JPH06252242A - Transfer apparatus including gas purifying means - Google Patents

Transfer apparatus including gas purifying means

Info

Publication number
JPH06252242A
JPH06252242A JP5632393A JP5632393A JPH06252242A JP H06252242 A JPH06252242 A JP H06252242A JP 5632393 A JP5632393 A JP 5632393A JP 5632393 A JP5632393 A JP 5632393A JP H06252242 A JPH06252242 A JP H06252242A
Authority
JP
Japan
Prior art keywords
wafer
fine particles
space
electrode
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5632393A
Other languages
Japanese (ja)
Other versions
JP3429522B2 (en
Inventor
Toshiaki Fujii
敏昭 藤井
Hidetomo Suzuki
英友 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP05632393A priority Critical patent/JP3429522B2/en
Publication of JPH06252242A publication Critical patent/JPH06252242A/en
Application granted granted Critical
Publication of JP3429522B2 publication Critical patent/JP3429522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To provide a transfer apparatus wherein varieties of contaminating matters are removed and a purified space is ensured, and it has a closeable space. CONSTITUTION:In a transfer apparatus 1 having a closeable space, there is provided in the space gas purifying means including a photoelectron emitting material 7, an ultraviolet source 6 and/or a radiation means, and an electrode 8. Photoelectrons 10 produced by irradiation from the ultraviolet source 6, etc., turn fine particles 5 in the space to charged fine particles 11 which are collected by the electrode 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気体清浄化手段を有す
る搬送装置に係り、特に、ウエハ液晶などの原料、半製
品、製品を搬送する密閉可能な空間を有する搬送装置に
関するものである。本発明の搬送装置は、半導体産業、
液晶産業、農林産業、食品工業、精密機械産業など、各
種産業における原料、半製品、製品の搬送装置として用
いることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transfer device having a gas cleaning means, and more particularly to a transfer device having a sealable space for transferring raw materials such as wafer liquid crystal, semi-finished products and products. The carrier device of the present invention is used in the semiconductor industry,
It can be used as a carrier for raw materials, semi-finished products, and products in various industries such as liquid crystal industry, agriculture and forestry industry, food industry, and precision machinery industry.

【0002】[0002]

【従来の技術】従来の技術を、半導体産業におけるウエ
ハの搬送装置を例に説明する。ウエハの搬送(A工程か
らB工程への輸送)では、ウエハへの微粒子などによる
汚染を防ぐため、搬送方式として、1)搬送空間を真空
にして行うものや、2)高純度な窒素(N2 )を搬送空
間に流し行うものが提案されている。これらの方式で
は、欠点として、1)真空方式では真空を維持するため
のコスト、緊急時の対策の設備や費用、真空下にするこ
とによる(圧力変化による)微粒子の発生の問題など、
また2)N2 を流す方式では、高純度N2 原料のコス
ト、N2 をたれ流しにする事による周囲環境への影響の
問題などがあった。
2. Description of the Related Art A conventional technique will be described by taking a wafer transfer device in the semiconductor industry as an example. In order to prevent the contamination of the wafer with fine particles or the like, the wafer is transported (transport from the process A to the process B). As a transport method, 1) the transport space is evacuated or 2) high-purity nitrogen (N It has been proposed that 2 ) be poured into the transport space. These methods have drawbacks such as 1) the cost for maintaining a vacuum in the vacuum method, the equipment and cost for emergency measures, and the problem of generation of fine particles due to pressure change (due to pressure change).
And 2) in a manner flowing N 2, it was such a problem of the impact on the surrounding environment due to the high purity N 2 feed cost, the N 2 to runaway.

【0003】また、従来の搬送装置は、単にウエハを運
ぶためのものであり、都合により操業を一時中断する場
合にはウエハを搬送装置から取り出して、別装置のスト
ッカに入れて保存し、汚染防止を図っていた。例えば週
末の操業では、搬送装置からウエハを取り出して、別装
置のストッカに保管して汚染防止を図り、週明けに搬送
装置に移し、次の工程に送るようにしていた。このよう
な搬送装置では、操作がはん雑で、ウエハへの汚染の機
会が増えるため歩留まりが低くコスト高となっていた。
また、上記装置では主に微粒子汚染に対応したものであ
る。ウエハ汚染の原因は、微粒子による汚染の他に、接
触角の増加をもたらす有害ガス例えば、室内空気中炭化
水素(H.C)による汚染があるが、該有害ガスの対策
は現状装置では行われていない。
Further, the conventional transfer device is merely for transferring the wafer, and when the operation is temporarily suspended for convenience, the wafer is taken out from the transfer device, stored in a stocker of another device, and contaminated. I was trying to prevent it. For example, in a weekend operation, a wafer is taken out of a transfer device, stored in a stocker of another device to prevent contamination, transferred to the transfer device at the beginning of the week, and sent to the next process. In such a transfer device, the operation is complicated and the chances of contamination of the wafer are increased, resulting in low yield and high cost.
Further, the above-mentioned device mainly deals with contamination of fine particles. The cause of wafer contamination is not only contamination by fine particles but also contamination by harmful gas that causes an increase in contact angle, for example, contamination by hydrocarbons (HC) in indoor air. Not not.

【0004】ここで、接触角とは水によるぬれの接触角
のことであり、基板表面の汚染の程度を示すものであ
る。すなわち、基板表面に疎水性(油性)の物質が付着
すると、その表面は水をはじき返してぬれにくくなる。
すると基板表面と水滴との接触角は大きくなる。従って
接触角が大きいと汚染度が高く、逆に接触角が小さいと
汚染度が低い。
Here, the contact angle means the contact angle of wetting with water, and indicates the degree of contamination of the substrate surface. That is, when a hydrophobic (oil-based) substance adheres to the surface of the substrate, the surface repels water and becomes difficult to wet.
Then, the contact angle between the substrate surface and the water droplet becomes large. Therefore, if the contact angle is large, the degree of contamination is high, and conversely, if the contact angle is small, the degree of contamination is low.

【0005】[0005]

【発明が解決しようとする課題】上記のように、ウエハ
には微粒子(粒子状物質)や、自動車の排気ガスなどに
起因する空気中のメタン以外の極低濃度の炭化水素(H
C)などのガス状物質が汚染物質として問題となる。特
にHCはガス状有害成分として通常の空気(室内空気及
び外気)中の極低濃度のものが汚染をもたらすので、除
去する必要がある。また、クリーンルームにおける作業
で生じる各種の溶剤(アルコール、ケトン類など)も汚
染物質として問題となる。
As described above, ultra-low concentration hydrocarbons (H) other than methane in the air caused by fine particles (particulate matter) and automobile exhaust gas are generated on the wafer.
Gaseous substances such as C) pose a problem as pollutants. In particular, HC is a gaseous harmful component, and extremely low concentrations of it in ordinary air (indoor air and outside air) cause pollution, so it is necessary to remove it. Further, various solvents (alcohols, ketones, etc.) generated during work in a clean room also pose a problem as pollutants.

【0006】すなわち、上述の汚染物質(微粒子及びガ
ス状汚染物質)がウエハ、半製品、製品の基盤表面へ沈
着すれば基盤表面が破損しやすくなり、半導体製品の生
産性(歩留り)を低下させる原因となるため、汚染物質
の除去が必要である。また、搬送装置では、ウエハを搬
送するための駆動部があり、物が動くと必然的に微粒子
が発生する。そこで、本発明は、各種の汚染物質を除去
して清浄な空間を得ることができる密閉可能な空間を有
する搬送装置を提供することを課題とする。
That is, if the above-mentioned pollutants (fine particles and gaseous pollutants) are deposited on the substrate surface of wafers, semi-finished products, and products, the substrate surface is easily damaged and the productivity (yield) of semiconductor products is reduced. It is necessary to remove the pollutant because it causes the problem. Further, the transfer device has a drive part for transferring a wafer, and when an object moves, particles are inevitably generated. Therefore, an object of the present invention is to provide a transfer device having a sealable space in which various contaminants can be removed to obtain a clean space.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、密閉可能な空間を有する搬送装置にお
いて、該空間内に光電子放出材と紫外線源及び/又は放
射線源と電極とを有する気体清浄化手段を設けたもので
ある。前記搬送装置において、密閉可能な空間の一部が
ストッカであってもよく、また、密閉可能な空間内の気
体は、吸着、吸収、紫外線及び/又は放射線照射から選
ばれた1種類以上の手段を用いて、気体中の非メタン炭
化水素濃度を0.2ppm以下まで浄化された気体がよ
く、また該気体は窒素であるのがよい。
In order to solve the above problems, according to the present invention, in a conveying device having a sealable space, a photoelectron emitting material, an ultraviolet ray source and / or a radiation source and an electrode are provided in the space. It is provided with the gas cleaning means. In the transfer device, a part of the sealable space may be a stocker, and the gas in the sealable space is one or more means selected from adsorption, absorption, ultraviolet ray and / or radiation irradiation. Is a gas purified to a concentration of non-methane hydrocarbons in the gas of 0.2 ppm or less, and the gas may be nitrogen.

