upstream side) and the outlet side (condenser 13) of the steam turbine 12 in the steam circulation system 102 increases. Therefore, the pressure in the steam circulation system 102, particularly the degree of vacuum of the condenser 13, greatly affects the system efficiency of the power generation system 1. The pressure sensor 41 is arranged to monitor whether or not the pressure in the steam circulation system 102 (condenser 13) is maintained within an appropriate range.
 蒸気タービン12の動作効率は、復水器13の真空度が上がるほど上昇するものの、真空度が一定値に至ると頭打ちとなる。これは、真空度を高くしようとする程、復水器13において熱交換部の面積を大きくしたり、冷却水量を多くしたりする必要が生じ、設備費や運転コストが増大するからである。従って、徒に真空度を上昇させる必要はない。なお、前記真空度は、温度によって変化する。ここでは、復水器13において冷却水となる海水の温度によって、復水器13の真空度が変化し得る。冷却水の温度が高くなると前記真空度は低下傾向となり、冷却水の温度が低くなると前記真空度が上昇傾向となる。このため、蒸気循環系統102(復水器13)の真空度(圧力)を適正範囲に維持することができるように、復水器13へ導入する海水の水温を選ぶことが望ましい。 The operating efficiency of the steam turbine 12 increases as the vacuum level of the condenser 13 increases, but reaches a certain level when the vacuum level reaches a certain value. This is because as the degree of vacuum is increased, it is necessary to increase the area of the heat exchanging portion or increase the amount of cooling water in the condenser 13, which increases equipment costs and operating costs. Therefore, there is no need to increase the degree of vacuum. The degree of vacuum changes with temperature. Here, the degree of vacuum of the condenser 13 can vary depending on the temperature of seawater that serves as cooling water in the condenser 13. When the temperature of the cooling water increases, the degree of vacuum tends to decrease, and when the temperature of the cooling water decreases, the degree of vacuum tends to increase. For this reason, it is desirable to select the water temperature of the seawater introduced into the condenser 13 so that the degree of vacuum (pressure) of the steam circulation system 102 (condenser 13) can be maintained in an appropriate range.
 機器冷却器15は、発電システム1に備えられている各種機器(上述の蒸気タービン12、発電機を含む)の冷却を行わせるために配置されている。例えば、蒸気タービン12の軸受に供給されるタービン油の冷却が、この機器冷却器15内において行われる。この他、給水ポンプ14や燃料の押し込みファン等の軸受油、発電機をケーシング内において冷却する水素ガス等の冷却も、機器冷却器15内において行われる。換言すると、機器冷却器15は、蒸気タービン12の動作によって発生された熱の廃熱、ひいては、発電システム1の機器動作によって発生された熱の廃熱を回収するための機器である。後述する廃熱循環系統6によって、機器冷却器15にて回収された廃熱は廃熱発電システム2に移送され、発電のための熱源として活用される。 The device cooler 15 is arranged to cool various devices (including the steam turbine 12 and the generator described above) provided in the power generation system 1. For example, the turbine oil supplied to the bearing of the steam turbine 12 is cooled in the equipment cooler 15. In addition, cooling of bearing oil such as the feed water pump 14 and a fuel pushing fan and hydrogen gas for cooling the generator in the casing is also performed in the equipment cooler 15. In other words, the device cooler 15 is a device for recovering waste heat of heat generated by the operation of the steam turbine 12, and by extension, waste heat of heat generated by device operation of the power generation system 1. Waste heat recovered by the equipment cooler 15 is transferred to the waste heat power generation system 2 by a waste heat circulation system 6 to be described later and used as a heat source for power generation.
 廃熱発電システム2は、発電システム1の廃熱を利用して発電を行うシステムであって、蒸発器21、廃熱タービン22、凝縮器23、循環ポンプ24及び作動媒体循環系統25を備える。作動媒体循環系統25は、蒸発器21、廃熱タービン22及び凝縮器23を順次通過する閉鎖された循環管路である。作動媒体循環系統25には、気化温度が30℃程度の低沸点の作動媒体、例えばフロンが封入されており、当該作動媒体は循環ポンプ24によって作動媒体循環系統25の内部を循環する。 The waste heat power generation system 2 is a system that generates power using the waste heat of the power generation system 1, and includes an evaporator 21, a waste heat turbine 22, a condenser 23, a circulation pump 24, and a working medium circulation system 25. The working medium circulation system 25 is a closed circulation line that sequentially passes through the evaporator 21, the waste heat turbine 22, and the condenser 23. The working medium circulation system 25 is filled with a low-boiling working medium having a vaporization temperature of about 30 ° C., for example, chlorofluorocarbon, and the working medium circulates inside the working medium circulation system 25 by a circulation pump 24.
 蒸発器21において作動媒体は、熱を与えられて蒸気に変換される。その熱源は、機器冷却器15で回収された発電システム1の廃熱である。この蒸気は廃熱タービン22の羽根部に供給され、廃熱タービン22が回転軸の軸回りに回転される。廃熱タービン22の回転軸には図略の発電機ローターの回転軸が連結されている。その後、蒸気状態の作動媒体は、廃熱タービン22の下流側に配置されている凝縮器23に導入され、冷却されることによって液体状態に変換される。その冷熱源は、若深層水である。 In the evaporator 21, the working medium is given heat and converted into steam. The heat source is waste heat of the power generation system 1 collected by the equipment cooler 15. This steam is supplied to the blade portion of the waste heat turbine 22, and the waste heat turbine 22 is rotated about the axis of the rotation shaft. A rotating shaft of a generator rotor (not shown) is connected to the rotating shaft of the waste heat turbine 22. Thereafter, the working medium in the vapor state is introduced into a condenser 23 disposed on the downstream side of the waste heat turbine 22 and is converted into a liquid state by being cooled. The cold heat source is young deep water.
 廃熱循環系統6は、冷却水(熱媒)の循環系統であって、廃熱を回収する熱回収部と、回収した熱を放熱する熱放出部とを含む。冷却水クーラー3は、廃熱循環系統6内を循環する冷却水を冷却する熱交換部31を備える。当該熱交換部31における冷熱源は、若深層水である。廃熱循環系統6の前記熱回収部は発電システム1の機器冷却器15に、前記熱放出部は廃熱発電システム2の蒸発器21及び冷却水クーラー3にそれぞれ配置される。 The waste heat circulation system 6 is a cooling water (heat medium) circulation system, and includes a heat recovery unit that recovers waste heat and a heat release unit that dissipates the recovered heat. The cooling water cooler 3 includes a heat exchange unit 31 that cools the cooling water circulating in the waste heat circulation system 6. The cold heat source in the heat exchange unit 31 is young deep water. The heat recovery unit of the waste heat circulation system 6 is disposed in the equipment cooler 15 of the power generation system 1, and the heat release unit is disposed in the evaporator 21 and the cooling water cooler 3 of the waste heat power generation system 2.
 詳述すると、廃熱循環系統6は、蒸発器21を経由する蒸発器配管61と、冷却水クーラー3の熱交換部31を経由する熱交換部配管62と、いずれの機器をも経由しない短絡配管63とを含む。蒸発器配管61、熱交換部配管62及び短絡配管63はパラレルに配置される配管であって、これら配管の上流側及び下流側において互いに合流している。図1において、これら合流部を、上流側合流部601及び下流側合流部602として表している。さらに廃熱循環系統6は、上流側合流部601と機器冷却器15とを繋ぐ往路配管64と、下流側合流部602と機器冷却器15とを繋ぐ復路配管65とを含む。 More specifically, the waste heat circulation system 6 includes an evaporator pipe 61 that passes through the evaporator 21, a heat exchange section pipe 62 that passes through the heat exchange section 31 of the cooling water cooler 3, and a short circuit that does not pass through any device. And a pipe 63. The evaporator pipe 61, the heat exchange section pipe 62, and the short-circuit pipe 63 are pipes arranged in parallel, and merge with each other on the upstream side and the downstream side of these pipes. In FIG. 1, these merging portions are represented as an upstream merging portion 601 and a downstream merging portion 602. Further, the waste heat circulation system 6 includes an outward piping 64 that connects the upstream junction 601 and the device cooler 15, and a return piping 65 that connects the downstream junction 602 and the appliance cooler 15.
 機器冷却器15内には、廃熱循環系統6の熱回収部6Aが配置されている。熱回収部6Aの下流側に往路配管64の上流端が接続され、熱回収部6Aの上流側に復路配管65の下流端が接続されている。蒸発器配管61には第1熱放出部6B1が、熱交換部配管62には第2熱放出部6B2が各々備えられている。第1熱放出部6B1は蒸発器21内に配置され、第2熱放出部6B2は冷却水クーラー3内に配置されている。往路配管64の途中には冷却水循環ポンプ66が設けられている。冷却水循環ポンプ66の駆動によって、冷却水が廃熱循環系統6の内部を循環する。 In the equipment cooler 15, a heat recovery part 6A of the waste heat circulation system 6 is arranged. The upstream end of the forward piping 64 is connected to the downstream side of the heat recovery unit 6A, and the downstream end of the return piping 65 is connected to the upstream side of the heat recovery unit 6A. The evaporator pipe 61 is provided with a first heat release part 6B1, and the heat exchange part pipe 62 is provided with a second heat release part 6B2. The first heat release part 6B1 is arranged in the evaporator 21 and the second heat release part 6B2 is arranged in the cooling water cooler 3. A cooling water circulation pump 66 is provided in the middle of the outward piping 64. The cooling water circulates in the waste heat circulation system 6 by driving the cooling water circulation pump 66.
 廃熱循環系統6の内部を循環する冷却水は、熱回収部6Aにおいて、機器冷却器15において発電システム1の各種機器の廃熱と熱交換し、60℃程度まで昇温する。昇温された冷却水は、冷却水循環ポンプ66によって下流側へ移送され、第1熱放出部6B1及び第2熱放出部6B2に向かう。第1熱放出部6B1において、昇温された冷却水は作動媒体循環系統25の作動媒体と熱交換し、当該作動媒体を蒸気に変換する。第2熱放出部6B2において、昇温された冷却水は若深層水と熱交換し、冷却される。これら熱交換によって降温された冷却水は、復路配管65を通して熱回収部6Aへ向かう。 The cooling water circulating inside the waste heat circulation system 6 exchanges heat with waste heat of various devices of the power generation system 1 in the device cooler 15 in the heat recovery unit 6A, and the temperature is raised to about 60 ° C. The cooling water whose temperature has been raised is transferred to the downstream side by the cooling water circulation pump 66 and travels toward the first heat release part 6B1 and the second heat release part 6B2. In the first heat release part 6B1, the heated cooling water exchanges heat with the working medium of the working medium circulation system 25 and converts the working medium into steam. In the second heat release unit 6B2, the heated cooling water is heat-exchanged with the young deep water and cooled. The cooling water cooled by these heat exchanges goes to the heat recovery section 6A through the return pipe 65.