【0008】なお、本発明の搬送手段は密閉可能に設け
られたものであれば、ロボット、磁器浮上、ベルトコン
ベア、バケットコンベア、その他いかなる搬送装置であ
っても適用できる。すなわち、搬送装置に少なくとも、
紫外線源及び/又は放射線源、光電子放出材、電極を備
えることにより、搬送装置の空間中の微粒子(ウエハに
同伴された微粒子や搬送駆動部より発生する微粒子)
は、光電子放出材からの光電子により荷電され、荷電微
粒子は電極で除去され、搬送装置の空間は高清浄に維持
され、ウエハの汚染が防止できる。
The carrying means of the present invention can be applied to any carrying device such as a robot, a porcelain levitation, a belt conveyor, a bucket conveyor, etc., as long as it can be sealed. That is, at least the transport device,
By providing an ultraviolet ray source and / or a radiation source, a photoelectron emitting material, and an electrode, fine particles in the space of the transfer device (fine particles entrained in the wafer or fine particles generated by the transfer drive unit)
Are charged by the photoelectrons from the photoelectron emitting material, the charged fine particles are removed by the electrodes, the space of the transfer device is kept highly clean, and the contamination of the wafer can be prevented.

【0009】また、装置の種類によっては、該搬送空間
に少なくとも紫外線源及び/又は放射線源、光電子放出
材、電極を備えたストッカを一体化したことにより、運
転状況により搬送装置で搬送途中のウエハを外部に取り
出すことなくストッカに収納できるものである。該スト
ッカも、光電子放出材からの光電子により、ストッカ中
の微粒子を荷電し、荷電微粒子は電極で除去され、スト
ッカ内は高清浄に維持される。また、搬送空間への気体
を吸着手段、吸収手段、紫外線及び/又は放射線照射手
段の内1種類以上の手段を用いて、該気体中の非メタン
炭化水素を0.2ppm以下まで除去することが好まし
く、ウエハの接触角増加を防止することができる。
Depending on the type of the apparatus, a stocker having at least an ultraviolet ray source and / or a radiation source, a photoelectron emitting material, and an electrode may be integrated in the carrying space, so that the wafer being carried by the carrying apparatus may be changed depending on operating conditions. It can be stored in the stocker without taking it out. The stocker also charges the fine particles in the stocker by photoelectrons from the photoelectron emitting material, the charged fine particles are removed by the electrode, and the inside of the stocker is maintained highly clean. Further, it is possible to remove non-methane hydrocarbons in the gas to 0.2 ppm or less by using one or more kinds of means for adsorbing gas into the transfer space, absorbing means, ultraviolet ray and / or radiation irradiation means. Preferably, the contact angle of the wafer can be prevented from increasing.

【0010】次に、本発明に用いる個々の構成をその作
用とともに詳細に説明する。光電子放出材は、紫外線照
射により光電子を放出するものであれば何れでも良く、
光電的な仕事関数が小さなもの程好ましい。効果や経済
性の面から、Ba,Sr,Ca,Y,Gd,La,C
e,Nd,Th,Pr,Be,Zr,Fe,Ni,Z
n,Cu,Ag,Pt,Cd,Pb,Al,C,Mg,
Au,In,Bi,Nb,Si,Ti,Ta,U,B,
Eu,Sn,P,Wのいずれか又はこれらの化合物又は
合金又は混合物が好ましく、これらは単独で又は二種以
上を複合して用いられる。複合材としては、アマルガム
の如く物理的な複合材も用いうる。
Next, the individual components used in the present invention will be described in detail together with their operation. The photoelectron emitting material may be any as long as it emits photoelectrons upon irradiation with ultraviolet rays,
The smaller the photoelectric work function is, the more preferable. From the viewpoint of effect and economy, Ba, Sr, Ca, Y, Gd, La, C
e, Nd, Th, Pr, Be, Zr, Fe, Ni, Z
n, Cu, Ag, Pt, Cd, Pb, Al, C, Mg,
Au, In, Bi, Nb, Si, Ti, Ta, U, B,
Any one of Eu, Sn, P, W or a compound, alloy or mixture thereof is preferable, and these are used alone or in combination of two or more kinds. As the composite material, a physical composite material such as amalgam can also be used.

【0011】例えば、化合物としては酸化物、ほう化
物、炭化物があり、酸化物にはBaO,SrO,Ca
O,Y2 5 ,Gd2 3 ,Nd2 3 ,ThO2 ,Z
rO2 ,Fe2 3 ,ZnO,CuO,Ag2 O,La
2 3 ,PtO,PbO,Al23 ,MgO,In2
3 ,BiO,NbO,BeOなどがあり、またほう化
物には、YB6 ,GdB6 ,LaB5 ,NdB6 ,Ce
6 ,BuB6 ,PrB6,ZrB2 などがあり、さら
に炭化物としてはUC,ZrC,TaC,TiC,Nb
C,WCなどがある。
For example, the compounds include oxides, borides, and carbides, and the oxides include BaO, SrO, and Ca.
O, Y 2 O 5 , Gd 2 O 3 , Nd 2 O 3 , ThO 2 , Z
rO 2 , Fe 2 O 3 , ZnO, CuO, Ag 2 O, La
2 O 3 , PtO, PbO, Al 2 O 3 , MgO, In 2
O 3, BiO, NbO, there is such as BeO, also in borides is, YB 6, GdB 6, LaB 5, NdB 6, Ce
B 6, BuB 6, PrB 6 , ZrB 2 include, as a further carbide UC, ZrC, TaC, TiC, Nb
C, WC, etc.

【0012】また、合金としては黄銅、青銅、りん青
銅、AgとMgとの合金(Mgが2〜20wt%)、C
uとBeとの合金(Beが1〜10wt%)及びBaと
Alとの合金を用いることができ、上記AgとMgとの
合金、CuとBeとの合金及びBaとAlとの合金が好
ましい。酸化物は金属表面のみを空気中で加熱したり、
或いは薬品で酸化することによっても得ることができ
る。さらに他の方法としては使用前に加熱し、表面に酸
化層を形成して長期にわたって安定な酸化層を得ること
もできる。この例としてはMgとAgとの合金を水蒸気
中で300〜400℃で温度の条件下でその表面に酸化
膜を形成させることができ、この酸化膜は長期間にわた
って安定なものである。
As the alloy, brass, bronze, phosphor bronze, an alloy of Ag and Mg (Mg is 2 to 20 wt%), C
An alloy of u and Be (1 to 10 wt% of Be) and an alloy of Ba and Al can be used, and the alloy of Ag and Mg, the alloy of Cu and Be, and the alloy of Ba and Al are preferable. . Oxide heats only the metal surface in air,
Alternatively, it can be obtained by oxidizing with a chemical. As another method, it is also possible to heat before use to form an oxide layer on the surface to obtain a stable oxide layer for a long period of time. As an example of this, an alloy of Mg and Ag can be formed into an oxide film on its surface under the temperature condition of 300 to 400 ° C. in water vapor, and this oxide film is stable for a long period of time.

【0013】また、本発明者が、すでに提案したように
光電子放出材を多重構造としたものも好適に使用できる
(特開平1−155857号公報)。また、適宜の母材
上に、薄膜状に光電子を放出し得る物質を付加し、使用
することもできる(特願平2−278123号)。この
例として、紫外線透過性物質(母材)としての石英ガラ
ス上に光電子を放出し得る物質として、Auを薄膜状に
付加したものがある(特願平2−295423号)。こ
れらの材料の使用形状は、棒状、綿状、格子状、板状、
プリーツ状、曲面状、金網状等何れの形状でもよいが、
紫外線の照射面積及び処理空気との接触面積の大きな形
状のものが好ましい。
Further, as the present inventor has already proposed, a photoelectron emitting material having a multiple structure can also be preferably used (Japanese Patent Laid-Open No. 1-155857). Further, a substance capable of emitting photoelectrons in a thin film form may be added to an appropriate base material and used (Japanese Patent Application No. 2-278123). As an example of this, there is a thin film of Au added as a substance capable of emitting photoelectrons on quartz glass as a UV transparent substance (base material) (Japanese Patent Application No. 2-295423). The shapes of these materials used are rod, cotton, lattice, plate,
It may be any shape such as pleated shape, curved surface shape, wire mesh shape,
A shape having a large irradiation area of ultraviolet rays and a large contact area with the treatment air is preferable.

【0014】光電子放出材からの光電子の放出は、本発
明者がすでに提案したように、反対面、曲面状の反射面
等を適宜用いることで効果的に実施することが出来る
(特開昭63−100955号公報)。光電子放出材や
反射面の形状や構造は、装置の形状、構造あるいは希望
する効果等により異なり、適宜決めることができる。光
電子放出材からの光電子放出のための照射源は、照射に
よる光電子を放出するものであればいずれでも良い。紫
外線の他に電磁波、レーザ、放射線が適宜に適用分野、
装置規模、形状、効果等が選択し、使用できる。この内
効果、操作面の面で、紫外線又は放射線が通常好まし
い。
The emission of photoelectrons from the photoelectron emitting material can be effectively carried out by appropriately using an opposite surface, a curved reflecting surface, etc., as previously proposed by the present inventor (JP-A-63). -100955). The shape and structure of the photoelectron emitting material and the reflecting surface differ depending on the shape and structure of the device or desired effect, and can be appropriately determined. The irradiation source for emitting photoelectrons from the photoelectron emitting material may be any one as long as it emits photoelectrons by irradiation. In addition to ultraviolet rays, electromagnetic fields, lasers, and radiation are applicable fields,
The device scale, shape, effect, etc. can be selected and used. Among these, ultraviolet rays or radiation is usually preferable in terms of effects and operation surface.

【0015】紫外線の種類は、その照射により光電子放
出材が光電子を放出しうるものであれば何れでも良く、
適用分野によっては、殺菌(滅菌)作用を併せてもつも
のが好ましい。紫外線の種類は、適用分野、作業内容、
用途、経済性などにより適宜決めることができる。該紫
外線源としては、紫外線を発するものであれば何れも使
用でき、適用分野、装置の形状、構造、効果、経済性等
により適宜選択し用いることができる。例えば、水銀
灯、水素放電管、キセノン放電管、ライマン放電管など
を適宜使用できる。
Any kind of ultraviolet light may be used as long as the photoelectron emitting material can emit photoelectrons by its irradiation.
Depending on the field of application, those having a sterilizing action are also preferable. The type of UV light depends on the application field, work content,
It can be appropriately determined depending on the use, economy and the like. As the ultraviolet ray source, any ultraviolet ray source can be used, and it can be appropriately selected and used depending on the application field, the shape of the device, the structure, the effect, the economical efficiency and the like. For example, a mercury lamp, a hydrogen discharge tube, a xenon discharge tube, a Lyman discharge tube, or the like can be used as appropriate.

【0016】なお、搬送装置の密閉空間内は除電するこ
とも重要である。例えば、光電子による除塵と該紫外線
の照射による除電乃至は電位低減を同時に行いたい場合
には、短波長紫外線を用いると除電が顕著になる。この
例としては重水素ランプがある。このように除塵のみな
らず、接触角増加防止、除電機能をも有している点が本
発明の特徴である。紫外線を照射する代りに放射線の照
射によっても、同様に微粒子に荷電せしめ、同様の効果
を得ることができる。放射線の照射については、本発明
者がすでに提案している(特開昭62−24459号公
報)。
It is also important to eliminate static electricity in the closed space of the transfer device. For example, when dust removal by photoelectrons and static elimination or potential reduction by irradiation of the ultraviolet rays are desired at the same time, the static elimination becomes remarkable when short wavelength ultraviolet rays are used. An example of this is a deuterium lamp. As described above, the present invention is characterized in that it has not only the dust removal function but also a contact angle increase prevention function and a charge removal function. By irradiating with radiation instead of irradiating with ultraviolet rays, the fine particles are similarly charged and the same effect can be obtained. The present inventor has already proposed irradiation of radiation (Japanese Patent Application Laid-Open No. 62-24459).

【0017】放射線源として軟X線(Soft X線)
は、光電子放出による除塵効果に顕著な除電効果が加わ
るので、利用分野によっては好ましい。また、本発明者
がすでに提案した紫外線源と光電子放出材を一体化した
光電子放出装置、例えば紫外線ランプ表面に薄膜状光電
子放出材を被覆した該装置(特願平3−22685
号);あるいは紫外線源を光電子放出材及び電極で囲み
一体化してユニット化した微粒子の荷電・捕集装置(特
願平3−261289号)も適宜に利用することができ
る。
Soft X-rays as a radiation source
Is preferable in some fields of use because it has a remarkable effect of removing static electricity from the dust removing effect of photoelectron emission. In addition, a photoelectron emission device in which an ultraviolet source and a photoelectron emission material have been already proposed by the present inventor, for example, a device in which a thin film photoelectron emission material is coated on the surface of an ultraviolet lamp (Japanese Patent Application No. 3-22685).
No.); or a device for charging / collecting fine particles in which an ultraviolet source is surrounded by a photoelectron emitting material and an electrode and integrated into a unit (Japanese Patent Application No. 3-261289).

【0018】次に、電極材の材質は、導体であれば何れ
も使用でき、周知の荷電装置における各種電極材が好適
に使用できる。通常、電極材は後述電場設定用と後述荷
電微粒子捕集材を兼ねて用いる。荷電微粒子の捕集材
(集じん材)は、荷電微粒子が捕集できるものであれば
いずれでも使用できる。通常の荷電装置における集じん
板、集じん電極等各種電極材が使用できる。
Any material can be used for the electrode material as long as it is a conductor, and various electrode materials for known charging devices can be preferably used. Usually, the electrode material is used for both the electric field setting described later and the charged fine particle collecting material described later. As the collecting material (dust collecting material) for the charged fine particles, any material can be used as long as it can collect the charged fine particles. Various electrode materials such as a dust collecting plate and a dust collecting electrode in a normal charging device can be used.

【0019】電極及び/又は光電子放出材は、微粒子の
存在する空間の適宜の位置の空間の1部分に、電極と光
電子放出材の間に電場が形成できるように設置され、光
電子放出材(−)と電極(+)間に電場(電界)を形成
する。該電場により光電子放出材から光電子が効率よく
放出され、該光電子により搬送装置の空間中微粒子が荷
電され、荷電微粒子は電極に捕集されて搬送装置の空間
は高清浄となる。
The electrode and / or the photoelectron emitting material is installed in a part of the space at an appropriate position in the space where the particles are present so that an electric field can be formed between the electrode and the photoelectron emitting material. ) And an electrode (+), an electric field (electric field) is formed. The electric field efficiently emits photoelectrons from the photoelectron emitting material, the photoelectrons charge fine particles in the space of the carrier, and the charged fine particles are collected by the electrodes, so that the space of the carrier becomes highly clean.

【0020】電極又は光電子放出材の位置や形状は、微
粒子の存在する空間により適宜に選択でき、電場のため
の印加電圧が低くできて光電子放出材からの光電子が空
間中で微粒子に荷電を与えることができれば何れでもよ
く、利用分野、装置規模、形状、効果、経済性等を考慮
して、適宜予備試験等により決めることができる。電極
と光電子放出材の間の設置距離は、近いほど印加電圧が
低くてよいので好ましい。一般に30cm以内好ましく
は10cm以内であるが装置規模、利用分野などで適宜
に決めることができる。
The position and shape of the electrode or the photoelectron emitting material can be appropriately selected depending on the space in which the particles are present, and the applied voltage for the electric field can be lowered, and the photoelectrons from the photoelectron emitting material charge the particles in the space. Any method may be used, and it can be appropriately determined by a preliminary test or the like in consideration of the field of use, device scale, shape, effect, economy, and the like. The closer the installation distance between the electrode and the photoelectron emitting material is, the lower the applied voltage may be, which is preferable. Generally, it is within 30 cm, preferably within 10 cm, but can be appropriately determined depending on the scale of the device, the field of use, and the like.

【0021】本発明に用いる電場電圧は、本発明におい
ては気体が流動していないので、弱い電場でも効果があ
り、該電場電圧は0.1V/cm〜2kV/cmであ
る。好適な電場の強さは、利用分野、条件、装置形状、
規模、効果、経済性等で適宜予備試験や検討を行い決め
ることが出来る。搬送装置への気体は、搬送品の種類
(例えば、ウエハ、液晶ガラスの種類)によって、又は
基板の表面状態(工程による表面処理)により、適宜後
述のガス状有害成分(主としてC.H.)の除去を行う
のがよい。
In the present invention, since the gas does not flow, the electric field voltage used in the present invention is effective even in a weak electric field, and the electric field voltage is 0.1 V / cm to 2 kV / cm. The suitable electric field strength depends on the field of application, conditions, device shape,
It can be decided by conducting preliminary tests and examinations appropriately in terms of scale, effect, economic efficiency, etc. The gas to the transfer device may be a gaseous harmful component (mainly C.H.), which will be described later, depending on the type of the transferred product (for example, the type of wafer or liquid crystal glass) or the surface condition of the substrate (surface treatment by the process). Should be removed.

【0022】非メタン炭化水素すなわちガス状有害成分
の除去は、接触角を増大させるこれら成分を吸着及び/
又は吸収する材料で捕集・除去するか、あるいは気体に
紫外線及び/又は放射線を照射し、生成した2次生成物
の捕集・除去を行う方式か、又は照射によりオゾンを発
生させて複合酸化物系触媒と接触させる方式で行うこと
ができる。非メタン炭化水素は、通常の空気(室内空気
及び外気)、窒素、アルゴンなどのクリーンルームで用
いる各種気体中の濃度で汚染をもたらす。
The removal of non-methane hydrocarbons, or gaseous harmful components, adsorbs and / or adsorbs those components which increase the contact angle.
Alternatively, a method of collecting / removing with a material that absorbs, or a method of irradiating a gas with ultraviolet rays and / or radiation to collect / remove the generated secondary product, or generating ozone by irradiation to generate a complex oxidation It can be performed by a method of contacting with a physical catalyst. Non-methane hydrocarbons cause pollution at concentrations in various gases used in a clean room such as ordinary air (indoor air and outdoor air), nitrogen, and argon.

【0023】また種々の非メタン炭化水素のうち、接触
角を増大させる成分は基材の種類(ウエハ、ガラス材な
ど)や基板上の薄膜の種類・性状によって異なると考え
られる。本発明者は鋭意検討した結果、非メタン炭化水
素を指標として、これを0.2ppm以下、好ましくは
0.1ppm以下まで除去すれば効果的であることを発
見した。吸着及び/又は吸収手段による非メタン炭化水
素の除去は、本発明者が先に出願しているが、次のよう
な方法である。
Among various non-methane hydrocarbons, the component that increases the contact angle is considered to differ depending on the type of base material (wafer, glass material, etc.) and the type and properties of the thin film on the substrate. As a result of intensive studies, the present inventor has found that it is effective to remove non-methane hydrocarbons as an index to 0.2 ppm or less, preferably 0.1 ppm or less. The removal of non-methane hydrocarbons by the adsorption and / or absorption means is the following method, which the present inventor has previously filed.