 廃熱循環系統6の復路配管65には、廃熱循環系統6の内部を循環する冷却水(熱媒)の温度を測定する温度センサ42が配置されている。前記冷却水が廃熱発電システム2を通過し復路配管65に至った状態において、当該冷却水の温度が高すぎると、機器冷却器15において回収できる熱量が低下してしまい、発電システム1に対する冷却性能が低下する。一方、当該冷却水の温度が一定値を下回っているということは、冷却水クーラー3において過剰に冷却水をクーリングしていることになる。つまり、若深層水を過剰に使用していることになり、望ましくない。温度センサ42は、廃熱循環系統6の復路配管65内の冷却水が、適正な温度に維持されているか否かをモニターするために配置されている。 In the return pipe 65 of the waste heat circulation system 6, a temperature sensor 42 that measures the temperature of the cooling water (heat medium) circulating inside the waste heat circulation system 6 is arranged. In the state where the cooling water passes through the waste heat power generation system 2 and reaches the return pipe 65, if the temperature of the cooling water is too high, the amount of heat that can be recovered in the equipment cooler 15 is reduced, and the power generation system 1 is cooled. Performance decreases. On the other hand, the fact that the temperature of the cooling water is below a certain value means that the cooling water is excessively cooled in the cooling water cooler 3. In other words, the young deep water is excessively used, which is not desirable. The temperature sensor 42 is arranged to monitor whether or not the cooling water in the return pipe 65 of the waste heat circulation system 6 is maintained at an appropriate temperature.
 若深層水冷却系統7は、若深層水を冷却媒体として発電システム1、廃熱発電システム2及び冷却水クーラー3に供給する系統である。若深層水冷却系統7は、海水面より20m~200mの下層範囲である若深層において海水(若深層水)を取水し、発電システム1の復水器13、廃熱発電システム2の凝縮器23及び冷却水クーラー3の熱交換部31を経由して前記海水を排水する。 The young deep water cooling system 7 is a system that supplies the young deep water as a cooling medium to the power generation system 1, the waste heat power generation system 2, and the cooling water cooler 3. The young deep water cooling system 7 takes seawater (young deep water) in the young deep layer, which is a lower layer of 20 m to 200 m from the sea surface, and the condenser 13 of the power generation system 1 and the condenser 23 of the waste heat power generation system 2. And the said seawater is drained via the heat exchanger 31 of the cooling water cooler 3.
 若深層水冷却系統7は、取水配管71、復水器配管72、クーラー配管73、凝縮器配管74、放水配管75及び若深層水ポンプ76を含む。取水配管71は、若深層から海水を取水するための配管である。復水器配管72は、取水配管71の下流端から、復水器13を経由して、放水配管75の上流端に至る配管である。クーラー配管73は、取水配管71の下流端から、冷却水クーラー3を経由して、放水配管75の上流端に至る配管である。凝縮器配管74は、冷却水クーラー3よりも上流側においてクーラー配管73から分岐し、凝縮器23を経由して、冷却水クーラー3よりも下流側においてクーラー配管73に合流する配管である。放水配管75は、各配管において熱交換した若深層水を海に戻すための配管である。若深層水ポンプ76は、取水配管71の上流端から若深層水を取水し、若深層水冷却系統7内において若深層水を移送させ、放水配管75の下流端から若深層水を放水させる移送力を発生する。 The young depth water cooling system 7 includes an intake pipe 71, a condenser pipe 72, a cooler pipe 73, a condenser pipe 74, a water discharge pipe 75, and a young depth water pump 76. The intake pipe 71 is a pipe for taking seawater from a young depth. The condenser pipe 72 is a pipe extending from the downstream end of the intake pipe 71 to the upstream end of the water discharge pipe 75 via the condenser 13. The cooler pipe 73 is a pipe that extends from the downstream end of the water intake pipe 71 to the upstream end of the water discharge pipe 75 via the cooling water cooler 3. The condenser pipe 74 is a pipe that branches from the cooler pipe 73 on the upstream side of the cooling water cooler 3 and merges with the cooler pipe 73 on the downstream side of the cooling water cooler 3 via the condenser 23. The water discharge pipe 75 is a pipe for returning the young deep water that has been heat-exchanged in each pipe to the sea. The young deep water pump 76 takes the young deep water from the upstream end of the intake pipe 71, transfers the young deep water in the young deep water cooling system 7, and transfers the young deep water from the downstream end of the water discharge pipe 75. Generate power.
 復水器配管72を流れる若深層水は、復水器13において蒸気循環系統102を流れる蒸気と熱交換し、前記蒸気を水に復水させる。クーラー配管73は、冷却水クーラー3の内部に上述の熱交換部31を備え、クーラー配管73を流れる若深層水は、熱交換部31において熱交換部配管62(第2熱放出部6B2)を流れる冷却水と熱交換し、前記冷却水の温度を下降させる。凝縮器配管74を流れる若深層水は、凝縮器23において作動媒体循環系統25を流れる蒸気状態の作動媒体と熱交換し、前記作動媒体を液体に変換させる。 The young deep water flowing through the condenser pipe 72 exchanges heat with the steam flowing through the steam circulation system 102 in the condenser 13 to condense the steam into water. The cooler pipe 73 includes the heat exchange unit 31 described above inside the cooling water cooler 3, and the young deep water flowing through the cooler pipe 73 is connected to the heat exchange unit pipe 62 (second heat release unit 6 </ b> B <b> 2) in the heat exchange unit 31. Heat exchange with the flowing cooling water is performed to lower the temperature of the cooling water. The young deep water flowing through the condenser pipe 74 exchanges heat with the vaporized working medium flowing through the working medium circulation system 25 in the condenser 23 to convert the working medium into a liquid.
 図2は、若深層水の概念を示す図である。一般に、深層水とは、海水面よりも200m以上深い領域に存在する海水を指し、太陽光が届かず、また、表層の海水と混ざらない深さにある海水と定義されている。海水面から深さ20m以内に存在する海水は、太陽光が良く届き、風や波の影響を受ける表層水と言うことができる。若深層水は、これら深層水と表層水との間に存在する海水と定義される。すなわち、風や波の影響を受けない水深20mから、太陽光が海中に届く限界の水深200mまでの間に存在する海水を若深層水と定義し、本発明においてはこの若深層水を発電プラントGの冷却水として利用する。この若深層水は水質が良く、またクラゲ類や貝類などの海生生物がほとんど生息していないので、発電プラントへの海生生物の侵入や付着を抑止することができる。 FIG. 2 is a diagram showing the concept of young deep water. In general, deep water refers to seawater that exists in a region 200 m or more deeper than the seawater surface, and is defined as seawater that does not reach sunlight and does not mix with surface seawater. Seawater existing within a depth of 20 m from the seawater surface can be said to be surface water that is well received by sunlight and affected by wind and waves. Young deep water is defined as seawater that exists between these deep water and surface water. That is, seawater existing between a depth of 20 m that is not affected by wind and waves and a depth of 200 m, the limit of sunlight reaching the sea, is defined as young deep water. In the present invention, this young deep water is defined as a power plant. Used as cooling water for G. This young deep-sea water has good water quality, and marine organisms such as jellyfish and shellfish are hardly inhabited, so it is possible to prevent marine organisms from entering and attaching to the power plant.
 若深層水の海水温は、復水器真空度を年間を通して適正範囲とする温度帯域(たとえば18℃以下の一定の温度範囲)を含んでいるため、当該若深層領域から所望の温度帯域の海水を取水することができる。この所望の温度帯域の水温の若深層水が、若深層水冷却系統7によって復水器13に供給され、蒸気循環系統102内の蒸気と熱交換する。発電システム1は、当該水温の冷却水が与えられたときに、復水器13の真空度が適正範囲となり、蒸気タービン12の効率が最適化されるように設定されている。つまり、用いられている復水器13の構造及び性能を前提として、蒸気循環系統102における蒸気タービン12の入口側の圧力と出口側の圧力とが、復水器13に前記温度帯域の冷却水が与えられたときに最適化されるように、発電システム1が設定されている。従って、若深層水の供給により、発電システム1の発電効率を最大化することが可能となっている。 The seawater temperature of the young deep layer water includes a temperature range (for example, a constant temperature range of 18 ° C. or lower) in which the condenser vacuum degree is in an appropriate range throughout the year. Can take water. The young deep layer water having the water temperature in the desired temperature range is supplied to the condenser 13 by the young deep layer water cooling system 7 and exchanges heat with the steam in the steam circulation system 102. The power generation system 1 is set so that the degree of vacuum of the condenser 13 is in an appropriate range and the efficiency of the steam turbine 12 is optimized when cooling water having the water temperature is given. That is, on the premise of the structure and performance of the condenser 13 that is used, the pressure on the inlet side and the pressure on the outlet side of the steam turbine 12 in the steam circulation system 102 are supplied to the condenser 13 in the cooling water in the temperature range. Is set so that the power generation system 1 is optimized. Therefore, the power generation efficiency of the power generation system 1 can be maximized by supplying the young deep water.
 復水器13で熱交換を終えた若深層水の水温は、概ね25℃~30℃程度となる。この程度の水温であれば、海の表層の水温との温度差が少なく、表層へ放水することができる。このため本実施形態では、図2に示すように、若深層水冷却系統7の取水配管71の取水口は若深層に配置する一方で、放水配管75の放水口は表層に配置している。このように、若深層水を用いることで、発電プラントにおいて問題となる温排水処理対策が実質的に不要、若しくは大幅に低減できる利点がある。 The water temperature of the young deep water after the heat exchange in the condenser 13 is about 25 ° C to 30 ° C. With such a water temperature, there is little temperature difference with the water temperature of the sea surface layer, and water can be discharged to the surface layer. For this reason, in this embodiment, as shown in FIG. 2, while the intake of the intake pipe 71 of the young depth water cooling system 7 is arrange | positioned in a young depth, the outlet of the discharge pipe 75 is arrange | positioned in the surface layer. Thus, by using the young deep water, there is an advantage that the countermeasure for the hot waste water treatment which is a problem in the power plant is substantially unnecessary or can be significantly reduced.
 調整部5は、第1、第2、第3、第4、第5、第6、第7バルブ50、51,52,53,54,55,56を備え、若深層水冷却系統7を流れる若深層水の流量及び流路、廃熱循環系統6を流れる冷却水の流量及び流路を調整する。これらの第1~第7バルブ50~56は、流量調整弁であり、供給量制御部4によって開閉、並びに開度(流量)が制御される。 The adjustment unit 5 includes first, second, third, fourth, fifth, sixth, and seventh valves 50, 51, 52, 53, 54, 55, and 56, and flows through the young deep water cooling system 7. The flow rate and flow path of the young deep water and the flow rate and flow path of the cooling water flowing through the waste heat circulation system 6 are adjusted. These first to seventh valves 50 to 56 are flow rate adjusting valves, and the supply amount control unit 4 controls the opening and closing and the opening degree (flow rate).