【0024】吸着材としては、活性炭、シリカゲル、合
成ゼオライト、モレキュラシーブ、高分子化合物(例え
ば、スチレン系重合体、スチレン−ジビニルベンゼン共
重合体)、ガラス、フッ素化合物、金属又は金属の酸化
物(例、TiO2 )などを用いる。ガラス材としては、
酸化物ガラス系、例えばケイ酸塩ガラス、リン酸塩ガラ
スが一般的である。ケイ酸塩ガラスとしては特にホウケ
イ酸ガラス(主要成分:N2 O−B2 3 −SiO2
が、成形が容易で吸着効果が高く、かつ安価であること
から好ましい。また、ガラス表面にTi、Au、Al、
Crなどの金属薄膜を被覆して用いると、吸着効果が高
くなる。
As the adsorbent, activated carbon, silica gel, synthetic zeolite, molecular sieve, high molecular compound (for example, styrene polymer, styrene-divinylbenzene copolymer), glass, fluorine compound, metal or metal oxide (eg, , TiO 2 ) or the like is used. As a glass material,
Oxide glass systems such as silicate glass and phosphate glass are common. In particular borosilicate glass as a silicate glass (major component: N 2 O-B 2 O 3 -SiO 2)
However, it is preferable because it is easy to mold, has a high adsorption effect, and is inexpensive. In addition, Ti, Au, Al,
When a metal thin film such as Cr is coated and used, the adsorption effect is enhanced.

【0025】フッ素化合物としては、四フッ化樹脂、四
−六フッ化樹脂、PFA樹脂、三フッ化エチレン樹脂、
四フッ化エチレン−エチレン共重合体、フッ化ビニリデ
ン樹脂、フッ化ビニル樹脂、フッ化黒鉛、テフロンなど
がある。ガラス及びフッ素化合物の使用形状は、フィル
タ状、繊維状、網状、球状、ペレット状、格子状、棒
状、プリーツ状などがある。一般にフィルタ状が吸着効
果が大きいので好ましい。フィルタ状で用いる場合の成
形法の例として、フッ素化合物樹脂をバインダとして用
い、繊維状のガラス材をフィルタ状に固めて用いる方法
がある。このようなフィルタ状で用いるとHCの除去性
能に除塵性能が加わるのでフィルタ構成とするのが好ま
しい。
As the fluorine compound, tetrafluoride resin, tetra-hexafluoride resin, PFA resin, trifluoroethylene resin,
Examples include tetrafluoroethylene-ethylene copolymer, vinylidene fluoride resin, vinyl fluoride resin, fluorinated graphite, and Teflon. The shapes of the glass and the fluorine compound used include a filter shape, a fiber shape, a net shape, a spherical shape, a pellet shape, a lattice shape, a rod shape, and a pleat shape. In general, a filter shape is preferable because it has a large adsorption effect. As an example of a molding method in the case of using in a filter shape, there is a method of using a fluorine compound resin as a binder and solidifying a fibrous glass material in a filter shape. When used in such a filter shape, dust removal performance is added to the HC removal performance, so a filter configuration is preferable.

【0026】また、吸着材は、接触角を増加させるH.
C.の種類が複数に及ぶので、特性の異なる吸着材を2
種類以上組合せて用いるのが好ましい。例えば、シリカ
ゲルとフッ素化合物樹脂をバインダとした繊維状ガラス
材を組合せて用いると、上流の吸着材(シリカゲル)あ
るいはその周辺より微粒子(粒子状物質)の発生がある
場合(微粒子は汚染源になるので)でも、下流にフッ素
化合物樹脂をバインダとした繊維状ガラス材がフィルタ
状で用いられるので、除塵され好ましい。従ってこのよ
うな吸着材を装置に組み込むことは、利用分野、装置規
模、装置形状によっては好ましい。
Further, the adsorbent has an H.V.
C. Since there are multiple types of adsorbents, two adsorbents with different characteristics
It is preferable to use a combination of more than one kind. For example, when silica gel and a fibrous glass material containing a fluorine compound resin as a binder are used in combination, when fine particles (particulate matter) are generated from the upstream adsorbent (silica gel) or its surroundings (because fine particles become a pollution source. However, since a fibrous glass material having a fluorine compound resin as a binder is used in the form of a filter in the downstream, dust removal is preferable. Therefore, it is preferable to incorporate such an adsorbent into the device depending on the field of use, the scale of the device, and the shape of the device.

【0027】金属としては、例えばFe、Ag、Ni、
Cr、Ti、Au、Ptがあり、粉末状、板状、スポン
ジ状、綿状、繊維状、あるいは適宜の担体に付加したも
の、例えばシリカ−アルミナゲルにAgを担持したもの
やリン酸ジルコニウムにAgを担持した形状が好適に使
用できる。上記吸着材のうち、シリカゲル、合成ゼオラ
イト、高分子化合物、ガラス、フッ素化合物、及び金属
が吸着効果が高いのでより好ましい。これらの吸着材
は、単独で又は2種類以上を適宜組合せて使用できる
(特願平3−341802号及び特願平4−18053
8号参照)。
Examples of metals include Fe, Ag, Ni,
There are Cr, Ti, Au, and Pt, and powder, plate, sponge, cotton, fiber, or those added to an appropriate carrier, for example, silica-alumina gel supporting Ag or zirconium phosphate. A shape supporting Ag can be preferably used. Of the above adsorbents, silica gel, synthetic zeolite, polymer compounds, glass, fluorine compounds, and metals are more preferable because of their high adsorption effect. These adsorbents can be used alone or in appropriate combination of two or more kinds (Japanese Patent Application Nos. 3-341802 and 4-18053).
(See No. 8).

【0028】後述するように、接触角増大に関与するH
Cは複数種類と考えられるので、2種類以上の吸着材を
組み合わせて用いると寿命が長くなる。すなわち、通常
1種類の吸着材による捕集によっては接触角増大に関与
する全てのHCを捕集するには限界があるので、吸着特
性の異なる吸着材を、実験を行って適宜組み合わせて用
いると効果的である。また、搬送品の種類(例えば、ウ
エハ、液晶ガラスの種類)によって、又は基板の表面状
態(工程による表面処理)によってはHCの影響の程度
が異なるので、利用分野、装置規模、形状、装置の使用
条件、共有ガス、要求性能、経済性などにより適宜予備
試験を行って、上記吸着材の中から好適なものを選定す
ることができる。
As will be described later, H which is involved in increasing the contact angle
Since C is considered to be a plurality of types, if two or more types of adsorbents are used in combination, the life becomes long. That is, since there is a limit to the collection of all the HCs involved in the increase of the contact angle depending on the collection by one kind of adsorbent, adsorbents having different adsorption characteristics should be used by conducting an experiment and appropriately combining them. It is effective. Further, since the degree of influence of HC varies depending on the type of conveyed product (for example, the type of wafer or liquid crystal glass) or the surface condition of the substrate (surface treatment by process), the field of use, device scale, shape, device A suitable test can be selected from the above-mentioned adsorbents by carrying out a preliminary test as appropriate according to use conditions, shared gas, required performance, economical efficiency and the like.

【0029】また適用分野や装置のタイプによっては、
吸着材に空気を通す前に被処理空気の脱水、除湿又は減
湿を行えば吸着材の吸着性能が向上し、また寿命が延び
る。そのためには、冷却式、吸着式、吸収式、圧縮式、
膜分離による方式など周知の方式のものを使用すること
ができ、本発明の装置の適用分野、規模、形状、使用条
件(例えば大気圧下又は加圧下)などにより適宜予備試
験を行い、1種類又は2種類以上を適宜組み合わせて用
いる。除湿方式は、通常数カ月〜半年以上の長期間にわ
たって除湿性能が安定して維持されるものを用いるのが
好ましい。
Depending on the field of application and type of device,
If the air to be treated is dehydrated, dehumidified, or dehumidified before air is passed through the adsorbent, the adsorbability of the adsorbent is improved and the service life is extended. For that purpose, cooling type, adsorption type, absorption type, compression type,
A well-known method such as a method by membrane separation can be used, and a preliminary test is appropriately performed depending on the application field, scale, shape, use conditions (for example, under atmospheric pressure or under pressure) of the device of the present invention, and one type Alternatively, two or more kinds are appropriately combined and used. As the dehumidification method, it is preferable to use a dehumidification method that maintains stable dehumidification performance over a long period of time, usually from several months to half a year or more.

【0030】特に、冷却式及び/又は吸着式のものが簡
易で効果的である。冷却式のものとしては電子除湿方
式、冷却コイル方式が好ましく、吸着式のものとしては
除湿と除湿器自体の再生を行いながら長期間連続して除
湿する方式(固定式、回転式など)が簡易で効果的であ
る。吸着式による除湿材料としては、シリカゲル、ゼオ
ライト、活性炭、活性アルミナ、過塩素酸マグネシウ
ム、塩化カルシウムなどを用いることができる。このう
ち、シリカゲルとゼオライトが、HC除去効果もあり、
再生利用でき、また長期間の使用も可能なので好まし
い。
Particularly, the cooling type and / or the adsorption type is simple and effective. The cooling type is preferably an electronic dehumidification system or a cooling coil system, and the adsorption type is simple to dehumidify and regenerate the dehumidifier itself while continuously dehumidifying (fixed type, rotary type, etc.). Is effective. As the adsorption-type dehumidifying material, silica gel, zeolite, activated carbon, activated alumina, magnesium perchlorate, calcium chloride or the like can be used. Of these, silica gel and zeolite also have the effect of removing HC,
It is preferable because it can be recycled and can be used for a long period of time.

【0031】被処理気体中の水分濃度を50%(RH:
相対湿度)以下、好ましくは30%(RH)以下になる
ように除湿すれば、吸着材のHC吸着性能が向上し、性
能が長期間安定して維持される。除湿方式や限界水分濃
度は、適用装置の種類、規模、HC除去材の種類、要求
性能、経済性などにより、適宜予備試験を行って決める
ことができる。一般に、除湿を行えば吸着材のHC除去
性能が長期間安定して維持される。特に吸着材としてシ
リカゲルやフッ素化合物のような疎水性物質を用いる場
合に性能が顕著に安定する。一方、除湿量が少なくてよ
い場合や、被処理気体の水分濃度が低い場合には除湿を
省略することができる。すなわち、除湿は、吸着材の種
類、装置の利用分野、被処理気体中の水分濃度、適用装
置の規模、形状、要求性能、経済性などにより、適宜予
備試験を行って決めることができる。
The water concentration in the gas to be treated is 50% (RH:
Dehumidifying to a relative humidity) or less, preferably 30% (RH) or less improves the HC adsorption performance of the adsorbent and maintains the performance stably for a long time. The dehumidification method and the limiting moisture concentration can be determined by conducting a preliminary test as appropriate depending on the type and scale of the applied device, the type of HC removing material, the required performance, the economical efficiency and the like. Generally, when dehumidifying is performed, the HC removing performance of the adsorbent is stably maintained for a long period of time. In particular, the performance is remarkably stable when a hydrophobic substance such as silica gel or a fluorine compound is used as the adsorbent. On the other hand, the dehumidification can be omitted when the dehumidification amount may be small or when the water concentration of the gas to be treated is low. That is, the dehumidification can be determined by appropriately performing a preliminary test depending on the type of adsorbent, the field of use of the device, the water concentration in the gas to be treated, the scale and shape of the applied device, the required performance, the economical efficiency, and the like.

【0032】吸着材の使用に際しては、上述の(除湿を
伴う)使用方法の他に、PSA(圧力スウィング吸着)
やTSA(熱スウィング吸着)により吸着材の再生を同
時に行うことができ。HC吸収材は、低濃度HCと反応
し、これを固定化できるものであれば何でも使用でき
る。一般には、H2 SO4 共存下でのCr6+との反応
や、H2 2 7共存下でのI2 5 との反応を用いる
ことができる。前者は低分子量のHCに、後者は高分子
量のHCに対して有効である。例えば、ガラスビースあ
るいは適宜の形状(例えばペレット状)のゼオライトや
アルミナなどの担体表面にH2 SO4 酸性の6価クロム
を含む塩水溶液を含浸させて用いる。なお、吸収とは化
学反応により反応吸収することを示す。
In using the adsorbent, PSA (pressure swing adsorption) is used in addition to the above-mentioned usage (with dehumidification).
It is possible to regenerate the adsorbent at the same time by TSA (heat swing adsorption). As the HC absorbent, any material can be used as long as it can react with low concentration HC and immobilize it. Generally, a reaction with Cr 6+ in the coexistence of H 2 SO 4 or a reaction with I 2 O 5 in the coexistence of H 2 S 2 O 7 can be used. The former is effective for low molecular weight HC and the latter is effective for high molecular weight HC. For example, the surface of a carrier such as glass beads or an appropriate shape (for example, a pellet) of zeolite or alumina is impregnated with an aqueous salt solution containing H 2 SO 4 acidic hexavalent chromium. The term "absorption" means that the reaction is absorbed by a chemical reaction.

【0033】吸着材及び/又は吸収材の使用条件は、本
発明の装置の適用分野、装置規模、形状、要求性能など
によって、適宜予備試験を行って決めることができる。
装置中の被処理空気の空間速度(SV)は通常100〜
20000(h-1)、好ましくは100〜5000(h
-1)とする。次に、紫外線及び/又は放射線照射につい
て述べる。該照射による気体中H.Cの処理は、本発明
者の提案(特願平3−22686号、特願平3−105
092号等)を適宜に用いることができる。紫外線及び
/又は放射線照射により、気体中のH.C.は、H.
C.の種類や共存物質により微粒子状物質(凝縮性物
質)又は微粒子状物質と活性な物質に変換される。
The usage conditions of the adsorbent and / or the adsorbent can be determined by conducting preliminary tests as appropriate according to the application field of the device of the present invention, the scale of the device, the shape, the required performance and the like.
The space velocity (SV) of the air to be treated in the device is usually 100-
20000 (h -1 ), preferably 100 to 5000 (h
-1 ). Next, irradiation of ultraviolet rays and / or radiation will be described. The H. The processing of C is proposed by the present inventor (Japanese Patent Application No. 3-22686, Japanese Patent Application No. 3-105).
No. 092) can be appropriately used. By irradiation with ultraviolet rays and / or radiation, H. C. H.
C. Depending on the type and coexisting substance, it is converted into a fine particle substance (condensable substance) or a fine particle substance and an active substance.

【0034】例えば、H.C.としてトルエン、アルカ
ン(i−ペンタン)、オレフィン(プロピレン)を含む
ガス混合物に紫外線照射すると、カルボン酸やカルボニ
ル化合物(凝縮性物質あるいは活性な物質)が生成す
る。微粒子への変換(微粒子化)においては、260n
m以下、好ましくは245nm以下の波長を有する照射
源が効果的である。紫外線源は、その照射によりH.
C.が微粒子化(微粒子状物質又は凝縮性物質への変換
あるいは微粒子と活性な物質へ変換)できるものであれ
ば何れでも良く、H.C.の種類や共存物質により適宜
予備試験を行い決めることができる。この内、利用分野
によっては、活性酸素やOHラジカル等の酸素活性種
(活性ラジカル)が生成するものが好ましい。
For example, H.264. C. When a gas mixture containing toluene, alkane (i-pentane) and olefin (propylene) is irradiated with ultraviolet rays as described above, carboxylic acid or carbonyl compound (condensable substance or active substance) is produced. 260n for conversion to fine particles
Irradiation sources having a wavelength of m or less, preferably 245 nm or less are effective. The ultraviolet ray source causes H.
C. Can be made into fine particles (converted to fine particles or a condensable substance or converted to fine particles and an active substance). C. It can be decided by conducting a preliminary test as appropriate depending on the type and coexisting substance. Among these, those that generate oxygen active species (active radicals) such as active oxygen and OH radicals are preferable depending on the field of use.

【0035】通常、紫外線の光源としては、水銀灯、水
素放電管(重水素ランプ)を用いることができる。紫外
線の光源は、H.C.の種類や共存物質によっては異な
る作用をもたらす複数の波長を有するものが好ましい。
例えば、水銀灯は、オゾンの生成(酸素活性種生成の
スタート物質の一つ)波長と、該オゾンを分解し酸素
活性種の生成を助長する波長を併せて持たせることがで
きるので好ましい。また、放射線としてはα線、β線、
γ線などが用いられ、照射手段としてコバルト60、セ
シウム137、ストロンチウム90などの放射性同位元
素、又は原子炉内で作られる放射性廃棄物及びこれに適
当な処理加工した放射性物質を線源として用いる方法、
原子炉を直接線源として用いる方法、電子線加速器など
の粒子加速器を用いる方法などを利用する。
Generally, a mercury lamp or a hydrogen discharge tube (deuterium lamp) can be used as the light source of ultraviolet rays. The light source of ultraviolet rays is H.264. C. Those having a plurality of wavelengths that bring about different actions are preferable depending on the type and coexisting substance.
For example, a mercury lamp is preferable because it can have both a wavelength of ozone generation (one of the starting materials for generating oxygen active species) and a wavelength that decomposes the ozone and promotes generation of oxygen active species. As radiation, α rays, β rays,
A method in which γ-rays are used, and radioactive isotopes such as cobalt 60, cesium 137, and strontium 90 are used as irradiation means, or radioactive waste produced in a nuclear reactor and radioactive materials appropriately processed therefor are used as a radiation source. ,
A method using a nuclear reactor as a direct radiation source, a method using a particle accelerator such as an electron beam accelerator, and the like are used.

【0036】加速器で電子線照射を行う場合は、低出力
で行うことで、高密度な照射が出来、効果的となる。加
速電圧は、500kV以下、好ましくは、50kV〜3
00kVである。該照射では、H.C.の種類や共存物
質によって上記照射により微粒子状物質(凝縮性物質)
に、あるいは微粒子状物質と活性な物質(反応性の高い
物質)に変換され、取扱い(処理)が容易な形態に変換
される。このようにして生成した微粒子状物質や、活性
な物質は、すでに本発明者が提案した光電子により荷電
を付与して捕集・除去する方法(例、特公平3−585
9号、特開平2−303557号各公報)や周知のフィ
ルタあるいは吸着材を用いて捕集・除去することができ
る。
When the electron beam irradiation is performed by the accelerator, high-density irradiation can be performed effectively by performing the irradiation with a low output. The acceleration voltage is 500 kV or less, preferably 50 kV to 3
It is 00 kV. In the irradiation, H. C. Depending on the type and coexisting substance, fine particles (condensable substance) can be generated by the above irradiation.
Or into a particulate substance and an active substance (highly reactive substance), and converted into a form that can be easily handled (processed). The particulate matter or active substance thus produced is already proposed by the present inventor to be charged and collected and removed by photoelectrons (eg, Japanese Patent Publication No. 3-585).
No. 9, JP-A-2-303557) and known filters or adsorbents can be used for collection and removal.