 第1バルブ50は、若深層水冷却系統7の復水器配管72に配置され、復水器13に供給する若深層水の流量を調整する。なお、第1バルブ50は、若深層水ポンプ76の下流側であって、復水器配管72とクーラー配管73との分岐部の上流側に配置されていても良い。第2バルブ51は、クーラー配管73に配置され、冷却水クーラー3及び凝縮器23に供給する若深層水の流量を調整する。なお、クーラー配管73には、第2バルブ51と並列にブースターポンプ57及び第3バルブ52が取り付けられている。第4バルブ53は、廃熱循環系統6の熱交換部配管62に配置され、冷却水クーラー3(第2熱放出部6B2)を通過する冷却水の流量を調整する。第5バルブ54は、短絡配管63に配置され、当該短絡配管63を通過する冷却水の流量を調整する。第6バルブ55は、蒸発器配管61に配置され、蒸発器21(第1熱放出部6B1)を通過する冷却水の流量を調整する。第7バルブ56は、クーラー配管73における、凝縮器配管74の分岐部よりも下流であって冷却水クーラー3よりも上流に配置され、冷却水クーラー3(熱交換部31)を通過する若深層水の流量を調整する。 The first valve 50 is disposed in the condenser pipe 72 of the young depth water cooling system 7 and adjusts the flow rate of the young depth water supplied to the condenser 13. The first valve 50 may be disposed downstream of the young deep water pump 76 and upstream of the branch portion between the condenser pipe 72 and the cooler pipe 73. The second valve 51 is disposed in the cooler pipe 73 and adjusts the flow rate of the young deep water supplied to the cooling water cooler 3 and the condenser 23. Note that a booster pump 57 and a third valve 52 are attached to the cooler pipe 73 in parallel with the second valve 51. The 4th valve | bulb 53 is arrange | positioned at the heat exchange part piping 62 of the waste heat circulation system 6, and adjusts the flow volume of the cooling water which passes the cooling water cooler 3 (2nd heat discharge | release part 6B2). The fifth valve 54 is disposed in the short circuit pipe 63 and adjusts the flow rate of the cooling water passing through the short circuit pipe 63. The 6th valve | bulb 55 is arrange | positioned at the evaporator piping 61, and adjusts the flow volume of the cooling water which passes the evaporator 21 (1st heat discharge | release part 6B1). The seventh valve 56 is disposed downstream of the branch portion of the condenser pipe 74 and upstream of the cooling water cooler 3 in the cooler pipe 73, and passes through the cooling water cooler 3 (heat exchange unit 31). Adjust the water flow rate.
 供給量制御部4は、第1~第7バルブ50~56、若深層水ポンプ76及びブースターポンプ57の動作を制御することで、蒸気循環系統102内の圧力を所定範囲内に維持するために、若深層水冷却系統7の復水器13を経由する若深層水の流量を調整する第1制御と、廃熱循環系統6内における冷却水の温度を所定範囲内に維持するために、冷却水クーラー3の熱交換部31を経由する若深層水の流量を調整する第2制御とを実行する。この第2制御の際、供給量制御部4は、廃熱循環系統6における冷却水の流量制御も行う。 The supply amount control unit 4 controls the operations of the first to seventh valves 50 to 56, the young deep water pump 76 and the booster pump 57 to maintain the pressure in the steam circulation system 102 within a predetermined range. In order to maintain the temperature of the cooling water in the waste heat circulation system 6 within a predetermined range, the first control for adjusting the flow rate of the young deep layer water passing through the condenser 13 of the young deep water cooling system 7 is performed. 2nd control which adjusts the flow volume of the young deep layer water which passes the heat exchange part 31 of the water cooler 3 is performed. During the second control, the supply amount control unit 4 also controls the flow rate of the cooling water in the waste heat circulation system 6.
 図3は、供給量制御部4の機能ブロック図である。供給量制御部4は、パーソナルコンピュータ等からなる演算装置であり、所定のプログラムが実行されることで、流量制御部43、真空度判定部44、温度判定部45、ポンプ制御部46及び基準データ記憶部47を機能的に備えるように動作する。 FIG. 3 is a functional block diagram of the supply amount control unit 4. The supply amount control unit 4 is an arithmetic unit composed of a personal computer or the like, and by executing a predetermined program, the flow rate control unit 43, the vacuum degree determination unit 44, the temperature determination unit 45, the pump control unit 46, and the reference data It operates so as to functionally include the storage unit 47.
 流量制御部43は、第1~第7バルブ50~56の開閉、並びに開度(流量)を制御することで、若深層水冷却系統7を流れる若深層水の流量及び流路、廃熱循環系統6を流れる冷却水の流量及び流路を調整する。真空度判定部44は、圧力センサ41の検出値に基づいて、蒸気循環系統102における蒸気タービン12の出口側の真空度(復水器13の真空度)が、所定の基準値の範囲にあるか否かを判定する。温度判定部45は、温度センサ42の検出値に基づいて、廃熱循環系統6における下流側合流部602の付近の冷却水温度が所定の基準温度の範囲にあるか否かを判定する。ポンプ制御部46は、若深層水ポンプ76の駆動を制御することで、若深層水冷却系統7を流れる若深層水の総量を調整する。さらにポンプ制御部46は、必要に応じてブースターポンプ57の駆動を制御することで、廃熱循環系統6内における冷却水、及び冷却水クーラー3の熱交換部31を経由する若深層水の流量を調整する。 The flow rate control unit 43 controls the opening and closing of the first to seventh valves 50 to 56 and the opening degree (flow rate) to thereby control the flow rate and flow path of the young deep water flowing through the young deep water cooling system 7, and waste heat circulation. The flow rate and flow path of the cooling water flowing through the system 6 are adjusted. Based on the detection value of the pressure sensor 41, the degree of vacuum determination unit 44 has the degree of vacuum on the outlet side of the steam turbine 12 in the steam circulation system 102 (the degree of vacuum of the condenser 13) within a predetermined reference value range. It is determined whether or not. Based on the detection value of the temperature sensor 42, the temperature determination unit 45 determines whether or not the cooling water temperature near the downstream junction 602 in the waste heat circulation system 6 is within a predetermined reference temperature range. The pump control unit 46 adjusts the total amount of young deep water flowing through the young deep water cooling system 7 by controlling the drive of the young deep water pump 76. Furthermore, the pump control unit 46 controls the driving of the booster pump 57 as necessary, so that the flow rate of the cooling water in the waste heat circulation system 6 and the young deep layer water passing through the heat exchange unit 31 of the cooling water cooler 3 is controlled. Adjust.
 基準データ記憶部47は、発電プラントGの特性により定められる上述の真空度の基準値、基準温度、及びこれらの許容基準範囲を記憶する。この他、基準データ記憶部47は、復水器13、凝縮器23及び熱交換部31に流す若深層水の基準流量を記憶する。 The reference data storage unit 47 stores the above-described reference value of the degree of vacuum, the reference temperature, and the allowable reference range defined by the characteristics of the power plant G. In addition, the reference data storage unit 47 stores the reference flow rate of the young deep water that flows to the condenser 13, the condenser 23, and the heat exchange unit 31.
 流量制御部43は、圧力センサ41の検出値が所定の基準値より低いと真空度判定部44が判定した場合には、復水器13を経由する若深層水の流量を前記基準流量に対して減少させる。一方、圧力センサ41の検出値が前記基準値より高いと真空度判定部44が判定した場合には、若深層水の流量を前記基準流量に対して増加させる(第1制御)。 When the degree-of-vacuum determination unit 44 determines that the detected value of the pressure sensor 41 is lower than a predetermined reference value, the flow rate control unit 43 sets the flow rate of the young deep water passing through the condenser 13 to the reference flow rate. Decrease. On the other hand, when the degree-of-vacuum determination unit 44 determines that the detection value of the pressure sensor 41 is higher than the reference value, the flow rate of young deep water is increased with respect to the reference flow rate (first control).
 また、流量制御部43は、温度センサ42の検出値が所定の基準温度より高いと温度判定部45が判定した場合に、冷却水クーラー3の熱交換部31に若深層水を通水させる、若しくは若深層水の流量を所定の基準流量に対して増加させる制御を行う。これに対し、流量制御部43は、温度センサ42の検出値が所定の基準温度より低いと温度判定部45が判定した場合に、短絡配管63を通過する冷却水の流量を増加させる制御を行う(第2制御)。 Further, the flow rate control unit 43 allows the young deep layer water to flow through the heat exchange unit 31 of the cooling water cooler 3 when the temperature determination unit 45 determines that the detection value of the temperature sensor 42 is higher than a predetermined reference temperature. Alternatively, control is performed to increase the flow rate of the young deep water with respect to a predetermined reference flow rate. On the other hand, when the temperature determination unit 45 determines that the detected value of the temperature sensor 42 is lower than a predetermined reference temperature, the flow rate control unit 43 performs control to increase the flow rate of the cooling water that passes through the short-circuit pipe 63. (Second control).
 続いて、供給量制御部4による若深層水冷却系統7における若深層水(海水)の流量制御動作、及び、廃熱循環系統6における冷却水の流量制御動作について、図4~図6に例示するフローチャートに基づいて説明する。通常運転状態において、第1バルブ50は、復水器13に基準流量の海水が供給されるように開度が調整されている。冷却水クーラー3は、通常運転状態においては第4バルブ53及び第7バルブ56が最低開度で運転されているものとする。また、廃熱循環系統6の冷却水の温度調整は、第5バルブ54と第6バルブ55との開度バランスによって、基準温度に維持されているものとする。 Subsequently, the flow control operation of the young deep water (seawater) in the young deep water cooling system 7 by the supply amount control unit 4 and the flow control operation of the cooling water in the waste heat circulation system 6 are illustrated in FIG. 4 to FIG. This will be described based on the flowchart. In the normal operation state, the opening degree of the first valve 50 is adjusted so that the reference flow rate seawater is supplied to the condenser 13. In the cooling water cooler 3, it is assumed that the fourth valve 53 and the seventh valve 56 are operated at the minimum opening in the normal operation state. In addition, the temperature adjustment of the cooling water in the waste heat circulation system 6 is assumed to be maintained at the reference temperature by the opening balance between the fifth valve 54 and the sixth valve 55.
 図4を参照して、供給量制御部4は、所定のサンプリング周期(例えば1分~10分毎)が到来すると(ステップS1でYES)、圧力センサ41から検出値、つまり、蒸気循環系統102における蒸気タービン12の出口側の真空度(復水器13の真空度)の値を取得する(ステップS2)。続いて真空度判定部44が、この検出値と、基準データ記憶部47に記憶されている基準値とを比較し、当該検出値が基準値と合致しているか否か、乃至は、所定の基準範囲にあるか否かを判定する(ステップS3)。 Referring to FIG. 4, when a predetermined sampling period (for example, every 1 to 10 minutes) arrives (YES in step S1), supply amount control unit 4 detects a detected value from pressure sensor 41, that is, steam circulation system 102. The value of the degree of vacuum on the outlet side of the steam turbine 12 (the degree of vacuum of the condenser 13) is acquired (step S2). Subsequently, the degree-of-vacuum determination unit 44 compares the detected value with a reference value stored in the reference data storage unit 47, and whether or not the detected value matches the reference value or a predetermined value. It is determined whether it is within the reference range (step S3).