【0037】また、本発明者がすでに提案した、オゾン
分解能及び有害物質吸着能を有する複合酸化物系触媒と
接触させることにより、処理できる(特願平4−332
167号)。該微粒子は一般に超微粒子である。通常の
炭化水素から生成する微粒子の粒径は0.01〜0.0
5μm程度であり、また上述のごとく該微粒子は通常の
微粒子(例、無機物)に比べて活性が高いか、あるいは
活性な物質と共存していることに特長がある。用いるフ
ィルタは、上述微粒子が捕集できるものであれば何れで
も良く、一般にろ過方式のフィルタ、例えばHEPフィ
ルタ、ULPAフィルタ、静電フィルタ、エレクトレッ
ト材を用いたフィルタ、イオン交換フィルタ(繊維)を
用いることができ、通常この内HEPフィルタ、ULP
Aフィルタ、イオン交換フィルタが簡易で、効果が高い
ことから好ましい。
Further, it can be treated by bringing it into contact with a complex oxide catalyst which has already been proposed by the present inventor and has ozone decomposing ability and ability to adsorb harmful substances (Japanese Patent Application No. 4-332).
167). The fine particles are generally ultrafine particles. The particle size of fine particles generated from ordinary hydrocarbons is 0.01 to 0.0
It is about 5 μm, and as described above, the fine particles have a feature that they are higher in activity than ordinary fine particles (eg, an inorganic substance) or coexist with an active substance. Any filter may be used as long as it can collect the above-mentioned fine particles, and generally, a filter of a filtration system, for example, a HEP filter, a ULPA filter, an electrostatic filter, a filter using an electret material, an ion exchange filter (fiber) is used. Can be usually in this HEP filter, ULP
The A filter and the ion exchange filter are preferable because they are simple and highly effective.

【0038】特に、イオン交換フィルタは上述のごとく
活性な物質の捕集・除去に効果が高いので好ましい。ま
た、利用分野によっては、活性炭のような吸着材も適宜
利用できる。活性炭のような吸着材はイオン交換フィル
タと同様に共存する活性物質、有害ガスも捕集できるの
で適用分野によっては好ましい。微粒子の捕集・除去を
光電子により荷電を付与し行うか、あるいは吸着材やフ
ィルタで行うかは適用分野、装置規模、形状、効果、経
済性等により適宜選択し、あるいはこれらを組合せて行
うことができる。
In particular, the ion exchange filter is preferable because it is highly effective in collecting and removing active substances as described above. Depending on the field of use, an adsorbent such as activated carbon can be used as appropriate. An adsorbent such as activated carbon is preferable in some fields of application because it can collect coexisting active substances and harmful gases as in the ion exchange filter. Whether to collect and remove fine particles by applying charge by photoelectrons, or by using an adsorbent or a filter should be appropriately selected depending on the application field, device scale, shape, effect, economical efficiency, or a combination thereof. You can

【0039】以上は、通常の空気や窒素、アルゴンなど
クリーンルームで用いる各種気体中の極低濃度HCを除
去する場合の本発明の態様を説明したものである。一般
に搬送品の基材又は基板表面を汚染し、接触角を増大さ
せる原因となる物質は、(1)SOx,NOx,HC
l,NH3 のような有害ガス、(2)微粒子、(3)H
C、に大別できて、本発明者が検討した結果、通常の空
気中(通常のクリーンルームにおける環境大気中)や半
導体製造工場や液晶製造工場などのクリーンルームで使
用されるN2 中では、接触角に対して、微粒子とHCの
影響が大きい。すなわち、一般にSOx,NOx,HC
l,NH3 は、通常の空気中の濃度レベルでは接触角の
増大に対して影響が少ない。従って除塵とHCの除去に
よって効果が得られる。
The above has described the embodiment of the present invention in the case of removing extremely low concentration HC in various gases used in a clean room such as normal air, nitrogen, and argon. In general, substances that contaminate the base material or substrate surface of conveyed products and increase the contact angle are (1) SOx, NOx, HC
1, harmful gas such as NH 3 , (2) fine particles, (3) H
As a result of a study by the present inventor, the contact was observed in normal air (environmental air in a normal clean room) or N 2 used in a clean room such as a semiconductor manufacturing factory or a liquid crystal manufacturing factory. The influence of fine particles and HC on the corners is great. That is, generally SOx, NOx, HC
l and NH 3 have little effect on the increase of the contact angle at normal concentration levels in air. Therefore, the effect is obtained by removing dust and HC.

【0040】しかしSOx等有害ガスがクリーンルーム
内又はその周辺で発生してこれらの濃度が高い場合はこ
れらガス成分の影響を受けるし、これらの濃度が通常で
は影響しない程度に低い場合であっても、基材や基板が
敏感な場合や特殊な状態になっている場合(例えば基材
表面に特殊な薄膜を被覆した場合)には影響を受ける可
能性がある。このような場合、別の周知の有害ガス除去
材、例えば活性炭、イオン交換樹脂などを適宜組み合わ
せけ用いてもよい。活性炭は、酸やアルカリなどを添着
したり、周知の方法によって適宜改質したものを用いる
ことができる。
However, when harmful gases such as SOx are generated in or around the clean room and their concentrations are high, they are affected by these gas components, and even when these concentrations are so low that they do not usually affect them. However, it may be affected when the base material or the substrate is sensitive or in a special state (for example, when the surface of the base material is coated with a special thin film). In such a case, another well-known harmful gas removing material such as activated carbon or ion exchange resin may be appropriately combined and used. Activated carbon may be one that is impregnated with an acid or an alkali, or is appropriately modified by a known method.

【0041】空気中のHC成分は数百種あるいは数千種
以上の成分の混合物と言われていて、このような多種類
のHC成分のうち接触角の増大にどの成分がどの程度関
与するのか不明である。そのため、上記HC除去手段に
よる接触角の増大を防止する機構についての詳細は不明
な点が多いが、次のように考えられる。すなわち、接触
角の増大に対してはHC成分のうち特に分子量の大きい
物質や活性の高い物質の影響が大きいと推定され、これ
らが上記HC除去手段によって効果的に吸着・捕集され
る。
The HC component in the air is said to be a mixture of hundreds or thousands of components. Which of these various HC components is involved in increasing the contact angle and to what extent? Unknown. Therefore, there are many unclear points about the mechanism for preventing the increase of the contact angle by the HC removing means, but it is considered as follows. That is, it is estimated that substances having particularly large molecular weight and substances having high activity among the HC components have a large influence on the increase of the contact angle, and these substances are effectively adsorbed and collected by the HC removing means.

【0042】上記は、搬送品の汚染に対する汚染物質の
捕集・除去について説明したものであり、媒体が空気、
窒素、アルゴンなど気体であればいずれにも好適に適用
できる。本発明では、上記したように、除塵作用に加え
て接触角増加防止作用、紫外線及び/又は放射線照射と
生成光電子による除電作用が加わるので適用分野・装置
によっては好ましい効果が得られる。除電(中和)につ
いては、本発明者の別の提案(特願平4−216623
号)があるので、除電条件について適宜利用できる。
The above has described the collection and removal of pollutants against the contamination of the conveyed product, and the medium is air.
Any gas such as nitrogen or argon can be suitably applied. In the present invention, as described above, in addition to the dust removing action, the contact angle increasing preventing action, the static electricity removing action by the irradiation of ultraviolet rays and / or radiation and the generated photoelectrons are added, and therefore, a preferable effect is obtained depending on the application field / apparatus. Regarding static elimination (neutralization), another proposal of the present inventor (Japanese Patent Application No. 4-216623).
No.), it can be used as appropriate for static elimination conditions.

【0043】密閉空間中の媒体の種類は、上記したよう
に汚染物質の除去の点ではいずれでも好適に用いること
ができる。また、利用分野・装置の種類により、上記の
汚染物質の捕集・除去と搬送品の顕著な除電を行う場合
には、媒体として窒素を用いて、短波長紫外線あるいは
軟X線を用いると除電が顕著に行えることから好まし
く、これらを適宜用いることができる。上記したよう
に、本発明で用いることのできる光電子放出材、紫外線
及び/又は放射線照射、電極材、非メタン炭化水素の捕
集・除去手段、媒体ガスの種類や使用条件などは、利用
分野、装置の種類、規模、形状、要求性能、環境条件、
経済性などにより、適宜予備試験を行い決めることがで
きる。
Any type of medium in the closed space can be preferably used in terms of removing contaminants as described above. Also, depending on the field of use and type of equipment, when performing the above-mentioned collection / removal of pollutants and significant static elimination of conveyed products, static electricity can be eliminated by using nitrogen as a medium and short wavelength ultraviolet rays or soft X-rays. It is preferable because they can be remarkably performed, and these can be appropriately used. As described above, the photoelectron emitting material that can be used in the present invention, the irradiation of ultraviolet rays and / or radiation, the electrode material, the means for collecting and removing non-methane hydrocarbons, the type and use conditions of the medium gas, etc. Equipment type, scale, shape, required performance, environmental conditions,
It can be decided by conducting a preliminary test as appropriate depending on the economical efficiency.