 前記検出値が基準値乃至は基準範囲ではない場合(ステップS3でNO)、供給量制御部4は、当該検出値を基準値乃至は基準範囲に復帰させるために、復水器海水流量の制御を実施する(ステップS20)。一方、前記検出値が基準値乃至は基準範囲である場合(ステップS3でYES)、温度センサ42から検出値、つまり、廃熱循環系統6における下流側合流部602の付近の冷却水温度の値を取得する(ステップS4)。続いて温度判定部45が、この温度検出値と、基準データ記憶部47に記憶されている基準温度とを比較し、当該温度検出値が基準温度と合致しているか否か、乃至は、基準範囲にあるか否かを判定する(ステップS5)。 When the detected value is not the reference value or the reference range (NO in step S3), the supply amount control unit 4 controls the condenser seawater flow rate in order to return the detected value to the reference value or the reference range. (Step S20). On the other hand, when the detected value is the reference value or the reference range (YES in step S3), the detected value from the temperature sensor 42, that is, the value of the cooling water temperature near the downstream junction 602 in the waste heat circulation system 6. Is acquired (step S4). Subsequently, the temperature determination unit 45 compares the detected temperature value with the reference temperature stored in the reference data storage unit 47, and whether or not the detected temperature value matches the reference temperature, or the reference It is determined whether it is within the range (step S5).
 前記温度検出値が基準温度乃至は基準範囲と合致していない場合(ステップS5でNO)、冷却水温度を基準温度乃至は基準範囲に復帰させるために、廃熱循環系統冷却水温度制御を行う(ステップS30)。 When the detected temperature value does not match the reference temperature or the reference range (NO in step S5), the waste heat circulation system cooling water temperature control is performed to return the cooling water temperature to the reference temperature or the reference range. (Step S30).
 図5は、上記ステップS20の復水器海水流量制御(第1制御)の詳細を示すフローチャートである。まず、真空度判定部44は、先のステップS2で取得した圧力データを、図略のメモリに記憶する(ステップS21)。次に真空度判定部44により、前記メモリに記憶された復水器13の真空度が、基準値乃至は基準範囲より高いか否か(大気圧に近いか否か)が判定される(ステップS22)。 FIG. 5 is a flowchart showing details of the condenser seawater flow rate control (first control) in step S20. First, the degree-of-vacuum determination unit 44 stores the pressure data acquired in the previous step S2 in a memory (not shown) (step S21). Next, the degree-of-vacuum determination unit 44 determines whether the degree of vacuum of the condenser 13 stored in the memory is higher than a reference value or a reference range (whether it is close to atmospheric pressure) (step). S22).
 前記検出値が前記基準値乃至は基準範囲よりも大気圧に近い場合(ステップS22でYES)、流量制御部43は、第1バルブ50の開度を現状よりも大きくする。これにより、復水器13に供給される海水の流量が、所定の基準流量に対して増量される(ステップS24)。従って、復水器13の温度は低下し、復水器13の真空度が絶対真空に近づく方向に変化する。これに対し、前記検出値が前記基準値乃至は基準範囲よりも絶対真空に近い場合(ステップS23でYES)、流量制御部43は、第1バルブ50の開度を現状よりも小さくする。これにより、復水器13に供給される海水の流量が、所定の基準流量に対して減量される(ステップS25)。従って、復水器13の温度は上昇し、復水器13の真空度が大気圧に近づく方向に変化する。 When the detected value is closer to the atmospheric pressure than the reference value or the reference range (YES in step S22), the flow control unit 43 increases the opening degree of the first valve 50 from the current state. Thereby, the flow volume of the seawater supplied to the condenser 13 is increased with respect to a predetermined reference flow volume (step S24). Therefore, the temperature of the condenser 13 decreases and the degree of vacuum of the condenser 13 changes in a direction approaching absolute vacuum. On the other hand, when the detected value is closer to the absolute vacuum than the reference value or the reference range (YES in step S23), the flow control unit 43 makes the opening degree of the first valve 50 smaller than the current state. Thereby, the flow volume of the seawater supplied to the condenser 13 is reduced with respect to a predetermined reference flow volume (step S25). Therefore, the temperature of the condenser 13 rises and the degree of vacuum of the condenser 13 changes in a direction approaching atmospheric pressure.
 次いで、真空度判定部44は、復水器13に供給する海水の流量の増加又は減少を開始させてから所定時間が経過したか否かを確認する(ステップS26)。所定時間の経過後(ステップS26でYES)、真空度判定部44は圧力センサ41の検出値を取得し(ステップS27)、復水器13の真空度が基準値乃至は基準範囲に復帰しているか否かを確認する(ステップS28)。 Next, the degree-of-vacuum determination unit 44 checks whether or not a predetermined time has elapsed since the start of the increase or decrease in the flow rate of the seawater supplied to the condenser 13 (step S26). After a predetermined time has elapsed (YES in step S26), the vacuum degree determination unit 44 acquires the detection value of the pressure sensor 41 (step S27), and the vacuum degree of the condenser 13 returns to the reference value or the reference range. It is confirmed whether or not (step S28).
 前記真空度が基準値乃至は基準範囲に復帰していない場合(ステップS28でNO)、流量制御部43は、海水の流量の増加又は減少を維持する。処理は、ステップS21に戻り、ステップS27で取得された圧力データが前記メモリに記憶され、ステップS22以下の処理が繰り返される。一方、前記真空度が基準値乃至は基準範囲に復帰した場合(ステップS28でYES)、処理を終える。以上の処理を行うことにより、蒸気循環系統102における蒸気タービン12の出口側の真空度を、許容基準範囲内に維持することができる。 If the degree of vacuum has not returned to the reference value or the reference range (NO in step S28), the flow control unit 43 maintains an increase or decrease in the flow rate of seawater. The process returns to step S21, the pressure data acquired in step S27 is stored in the memory, and the processes in and after step S22 are repeated. On the other hand, when the degree of vacuum has returned to the reference value or the reference range (YES in step S28), the process ends. By performing the above processing, the degree of vacuum on the outlet side of the steam turbine 12 in the steam circulation system 102 can be maintained within the allowable reference range.
 図6は、上記ステップS30の廃熱循環系統冷却水温度制御(第2制御)の詳細を示すフローチャートである。温度判定部45は、先のステップS4で取得した温度データを、図略のメモリに記憶する(ステップS301)。次に、温度判定部45により、前記メモリに記憶された温度が、基準値乃至は基準範囲より高いか否かが判定される(ステップS302)。前記温度が基準値乃至は基準範囲よりも高い場合(ステップS302でYES)、流量制御部43は、第5バルブ54が開いているか否かを判定する(ステップS303)。 FIG. 6 is a flowchart showing details of the waste heat circulation system cooling water temperature control (second control) in step S30. The temperature determination unit 45 stores the temperature data acquired in the previous step S4 in a memory (not shown) (step S301). Next, the temperature determination unit 45 determines whether or not the temperature stored in the memory is higher than a reference value or a reference range (step S302). When the temperature is higher than the reference value or the reference range (YES in step S302), the flow control unit 43 determines whether or not the fifth valve 54 is open (step S303).
 第5バルブ54が開いている場合(ステップS303でYES)、流量制御部43は、第5バルブ54の開度を小さくする(ステップS306)。これにより、短絡配管63を通過する冷却水の流量を少なくし、廃熱循環系統6の下流側合流部602における冷却水の温度を低下させる。一方、第5バルブ54が閉じている場合(ステップS303でNO)、流量制御部43は、第4、第7バルブ53、56の開度を大きくし、冷却水クーラー3に若深層水冷却系統7の海水及び廃熱循環系統6の冷却水の流量を増加させる(ステップS307)。これにより、冷却水クーラー3において前記冷却水が冷却され、下流側合流部602における冷却水の温度が低下する方向に変化する。 If the fifth valve 54 is open (YES in step S303), the flow control unit 43 decreases the opening of the fifth valve 54 (step S306). Thereby, the flow volume of the cooling water which passes the short circuit piping 63 is decreased, and the temperature of the cooling water in the downstream junction part 602 of the waste heat circulation system 6 is reduced. On the other hand, when the fifth valve 54 is closed (NO in step S303), the flow control unit 43 increases the opening degree of the fourth and seventh valves 53 and 56, and the cooling water cooler 3 is connected to the young deep water cooling system. 7 and the flow rate of the cooling water in the waste heat circulation system 6 are increased (step S307). Thereby, the cooling water is cooled in the cooling water cooler 3, and the temperature of the cooling water in the downstream junction 602 changes in a decreasing direction.
 これに対し、前記温度が前記基準値乃至は基準範囲よりも低い場合(ステップS304でYES)、流量制御部43は、冷却水クーラー3の第4バルブ53及び第7バルブ56が最低開度で運転されているか否かを判定する(ステップS305)。 On the other hand, when the temperature is lower than the reference value or the reference range (YES in step S304), the flow rate control unit 43 indicates that the fourth valve 53 and the seventh valve 56 of the cooling water cooler 3 have the minimum opening. It is determined whether or not the vehicle is in operation (step S305).
 冷却水クーラー3のバルブ53、57が最低開度で運転されている場合(ステップS305でYES)、第5バルブ54の開度を大きくする(ステップS308)。これにより、短絡配管63の冷却水流量を多くし、下流側合流部602における冷却水の温度を上昇させる。 When the valves 53 and 57 of the cooling water cooler 3 are operated at the minimum opening (YES in step S305), the opening of the fifth valve 54 is increased (step S308). Thereby, the cooling water flow rate of the short circuit piping 63 is increased, and the temperature of the cooling water in the downstream junction 602 is increased.
 一方、冷却水クーラー3のバルブ53、57が最低開度で運転されていない場合(ステップS305でNO)、流量制御部43は、第4バルブ53及び第7バルブ56の開度を小さくし、冷却水クーラー3における若深層水冷却系統7の海水及び廃熱循環系統6の冷却水の通水量を減少させる(ステップS309)。これにより、冷却水クーラー3においての前記冷却水の冷却が抑制され、下流側合流部602における冷却水の温度を上昇させる方向に変化させることができる。 On the other hand, when the valves 53 and 57 of the cooling water cooler 3 are not operated at the minimum opening (NO in step S305), the flow controller 43 reduces the opening of the fourth valve 53 and the seventh valve 56, The flow rate of the seawater of the young deep water cooling system 7 and the cooling water of the waste heat circulation system 6 in the cooling water cooler 3 is reduced (step S309). Thereby, the cooling of the cooling water in the cooling water cooler 3 is suppressed, and the temperature of the cooling water in the downstream junction 602 can be increased.
 次いで、温度判定部45は、廃熱循環系統6の下流側合流部602における冷却水の温度制御が所定時間行われたか否かを確認する(ステップS310)。所定時間の経過後(ステップS310でYES)、温度判定部45は温度センサ42の温度検出値を取得し(ステップS311)、廃熱循環系統6の下流側合流部602における冷却水の温度が基準値乃至は基準範囲まで低下しているか否かを確認する(ステップS312)。 Next, the temperature determination unit 45 confirms whether or not the temperature control of the cooling water in the downstream junction 602 of the waste heat circulation system 6 has been performed for a predetermined time (step S310). After a predetermined time has elapsed (YES in step S310), the temperature determination unit 45 acquires the temperature detection value of the temperature sensor 42 (step S311), and the temperature of the cooling water in the downstream junction 602 of the waste heat circulation system 6 is the reference. It is confirmed whether or not the value or the reference range has been lowered (step S312).