【0044】[0044]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらに限定されるものではない。 実施例1 図1はクラス10,000のクリーンルームにおける半
導体製造において、A工程からB工程にウエハを搬送す
る搬送装置1に、A工程とB工程の途中にウエハのスト
ッカ2を備えたものである。
EXAMPLES The present invention will now be specifically described with reference to examples, but the present invention is not limited thereto. Example 1 FIG. 1 shows a semiconductor device manufacturing apparatus in a class 10,000 clean room in which a transfer device 1 for transferring a wafer from step A to step B is provided with a wafer stocker 2 between steps A and B. .

【0045】搬送装置1は、図2にその断面図を示す。
図2について説明すると、図2の光電子放出材は、バル
ク状(Cu−Zn以下にAuメッキ)光電子放出材を用
いたものである。搬送装置1は、ウエハ3の搬送を行う
搬送のための駆動装置4、ウエハ同伴微粒子及び搬送装
置の駆動に係わり発生する微粒子(粒子状物質)5を捕
集・除去するための紫外線ランプ6、光電子放出材7、
電極8、紫外線の反射面9より構成されている。
FIG. 2 is a sectional view of the carrier device 1.
Referring to FIG. 2, the photoelectron emitting material of FIG. 2 uses a bulk (Cu-Zn or less Au plating) photoelectron emitting material. The transfer device 1 includes a drive device 4 for transferring the wafer 3, an ultraviolet lamp 6 for collecting and removing fine particles (particulate matter) 5 accompanying the wafer entrained fine particles and the driving of the transfer device, Photo-emissive material 7,
It is composed of an electrode 8 and an ultraviolet reflecting surface 9.

【0046】微粒子5は、光電子放出材7に紫外線ラン
プ6からの紫外線照射により放出された光電子10によ
り荷電され、荷電微粒子11となり、該荷電微粒子11
は電極8に捕集される。このようにして、搬送装置1内
のウエハ3近傍は高清浄化されるので、ウエハの汚染が
防止される。ここで、電極8は、電場下で、光電子放出
材(−極)7へ紫外線照射を行うための電極(+極)の
作用と、荷電微粒子の捕集材としての作用を有する。1
2は紫外線の透過窓であり、石英ガラス窓である。
The fine particles 5 are charged by the photoelectrons 10 emitted from the ultraviolet light emitted from the ultraviolet lamp 6 to the photoelectron emitting material 7 to become charged fine particles 11, which are charged fine particles 11.
Are collected by the electrode 8. In this way, the vicinity of the wafer 3 in the transfer device 1 is highly cleaned, so that the contamination of the wafer is prevented. Here, the electrode 8 has a function of an electrode (+ pole) for irradiating the photoelectron emitting material (-pole) 7 with an ultraviolet ray under an electric field, and a function as a collector of charged fine particles. 1
Reference numeral 2 is a transparent window for ultraviolet rays, which is a quartz glass window.

【0047】図3は、図1の搬送装置に一体化されたス
トッカ2を示す。ストッカ2は微粒子の荷電・捕集部I
とウエハのストック部IIで構成されている。微粒子の荷
電・捕集部Iは紫外線ランプ6、石英ガラスにAuの薄
膜を被覆した光電子放出材7、電極8、紫外線の反射面
9で成り、ストック部II(被清浄空間部)中微粒子5は
拡散力などにより荷電・捕集部Iに移動し、光電子放出
材7から放出された光電子10により荷電され、荷電微
粒子11となり、荷電微粒子11は、電極8に捕集さ
れ、ウエハのストック部IIはクラス1よりも高清浄な空
間が維持される。15は遮光材であり、紫外線のストッ
ク部中ウエハへの直接照射を防ぐためのものである。1
3はウエハ、14はウエハキャリアである。
FIG. 3 shows a stocker 2 integrated in the transport apparatus of FIG. The stocker 2 is a charging / collecting unit I for fine particles.
And the wafer stock section II. The fine particle charging / collecting section I is composed of an ultraviolet lamp 6, a photoelectron emitting material 7 in which quartz glass is coated with a thin film of Au, an electrode 8, and an ultraviolet reflecting surface 9, and a fine particle 5 in the stock portion II (space to be cleaned). Move to the charging / collecting section I due to a diffusing force, etc., and are charged by the photoelectrons 10 emitted from the photoelectron emitting material 7 to become charged fine particles 11. The charged fine particles 11 are collected by the electrode 8 and the stock portion of the wafer. In II, a clean space higher than Class 1 is maintained. Reference numeral 15 denotes a light shielding material for preventing direct irradiation of the wafer in the stock portion of ultraviolet rays. 1
3 is a wafer, and 14 is a wafer carrier.

【0048】半導体製造では、通常ウエハはA工程から
B工程に搬送され、更にC工程、D工程(図示せず)を
経て、製品が出来上がる。ここで、A工程からB工程に
搬送中緊急時例えばB工程以後にトラブルや発生した場
合や、A工程で週末(金曜日)の操業を終了したい場合
には、B工程前に備えた搬送装置に一体化したストッカ
2にA工程からB工程に搬送中のウエハのストックを行
う。そして、適宜の時間後、ストッカ2からウエハを搬
送装置の搬送部に送り出し、B工程へと搬送する。
In semiconductor manufacturing, a wafer is usually transferred from the process A to the process B, and then the product is completed through processes C and D (not shown). Here, in the event of an emergency during transportation from the process A to the process B, for example, when a trouble or problem occurs after the process B, or when it is desired to finish the operation on the weekend (Friday) in the process A, the transport device provided before the process B is used. The wafers being transferred from the process A to the process B are stocked in the integrated stocker 2. Then, after an appropriate time, the wafer is sent from the stocker 2 to the transfer section of the transfer device and transferred to the step B.

【0049】実施例2 図4は実施例1の搬送装置の別の実施形態を示す。図4
は石英ガラスにAuの薄膜を被覆した光電子放出材7を
用い、電極8は搬送空間の対向面に位置したものであ
る。各記号は実施例1と同一の記号は同一の意味を示
す。
Example 2 FIG. 4 shows another embodiment of the conveying apparatus of Example 1. Figure 4
Is a photoelectron emission material 7 in which quartz glass is coated with a thin film of Au, and the electrode 8 is located on the opposite surface of the transport space. Each symbol is the same as that of the first embodiment and the same symbol has the same meaning.

【0050】実施例3 図5は実施例1の搬送装置の別の実施形態を示す。図5
は石英ガラスにAuの薄膜を被覆した光電子放出材7を
用い、電極8は光電子放出材7の近傍に位置したもの
で、更に遮光材15を設置し、ウエハへ直接紫外線が照
射されないものである。この搬送装置は、搬送品が敏感
な(活性な)基材、基板表面を有する場合に好適であ
る。各記号は実施例1と同一の記号は同一の意味を示
す。
Example 3 FIG. 5 shows another embodiment of the conveying apparatus of Example 1. Figure 5
Is a photoelectron emission material 7 in which quartz glass is coated with a thin film of Au, the electrode 8 is located in the vicinity of the photoelectron emission material 7, and a light shielding material 15 is further installed so that the wafer is not directly irradiated with ultraviolet rays. . This transfer device is suitable when the transferred product has a sensitive (active) substrate or substrate surface. Each symbol is the same as that of the first embodiment and the same symbol has the same meaning.

【0051】実施例4 図6は実施例1の搬送装置の別の実施形態を示す。図6
は紫外線ランプ6の表面に光電子放出材Auを薄膜状に
被覆7し、紫外線ランプ6と光電子放出材7が一体化し
たもので、更に遮光材15を設置したものである。各記
号は実施例1と同一の記号は同一の意味を示す。
Example 4 FIG. 6 shows another embodiment of the conveying apparatus of Example 1. Figure 6
Is a product in which the surface of the ultraviolet lamp 6 is coated with a photoelectron emitting material Au in a thin film form 7, the ultraviolet lamp 6 and the photoelectron emitting material 7 are integrated, and a light shielding material 15 is further installed. Each symbol is the same as that of the first embodiment and the same symbol has the same meaning.

【0052】実施例5 図7は実施例1におけるクラス10,000のクリーン
ルームでのウエハの搬送を、非メタン炭化水素を除去し
た空冷の雰囲気で行う場合を示す。以下、本例を詳細に
説明する。クリーンルーム100内に入る前の外気10
1は、まず粗フィルタ102と空気調和器103で処理
される。次いで空気はクリーンルーム100内に入る際
にHEPAフィルタ104によって除塵されて、極低濃
度のHCが共存するクラス10,000の濃度の空気1
05となる。すなわち、主に自動車から発生する極低濃
度のHCは粗フィルタ102、空気調和器103、及び
HEPAフィルタ104では除去されないため、クリー
ンルーム100内に導入されてしまう。空気105中の
HCの濃度は非メタンHCで0.5〜0.8ppmであ
る。
Example 5 FIG. 7 shows a case in which wafers are transferred in a class 10,000 clean room in Example 1 in an air-cooled atmosphere from which non-methane hydrocarbons have been removed. Hereinafter, this example will be described in detail. Outside air 10 before entering the clean room 100
1 is first processed by the coarse filter 102 and the air conditioner 103. Next, when the air enters the clean room 100, it is dust-removed by the HEPA filter 104, and air having a concentration of class 10,000 in which extremely low concentration of HC coexists 1
It will be 05. That is, the extremely low concentration HC mainly generated from the automobile is not removed by the coarse filter 102, the air conditioner 103, and the HEPA filter 104, and therefore is introduced into the clean room 100. The concentration of HC in the air 105 is 0.5 to 0.8 ppm for non-methane HC.