 前記冷却水の温度が基準値乃至は基準範囲に復帰している場合(ステップS312でYES)、処理を終える。一方、前記冷却水の温度が基準値乃至は基準範囲に復帰してない場合(ステップS312でNO)、処理はステップS301に戻り、ステップS311で取得した温度データが前記メモリに記憶され、ステップS302以下の処理が繰り返される。 If the temperature of the cooling water has returned to the reference value or the reference range (YES in step S312), the process ends. On the other hand, when the temperature of the cooling water has not returned to the reference value or the reference range (NO in step S312), the process returns to step S301, the temperature data acquired in step S311 is stored in the memory, and step S302 is performed. The following process is repeated.
 以上説明した通りの、本実施形態に係る発電プラントGによれば、水質が良くクラゲ類や貝類などの海生生物がほとんど生息していない若深層から海水を取水する若深層水冷却系統7を備えるので、発電プラントGへの海生生物の侵入を阻止でき、復水器13及び冷却水クーラー3への海生生物の付着及び繁殖を抑止することができ、これに伴う設備運転費用等を抑制することができる。また、供給量制御部4が前記第1制御を行うことによって、蒸気循環系統102内の圧力を所定範囲内に維持することができ、これにより蒸気タービン12の真空効率を高いレベルに維持することができる。さらに、供給量制御部4が前記第2制御を行うことによって、冷却水の温度が所定範囲内に維持されるので、冷却水の冷却効率を上げることができる。これに加えて、海水の使用量が、復水器13において蒸気循環系統102内の圧力を所定範囲内に維持するに足りる量、並びに、熱交換部31において冷却水の温度を所定範囲内に維持するに足りる量に規制されるので、前記海水の使用量(取水量)を最小限に抑制できる。さらに、若深層水の海水温は表層水よりも相当低く、発電プラントGにて使用後の水温は表層水と大差ないレベルとなるので、廃熱回収後に若深層水を海の表層付近に放水しても差し支えない。つまり、温排水対策が実質的に不要となる。従って、上述の若深層からの取水のメリットを享受しつつ、設備運用費等を抑制することができる。 As described above, according to the power plant G according to the present embodiment, the young deep water cooling system 7 for taking seawater from the young deep layer where the water quality is good and marine organisms such as jellyfish and shellfish hardly live. Since it is provided, marine organisms can be prevented from entering the power plant G, and marine organisms can be prevented from attaching and breeding to the condenser 13 and the cooling water cooler 3. Can be suppressed. Further, the supply amount control unit 4 performs the first control, so that the pressure in the steam circulation system 102 can be maintained within a predetermined range, thereby maintaining the vacuum efficiency of the steam turbine 12 at a high level. Can do. Furthermore, since the supply amount control unit 4 performs the second control, the temperature of the cooling water is maintained within a predetermined range, so that the cooling efficiency of the cooling water can be increased. In addition, the amount of seawater used is sufficient to maintain the pressure in the steam circulation system 102 within the predetermined range in the condenser 13, and the temperature of the cooling water within the predetermined range at the heat exchanging unit 31. Since the amount is sufficient to maintain, the amount of seawater used (water intake) can be minimized. In addition, the seawater temperature of the young deep water is considerably lower than that of the surface water, and the water temperature after use at the power plant G is not much different from the surface water. Therefore, the wastewater is discharged near the surface of the sea after waste heat recovery. It doesn't matter. In other words, warm drainage measures are virtually unnecessary. Accordingly, it is possible to suppress facility operation costs and the like while enjoying the merit of water intake from the above-mentioned younger generation.
 また、若深層水は栄養塩が豊富で、希少金属が含有されている特徴がある。このため、発電プラントGにて使用後の若深層水から前記栄養塩を抽出して漁業に二次利用したり、前記希少金属を回収したりすることで、当該発電システムGの利用性を一層高めることができる。更には、若深層水の温熱又は冷熱を空調に利用することにより、省エネ効果(二酸化炭素削減効果)を図ることができる。 In addition, Waka Deep Water is characterized by rich nutrient salts and rare metals. Therefore, the utility of the power generation system G can be further increased by extracting the nutrient salt from the young deep water after use in the power plant G and using it secondarily in the fishery or recovering the rare metals. Can be increased. Furthermore, an energy saving effect (carbon dioxide reduction effect) can be achieved by using the heat or cold of the young deep layer water for air conditioning.
 ここで、若深層水の利用と発電出力等との関係についての実験データを示す。実験では、非共沸混合流体を作動流体として用いた発電システムを使用した。具体的には、図1に示す発電システム1における蒸気循環系統102に相当する作動液の密閉循環路を備えると共に、燃焼ガス通路101の代替として温水を流通させる温水配管を適用した実験用発電システムを使用した。前記密閉循環路には、アンモニアと水との混合流体からなる作動流体を封入した。この実験システムでは、蒸気発生器11において、前記温水配管を流れる温水と、前記密閉循環路を流通する作動流体とが熱交換し、該作動流体が蒸発することになる。また、復水器13(実験システムでは凝縮器)では、蒸気タービン12で仕事を行った作動流体と若深層水とが熱交換を行い、該作動流体は液化することになる。 Here, we present experimental data on the relationship between the use of young deep water and power generation output. In the experiment, a power generation system using a non-azeotropic mixed fluid as a working fluid was used. Specifically, an experimental power generation system including a sealed hydraulic fluid circulation path corresponding to the steam circulation system 102 in the power generation system 1 shown in FIG. 1 and applied with hot water piping for circulating hot water as an alternative to the combustion gas passage 101. It was used. A working fluid made of a mixed fluid of ammonia and water was sealed in the closed circuit. In this experimental system, in the steam generator 11, the hot water flowing through the hot water pipe exchanges heat with the working fluid flowing through the sealed circulation path, and the working fluid evaporates. In the condenser 13 (condenser in the experimental system), the working fluid that has worked in the steam turbine 12 exchanges heat with the young deep water, and the working fluid is liquefied.
 上記の実験システムを用いた実験の条件は次の通りである。蒸気発生器11へ導入される温水の温度(温水入口温度TWSI)を30℃の一定とする一方、凝縮器(復水器13)へ導入される若深層水の温度(冷水入口温度TCSI)を、8℃、9℃、10℃の3段階に変化させた。温水の流量mWS及び若深層水の流量mCSは、いずれも400m/hとした。蒸発器11の入口における作動流体の組成Y(アンモニアの質量分率)を0.94kg/kg、若しくは0.98kg/kgとし、作動流体の流量WMFを7t/h、若しくは12t/hとした。なお、冷水入口温度TCSIが低くなるほど、若深層水の取水深度が深くなっていることを意味する。 The conditions of the experiment using the above experimental system are as follows. While the temperature of the hot water introduced into the steam generator 11 (hot water inlet temperature T WSI ) is kept constant at 30 ° C., the temperature of the young deep layer water (cold water inlet temperature T CSI ) introduced into the condenser (condenser 13). ) Was changed in three stages of 8 ° C, 9 ° C and 10 ° C. The flow rate m WS of warm water and the flow rate m CS of young deep layer water were both 400 m 3 / h. The working fluid composition Y E (ammonia mass fraction) at the inlet of the evaporator 11 is 0.94 kg / kg or 0.98 kg / kg, and the working fluid flow rate W MF is 7 t / h or 12 t / h. did. In addition, it means that the intake depth of young deep water becomes deep, so that cold water inlet temperature TCSI becomes low.
 図7は、冷水入口温度TCSI(若深層水の入口温度)とタービン出力Wとの関係を示すグラフである。図8は、冷水入口温度TCSIとタービン正味出力Wnetとの関係を示すグラフである。図9は、冷水入口温度TCSIと実験システムのサイクル熱効率ηthとの関係を示すグラフである。図10は、冷水入口温度TCSIと蒸気発生器熱通過係数Uとの関係を示すグラフである。図11は、冷水入口温度TCSIと復水器熱通過係数Uとの関係を示すグラフである。 Figure 7 is a graph showing the relationship between the cold water inlet temperature T CSI (inlet temperature young deep water) and a turbine output W T. FIG. 8 is a graph showing the relationship between the cold water inlet temperature T CSI and the net turbine output W net . FIG. 9 is a graph showing the relationship between the cold water inlet temperature T CSI and the cycle thermal efficiency η th of the experimental system. FIG. 10 is a graph showing the relationship between the cold water inlet temperature T CSI and the steam generator heat passage coefficient U E. FIG. 11 is a graph showing the relationship between the cold water inlet temperature T CSI and the condenser heat passage coefficient U C.
 図7~図11の結果から明らかな通り、作動流体を凝縮させる熱媒として若深層水を利用することにより、タービン出力W、タービン正味出力Wnet、サイクル熱効率ηth、蒸気発生器熱通過係数U及び復水器熱通過係数Uの、発電出力や効率において良好な結果が得られることが確認された。また、より深度が深い箇所から取水した若深層水、つまり冷水入口温度TCSIが低いほど、前記発電出力や効率が向上することも確認された。なお、取水場所によって異なるが、冷水入口温度TCSIが2℃異なるということは、若深層水の取水深度が50m~200m程度相違することを意味する。 As is apparent from the results of FIGS. 7 to 11, by using the young deep water as a heat medium for condensing the working fluid, the turbine output W T , the turbine net output W net , the cycle thermal efficiency η th , and the steam generator heat passage It was confirmed that good results were obtained in the power generation output and efficiency of the coefficient U E and the condenser heat passage coefficient U C. It was also confirmed that the power generation output and the efficiency were improved as the young deep water taken from a deeper portion, that is, the cold water inlet temperature TCSI was lower. Although the cold water inlet temperature T CSI is different by 2 ° C. depending on the water intake location, it means that the water intake depth of the young deep water is different by about 50 to 200 m.
 以上、本発明の実施形態を説明したが、本発明はこれに限定されるものではない。例えば、図1に示す実施形態では、1台の冷却水クーラー3が使用されている例を示した。一般的な発電プラントにおいては、冷却水クーラー3が複数台備えられている。この場合、複数台の冷却水クーラー3のうちの1台を本実施形態の如く廃熱発電システム2用として用い、残りは発電システム1の廃熱冷却用に用いるようにしても良い。 As mentioned above, although embodiment of this invention was described, this invention is not limited to this. For example, in the embodiment shown in FIG. 1, an example in which one cooling water cooler 3 is used is shown. In a general power plant, a plurality of cooling water coolers 3 are provided. In this case, one of the plurality of cooling water coolers 3 may be used for the waste heat power generation system 2 as in the present embodiment, and the rest may be used for cooling the waste heat of the power generation system 1.
 また、上記実施形態では、廃熱循環系統6内を循環する熱媒として冷却水を例示し、熱媒クーラーとして冷却水クーラー3を例示した。冷却水に代えて、廃熱循環系統6の熱媒として冷却オイルや冷却ガスを用い、熱媒クーラーを前記冷却オイルや冷却ガスを若深層水で冷却するものとしても良い。 In the above embodiment, the cooling water is exemplified as the heat medium circulating in the waste heat circulation system 6, and the cooling water cooler 3 is exemplified as the heat medium cooler. Instead of cooling water, cooling oil or cooling gas may be used as the heating medium of the waste heat circulation system 6, and the cooling medium or cooling gas may be cooled by the deep layer water in the heating medium cooler.
 さらに、上記実施形態では、供給量制御部4が、図4のステップS20の復水器海水流量制御(第1制御)と、ステップS30熱循環系統冷却水温度制御(第2制御)との双方を実行する例を示した。これに代えて、供給量制御部4が、上記第1制御又は第2制御の少なくとも一方を実行するように構成しても良い。 Further, in the above embodiment, the supply amount control unit 4 performs both the condenser seawater flow rate control (first control) in step S20 of FIG. 4 and the heat circulation system cooling water temperature control (second control) in step S30. An example of executing is shown. Instead of this, the supply amount control unit 4 may be configured to execute at least one of the first control and the second control.
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。 The specific embodiments described above mainly include inventions having the following configurations.
 本発明の一局面に係る発電プラントは、蒸気タービン、復水器及び加熱源と、これらを通して水乃至は蒸気を循環させる蒸気循環系統とを備えた発電システムと、前記発電システムの廃熱を利用して発電を行うシステムであって、廃熱タービン、蒸発器及び凝縮器を備えた廃熱発電システムと、熱交換部を備えた熱媒クーラーと、熱媒の循環系統であって、前記蒸気タービンの動作によって発生された熱の廃熱を回収する熱回収部と、前記蒸発器及び前記熱交換部において熱を放出する熱放出部とを含む廃熱循環系統と、海水面より20m~200mの下層範囲である若深層において海水を取水し、前記復水器、前記凝縮器及び前記熱交換部を経由して前記海水を排水する若深層水冷却系統と、前記廃熱循環系統の前記熱媒及び前記若深層水冷却系統の前記海水の流量を制御する制御部と、を備え、前記制御部は、前記蒸気循環系統内の圧力を所定範囲内に維持するために、前記若深層水冷却系統の前記復水器を経由する前記海水の流量を調整する第1制御と、前記廃熱循環系統内における前記熱媒の温度を所定範囲内に維持するために、少なくとも前記若深層水冷却系統の前記熱交換部を経由する前記海水の流量を調整する第2制御と、のうちの少なくとも一方を実行する。好ましくは、前記制御部は、前記第1制御及び前記第2制御の双方を実行する。 A power generation plant according to one aspect of the present invention uses a power generation system including a steam turbine, a condenser, and a heating source, and a steam circulation system for circulating water or steam through the power generation system, and waste heat of the power generation system. A waste heat power generation system including a waste heat turbine, an evaporator and a condenser, a heat medium cooler including a heat exchanging unit, and a heat medium circulation system, wherein the steam A waste heat circulation system including a heat recovery unit that recovers waste heat generated by the operation of the turbine, a heat release unit that releases heat in the evaporator and the heat exchange unit, and 20 m to 200 m from the sea surface The young deep water cooling system that takes in seawater in the younger deep layer that is the lower layer of the water and drains the seawater through the condenser, the condenser, and the heat exchange unit, and the heat of the waste heat circulation system Medium and the Waka Deep Layer A control unit that controls the flow rate of the seawater in the cooling system, and the control unit is configured to maintain the pressure in the steam circulation system within a predetermined range, and the condenser of the young deep water cooling system. In order to maintain the temperature of the heating medium in the waste heat circulation system within a predetermined range, at least the heat exchange part of the young deep water cooling system is adjusted to adjust the flow rate of the seawater passing through At least one of the second control for adjusting the flow rate of the seawater passing therethrough is executed. Preferably, the control unit executes both the first control and the second control.
 この構成によれば、水質が良くクラゲ類や貝類などの海生生物がほとんど生息していない若深層から海水を取水する若深層水冷却系統を備えるので、発電プラントへの海生生物の侵入や付着を抑止することができる。また、前記制御部が前記第1制御を行うことによって、前記蒸気循環系統内の圧力を所定範囲内に維持することができ、これにより前記復水器の真空効率を高いレベルに維持することができる。さらに、前記制御部が前記第2制御を行うことによって、前記熱媒の温度が所定範囲内に維持されるので、前記熱媒の冷却効率を上げることができる。これに加えて、前記海水の使用量が、前記復水器において前記蒸気循環系統内の圧力を所定範囲内に維持するに足りる量、並びに、前記熱交換部において前記熱媒の温度を所定範囲内に維持するに足りる量に規制されるので、前記海水の使用量(取水量)を最小限に抑制できる。従って、上述の若深層からの取水のメリットを享受しつつ、設備運用費等を抑制することができる。 According to this configuration, it is equipped with a young deep water cooling system that takes in seawater from a young deep layer that has good water quality and is rarely inhabited by marine organisms such as jellyfish and shellfish. Adhesion can be suppressed. In addition, when the control unit performs the first control, the pressure in the steam circulation system can be maintained within a predetermined range, and thereby the vacuum efficiency of the condenser can be maintained at a high level. it can. Furthermore, since the temperature of the heat medium is maintained within a predetermined range when the control unit performs the second control, the cooling efficiency of the heat medium can be increased. In addition, the amount of seawater used is an amount sufficient to maintain the pressure in the steam circulation system within a predetermined range in the condenser, and the temperature of the heat medium in the heat exchanger is within a predetermined range. The amount of water used (water intake) can be minimized because the amount is limited to an amount sufficient to maintain the inside. Accordingly, it is possible to suppress facility operation costs and the like while enjoying the merit of water intake from the above-mentioned younger generation.
 上記構成において、前記発電システムは、前記復水器に導入される冷却水温度が、一定の温度範囲内に制限されることが望ましい。 In the above configuration, it is desirable that the temperature of the cooling water introduced into the condenser is limited to a certain temperature range in the power generation system.
 通常、前記復水器に導入される冷却水は、海水面近くの海水である。このため、季節により冷却水の水温が変化し、この水温変化が復水器の真空効率に影響を与えている。若深層の海水温は、海水面近くの海水温よりも低く、温度範囲は季節を通して一定である。従って、前記発電システムとして、復水器の真空効率に影響を与えない海水温を有する若深層領域から海水を取水することで、当該発電プラントの高効率化を図ることができる。 Normally, the cooling water introduced into the condenser is seawater near the sea level. For this reason, the temperature of the cooling water changes depending on the season, and this change in water temperature affects the vacuum efficiency of the condenser. The seawater temperature in the younger layers is lower than that near the sea surface, and the temperature range is constant throughout the season. Therefore, the power generation system can be made highly efficient by taking seawater from a young deep region having seawater temperature that does not affect the vacuum efficiency of the condenser.
 上記構成において、前記蒸気循環系統の、前記蒸気タービンの出口側に配置される圧力センサをさらに備え、前記制御部の前記第1制御は、前記圧力センサの検出値が所定の基準値より低い場合には、前記復水器を経由する海水の流量を所定の基準流量に対して減少させ、前記検出値が前記基準値より高い場合には、前記海水の流量を前記基準流量に対して増加させる制御であることが望ましい。 In the above configuration, the apparatus further includes a pressure sensor disposed on an outlet side of the steam turbine in the steam circulation system, and the first control of the control unit is performed when a detection value of the pressure sensor is lower than a predetermined reference value The flow rate of seawater passing through the condenser is decreased with respect to a predetermined reference flow rate, and when the detected value is higher than the reference value, the flow rate of seawater is increased with respect to the reference flow rate. Control is desirable.
 この構成によれば、前記蒸気循環系統の真空度を前記圧力センサにてモニターし、そのモニター結果に基づいて、前記復水器を経由する前記海水の流量の適正化を図ることができる。 According to this configuration, the degree of vacuum of the steam circulation system is monitored by the pressure sensor, and the flow rate of the seawater passing through the condenser can be optimized based on the monitoring result.
 上記構成において、前記廃熱循環系統は、前記蒸発器を経由する蒸発器配管と、前記熱交換部を経由する熱交換部配管と、前記蒸発器配管と前記熱交換部配管との上流側合流部と前記熱回収部とを繋ぐ往路配管と、前記蒸発器配管と前記熱交換部配管との下流側合流部と前記熱回収部とを繋ぐ復路配管とを含み、前記復路配管に配置され、前記熱媒の温度を検出する温度センサをさらに備え、前記制御部の前記第2制御は、前記温度センサの検出値が所定の基準温度より高い場合に、前記熱交換部を経由する海水の流量を所定の基準流量に対して増加させる制御を含むことが望ましい。 In the above configuration, the waste heat circulation system includes an upstream side of the evaporator pipe passing through the evaporator, a heat exchange part pipe passing through the heat exchange part, and the evaporator pipe and the heat exchange part pipe. An outlet pipe connecting the heat recovery part, a downstream pipe connecting the evaporator pipe and the heat exchanging part pipe, and a return pipe connecting the heat recovery part, and arranged in the return pipe, A temperature sensor for detecting the temperature of the heat medium is further provided, and the second control of the control unit is configured such that when the detected value of the temperature sensor is higher than a predetermined reference temperature, the flow rate of seawater passing through the heat exchange unit It is desirable to include a control to increase the value with respect to a predetermined reference flow rate.
 この構成によれば、前記復路配管における前記熱媒の温度を温度センサにてモニターし、そのモニター結果に基づいて、前記熱交換部を経由する海水の流量の適正化を図ることができる。 According to this configuration, the temperature of the heat medium in the return pipe can be monitored by the temperature sensor, and the flow rate of the seawater passing through the heat exchange unit can be optimized based on the monitoring result.
 上記構成において、前記廃熱循環系統は、前記上流側合流部と前記下流側合流部とを直結する短絡配管をさらに備え、前記制御部の前記第2制御は、前記温度センサの検出値が所定の基準温度より低い場合に、前記短絡配管を通過する前記熱媒の流量を増加させる制御を含むことが望ましい。 In the above configuration, the waste heat circulation system further includes a short-circuit pipe that directly connects the upstream merging section and the downstream merging section, and the second control of the control section has a predetermined value detected by the temperature sensor. It is desirable to include control for increasing the flow rate of the heating medium passing through the short-circuit pipe when the temperature is lower than the reference temperature.
 この構成によれば、前記熱媒の流通経路として前記短絡配管がさらに具備されるので、前記廃熱循環系統内において前記熱媒の温度を所定範囲内に維持する制御が行い易くなる。 According to this configuration, since the short-circuit pipe is further provided as a circulation path of the heat medium, it is easy to perform control for maintaining the temperature of the heat medium within a predetermined range in the waste heat circulation system.
 以上説明した通りの本発明によれば、発電システムと、この発電システムの廃熱を利用して発電を行う廃熱発電システムとが組み合わされた発電プラントにおいて、冷却用の海水の取水及び利用の態様を最適化することができる。
 
According to the present invention as described above, in a power generation plant in which a power generation system and a waste heat power generation system that generates power using waste heat of the power generation system are combined, intake and use of seawater for cooling are used. Aspects can be optimized.

Claims (6)

  1.  蒸気タービン、復水器及び加熱源と、これらを通して水乃至は蒸気を循環させる蒸気循環系統とを備えた発電システムと、
     前記発電システムの廃熱を利用して発電を行うシステムであって、廃熱タービン、蒸発器及び凝縮器を備えた廃熱発電システムと、
     熱交換部を備えた熱媒クーラーと、
     熱媒の循環系統であって、前記蒸気タービンの動作によって発生された熱の廃熱を回収する熱回収部と、前記蒸発器及び前記熱交換部において熱を放出する熱放出部とを含む廃熱循環系統と、
     海水面より20m~200mの下層範囲である若深層において海水を取水し、前記復水器、前記凝縮器及び前記熱交換部を経由して前記海水を排水する若深層水冷却系統と、
     前記廃熱循環系統の前記熱媒及び前記若深層水冷却系統の前記海水の流量を制御する制御部と、を備え、
     前記制御部は、
      前記蒸気循環系統内の圧力を所定範囲内に維持するために、前記若深層水冷却系統の前記復水器を経由する前記海水の流量を調整する第1制御と、
      前記廃熱循環系統内における前記熱媒の温度を所定範囲内に維持するために、少なくとも前記若深層水冷却系統の前記熱交換部を経由する前記海水の流量を調整する第2制御と、のうちの少なくとも一方を実行する発電プラント。
    A power generation system comprising a steam turbine, a condenser and a heating source, and a steam circulation system for circulating water or steam through them;
    A system for generating power using waste heat of the power generation system, comprising a waste heat power generation system comprising a waste heat turbine, an evaporator and a condenser;
    A heat medium cooler with a heat exchange section;
    A heat medium circulation system that includes a heat recovery unit that recovers waste heat of heat generated by the operation of the steam turbine, and a heat release unit that releases heat in the evaporator and the heat exchange unit A thermal circulation system;
    A young deep water cooling system that takes seawater in a young deep layer, which is a lower range of 20 m to 200 m from the sea surface, and drains the seawater through the condenser, the condenser, and the heat exchange unit;
    A control unit that controls the flow rate of the seawater of the heat medium of the waste heat circulation system and the young depth water cooling system,
    The controller is
    A first control for adjusting a flow rate of the seawater passing through the condenser of the young deep water cooling system in order to maintain the pressure in the steam circulation system within a predetermined range;
    A second control for adjusting a flow rate of the seawater passing through the heat exchange section of the young deep water cooling system in order to maintain the temperature of the heating medium in the waste heat circulation system within a predetermined range; A power plant that performs at least one of them.
  2.  請求項1に記載の発電プラントにおいて、
     前記制御部は、前記第1制御及び前記第2制御の双方を実行する、発電プラント。
    The power plant according to claim 1,
    The said control part is a power plant which performs both said 1st control and said 2nd control.
  3.  請求項1に記載の発電プラントにおいて、
     前記復水器に導入される冷却水温度が、一定の温度範囲内に制限される、発電プラント。
    The power plant according to claim 1,
    The power plant in which the temperature of the cooling water introduced into the condenser is limited within a certain temperature range.
  4.  請求項1~3のいずれか1項に記載の発電プラントにおいて、
     前記蒸気循環系統の、前記蒸気タービンの出口側に配置される圧力センサをさらに備え、
     前記制御部の前記第1制御は、前記圧力センサの検出値が所定の基準値より低い場合には、前記復水器を経由する海水の流量を所定の基準流量に対して減少させ、前記検出値が前記基準値より高い場合には、前記海水の流量を前記基準流量に対して増加させる制御である、発電プラント。
    The power plant according to any one of claims 1 to 3,
    A pressure sensor disposed on an outlet side of the steam turbine of the steam circulation system;
    When the detection value of the pressure sensor is lower than a predetermined reference value, the first control of the control unit decreases the flow rate of seawater passing through the condenser with respect to a predetermined reference flow rate, When the value is higher than the reference value, the power plant is a control for increasing the flow rate of the seawater relative to the reference flow rate.
  5.  請求項1~3のいずれか1項に記載の発電プラントにおいて、
     前記廃熱循環系統は、前記蒸発器を経由する蒸発器配管と、前記熱交換部を経由する熱交換部配管と、前記蒸発器配管と前記熱交換部配管との上流側合流部と前記熱回収部とを繋ぐ往路配管と、前記蒸発器配管と前記熱交換部配管との下流側合流部と前記熱回収部とを繋ぐ復路配管とを含み、
     前記復路配管に配置され、前記熱媒の温度を検出する温度センサをさらに備え、
     前記制御部の前記第2制御は、前記温度センサの検出値が所定の基準温度より高い場合に、前記熱交換部を経由する海水の流量を所定の基準流量に対して増加させる制御を含む、発電プラント。
    The power plant according to any one of claims 1 to 3,
    The waste heat circulation system includes an evaporator pipe that passes through the evaporator, a heat exchange part pipe that passes through the heat exchange part, an upstream junction between the evaporator pipe and the heat exchange part, and the heat. A forward pipe connecting the recovery unit, a downstream pipe connecting the evaporator pipe and the heat exchange unit pipe, and a return pipe connecting the heat recovery unit,
    A temperature sensor disposed in the return pipe and detecting the temperature of the heat medium;
    The second control of the control unit includes a control for increasing a flow rate of seawater passing through the heat exchange unit with respect to a predetermined reference flow rate when a detection value of the temperature sensor is higher than a predetermined reference temperature. Power plant.
  6.  請求項5に記載の発電プラントにおいて、
     前記廃熱循環系統は、前記上流側合流部と前記下流側合流部とを直結する短絡配管をさらに備え、
     前記制御部の前記第2制御は、前記温度センサの検出値が所定の基準温度より低い場合に、前記短絡配管を通過する前記熱媒の流量を増加させる制御を含む、発電プラント。
    The power plant according to claim 5,
    The waste heat circulation system further includes a short-circuit pipe that directly connects the upstream merging portion and the downstream merging portion,
    The second control of the control unit includes a control for increasing a flow rate of the heat medium passing through the short-circuit pipe when a detection value of the temperature sensor is lower than a predetermined reference temperature.
PCT/JP2014/077405 2013-10-24 2014-10-15 Power generation plant WO2015060169A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-221368 2013-10-24
JP2013221368A JP6209419B2 (en) 2013-10-24 2013-10-24 Power plant

Publications (1)

Publication Number Publication Date
WO2015060169A1 true WO2015060169A1 (en) 2015-04-30

Family

ID=52992769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077405 WO2015060169A1 (en) 2013-10-24 2014-10-15 Power generation plant

Country Status (2)

Country Link
JP (1) JP6209419B2 (en)
WO (1) WO2015060169A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102087018B1 (en) * 2018-08-02 2020-03-10 고석순 ORC power generation system with improved efficiency

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150402A (en) * 1986-12-16 1988-06-23 Toshiba Corp Cooling water equipment for power generator plate
JPH06272512A (en) * 1993-03-17 1994-09-27 Hitachi Ltd Compound power plant and its starting method
JP2001214710A (en) * 2000-01-27 2001-08-10 Toshiba Corp Power generating plant
JP2002340483A (en) * 2001-05-15 2002-11-27 Toshiba Syst Technol Corp Condenser cooling water system
JP2004036535A (en) * 2002-07-04 2004-02-05 Kansai Electric Power Co Inc:The Power plant main machine exhaust heat recovery system
JP2005214089A (en) * 2004-01-30 2005-08-11 Tokyo Gas Co Ltd Combined cycle generating set
JP2013087709A (en) * 2011-10-19 2013-05-13 Hitachi Ltd Condenser cooling water system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444015A (en) * 1981-01-27 1984-04-24 Chiyoda Chemical Engineering & Construction Co., Ltd. Method for recovering power according to a cascaded Rankine cycle by gasifying liquefied natural gas and utilizing the cold potential

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150402A (en) * 1986-12-16 1988-06-23 Toshiba Corp Cooling water equipment for power generator plate
JPH06272512A (en) * 1993-03-17 1994-09-27 Hitachi Ltd Compound power plant and its starting method
JP2001214710A (en) * 2000-01-27 2001-08-10 Toshiba Corp Power generating plant
JP2002340483A (en) * 2001-05-15 2002-11-27 Toshiba Syst Technol Corp Condenser cooling water system
JP2004036535A (en) * 2002-07-04 2004-02-05 Kansai Electric Power Co Inc:The Power plant main machine exhaust heat recovery system
JP2005214089A (en) * 2004-01-30 2005-08-11 Tokyo Gas Co Ltd Combined cycle generating set
JP2013087709A (en) * 2011-10-19 2013-05-13 Hitachi Ltd Condenser cooling water system

Also Published As

Publication number Publication date
JP6209419B2 (en) 2017-10-04
JP2015081593A (en) 2015-04-27

Similar Documents

Publication Publication Date Title
KR101328401B1 (en) Energy saving system of ship by using waste heat
JP5551508B2 (en) Control device for working fluid circulating in closed circuit operating according to Rankine cycle and method of using the same
KR101110695B1 (en) apparatus for ocean thermal energy conversion of vessel
JP2012149541A (en) Exhaust heat recovery power generating apparatus and marine vessel
JP6021526B2 (en) COOLING WATER SUPPLY SYSTEM AND BINARY POWER GENERATOR HAVING THE SAME
JP2014034924A (en) Exhaust heat recovery device of internal combustion engine and cogeneration system
JP5737918B2 (en) Biological treatment-type heat pump system for wastewater treatment equipment, biological treatment-type wastewater treatment equipment provided therewith, and control method for biological treatment-type wastewater treatment equipment heat pump system
KR101499810B1 (en) Hybrid type condenser system
JP4986664B2 (en) Gas turbine combustion air cooling system
KR101736913B1 (en) Thermal power upgrade facility
KR101481010B1 (en) Ocean thermal energy conversion system and operation method thereof
KR20130040320A (en) Fresh water generating equipment for vessels by using waste heat
KR101922026B1 (en) Energy saving system for using waste heat of ship
JP5511429B2 (en) Heat utilization system
WO2015060169A1 (en) Power generation plant
JP5951593B2 (en) Waste heat recovery device, waste heat recovery type ship propulsion device, and waste heat recovery method
KR101526220B1 (en) Adjustment device of condenser effluent from power plant, and salinity gradient power generation system using this adjustment device
KR101215477B1 (en) Combustion air cooling systemm of engine for vessel
RU2266414C2 (en) Method of recovery of heat of exhaust gases of gas-turbine engine and heat power-generating plant for implementing the method
JP5596216B1 (en) Waste treatment facility
JP6854262B2 (en) Exhaust heat recovery system
CN207033516U (en) One kind utilizes LNG cold energy Collaborative Control turbine discharge back pressure systems
JP2008261316A (en) Condensation heat exchange system and control method for condensation heat exchanger
JP5918810B2 (en) Waste treatment facility and heat retention method for dust collector
JP2019011937A (en) Thermal energy recovery device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856364

Country of ref document: EP

Kind code of ref document: A1