【0053】水分(RH40〜60%)、微粒子(クラ
ス10,000)、及び極低濃度のHCを含むクリーン
ルーム100内の空気105は、まず除湿器(除湿装
置)106によって水分が一定濃度以下になるように除
湿される。本例の除湿器は電子除湿方式によるもので、
クリーンルーム100内の上記湿度(RH40〜60
%)が30%以下になるように運転される。除湿後の空
気は、次いでHC吸着材すなわちガス吸着除去装置10
7によって処理され、これにより極低濃度のHCが除去
される。HC吸着材108と109は、通常大気中にあ
る極低濃度のHCを除去するものであればどのようなも
のでもよい。
The air 105 in the clean room 100 containing water (RH 40 to 60%), fine particles (class 10,000) and extremely low concentration of HC is first dehumidified by a dehumidifier (dehumidifier) 106 to a certain concentration or less. To be dehumidified. The dehumidifier of this example is based on the electronic dehumidification system,
The humidity in the clean room 100 (RH40-60
%) Is less than 30%. The dehumidified air is then used as the HC adsorbent, that is, the gas adsorption / removal device 10
7 to remove very low concentrations of HC. The HC adsorbents 108 and 109 may be any as long as they remove the extremely low concentration of HC normally present in the atmosphere.

【0054】本例では吸着材108及び109としての
シリカゲル108、フッ素化合物樹脂をバインダとして
繊維状のガラス材をフィルタ状に成形したもの、109
を使用している。これにより、空気中の非メタンHCが
0.1ppm以下の濃度まで除去される。メタンHCが
0.1ppm以下とされた空気は搬送装置1の前方より
導入され、搬送装置1のウエハの存在する空間及びスト
ッカ2の空間は該空気の雰囲気となる。ウエハを該空気
雰囲気に暴露しておくと、接触角の増加防止効果がある
ので、次のB工程における成膜がウエハ上にしっかりと
強く(付着力大で)できる。
In this example, silica gel 108 as the adsorbents 108 and 109, a fibrous glass material formed into a filter shape by using a fluorine compound resin as a binder, 109
Are using. As a result, the non-methane HC in the air is removed to a concentration of 0.1 ppm or less. The air whose methane HC is 0.1 ppm or less is introduced from the front of the transfer device 1, and the space where the wafer of the transfer device 1 is present and the space of the stocker 2 become the atmosphere of the air. If the wafer is exposed to the air atmosphere, the contact angle can be prevented from increasing, so that the film formation in the next step B can be firmly and strongly formed (with a large adhesive force) on the wafer.

【0055】実施例6 図8は、実施例5における空気を窒素に代えてウエハの
搬送を行う場合(窒素雰囲気でウエハの搬送を行う場
合)を示す。図8において110は窒素の供給装置であ
り、窒素110は、ガス吸着装置107によって窒素中
非メタンHCが実施例5のごとく0.1ppm以下の濃
度まで除去される。各記号は、実施例5と同一の記号は
同一の意味を示す。
Embodiment 6 FIG. 8 shows a case where the air is replaced with nitrogen in the embodiment 5 and the wafer is transferred (the wafer is transferred in a nitrogen atmosphere). In FIG. 8, reference numeral 110 is a nitrogen supply device, and the nitrogen 110 is removed by the gas adsorption device 107 to a concentration of 0.1 ppm or less of non-methane HC in nitrogen as in the fifth embodiment. The same symbols as those in Example 5 have the same meanings.

【0056】本例の搬送装置1及びストッカ2における
紫外線源は重水素ランプであり、これにより除電効果が
顕著に生ずる。すなわち、本例では、微粒子がHC除去
の他に顕著な除電効果を有する。供給窒素が乾燥(水分
濃度が30%RH以下)している場合は、除湿器106
は不用であるが(通常不用であるが)、ここでは水分の
混入を考え除湿器106を設置している。
The ultraviolet ray source in the carrying device 1 and the stocker 2 of this example is a deuterium lamp, and the static elimination effect remarkably occurs. That is, in this example, the fine particles have a remarkable static elimination effect in addition to the HC removal. When the supplied nitrogen is dry (water concentration is 30% RH or less), the dehumidifier 106
Is unnecessary (although it is usually unnecessary), the dehumidifier 106 is installed here in consideration of the mixing of water.

【0057】実施例7 実施例1のストッカが一体化された搬送装置をクラス1
0,000のクリーンルームで運転し、光電子放出によ
る微粒子の荷電捕集が有無の場合についてウエハ表面上
の付着粒子数(粒径:0.2μm以上)を調べた。 1)搬送部の条件(光電子放出による微粒子の荷電・捕
集部は搬送装置に等間隔で5個所設置) ウエハ:A社製5インチウエハ ウエハの搬送方式:ロボット方式 搬送長さ:2m 紫外線ランプ:殺菌灯3W、3本 光電子放出材:AuメッキしたCu−Zn材 電極:AuメッキしたCu−Zn材 電場の強さ:50V/cm
Example 7 A class 1 transport apparatus in which the stocker of Example 1 is integrated
The operation was carried out in a clean room of 10,000, and the number of adhered particles (particle diameter: 0.2 μm or more) on the wafer surface was examined in the case where charge collection of fine particles by photoelectron emission was present or not. 1) Conditions of transfer section (Particle charging / collection sections by photoelectron emission are installed at five locations in the transfer device at equal intervals) Wafer: 5-inch wafer manufactured by A. Wafer transfer method: robot method Transfer length: 2 m UV lamp : 3 W of germicidal lamp Photoemissive material: Cu-Zn material plated with Au Electrode: Cu-Zn material plated with Au Electric field strength: 50 V / cm

【0058】2)ストッカ部の条件 大きさ:60リットル 紫外線ランプ:殺菌灯10W、3本 光電子放出材:石英ガラスにITO50Å及びAu50
Åを被覆 電極:AuメッキしたCu−Zn(格子状) 遮光材:AuメッキしたCu−Zn板(千鳥状)(遮光
材を−極とし、光電子放出作用も持たせた) 電場の強さ:50V/cm なお、ウエハ表面の付着粒子数は、レーザ光方式のウエ
ハ、ゴミ検出装置(WM−3、TOPCON社製)で測
定した。
2) Conditions of stocker part Size: 60 liters Ultraviolet lamp: Sterilization lamp 10W, 3 pieces Photoelectron emitting material: Quartz glass with ITO 50Å and Au 50
Å coating Electrode: Au-plated Cu-Zn (lattice) Light-shielding material: Au-plated Cu-Zn plate (staggered) (light-shielding material used as -pole and photoelectron emission function) Electric field strength: 50V / cm The number of adhered particles on the wafer surface was measured by a laser beam type wafer and a dust detection device (WM-3, manufactured by TOPCON).

【0059】結果 結果は10枚のウエハの平均値で示
す。 (1)初期のウエハ上付着粒子数が6個のウエハを、搬
送装置に入れ出口のウエハのウエハ上付着粒子数を調べ
たところ6個であった。比較として、紫外線ランプと電
場をoffにして同様に、搬送装置でウエハを搬送し出
口のウエハのウエハ上付着粒子数を調べたところ、初期
付着粒子数6個のウエハが出口で26個であった。
Results Results are shown as average values of 10 wafers. (1) When the number of particles deposited on the initial wafer was 6 and the number of particles deposited on the wafer at the exit was examined, it was 6. As a comparison, when the ultraviolet lamp and the electric field were turned off, the wafer was similarly transported by the transport device, and the number of particles deposited on the wafer at the exit was examined. As a result, there were 26 wafers with initial deposition particles at the exit. It was

【0060】(2)上記搬送途中のウエハ(初期ウエハ
上粒子数:7個)をストッカに2日間入れ、2日後取り
出して同様にウエハ上付着粒子数を調べたところ、8個
であった。比較として、上記1の搬送装置出口のウエハ
(ウエハ上付着粒子数が6個)をクラス1,000のク
リーンベンチに2日間放置し、2日後同様にウエハ上付
着粒子数を調べたところ351個であった。
(2) The number of adhering particles on the wafer was 8 when the wafers (the number of particles on the initial wafer: 7) in the above-mentioned transportation were put in the stocker for 2 days and taken out after 2 days. As a comparison, the wafer at the exit of the transfer device (1) (the number of adhered particles on the wafer is 6) was left on a clean bench of class 1,000 for 2 days, and the number of adhered particles on the wafer was examined in the same manner after 2 days. Met.

【0061】実施例8 実施例5における非メタン炭化水素を除去した空気の雰
囲気で、ウエハを搬送する場合についてウエハ上の(付
着粒子数)接触角を調べた 。 1)搬送部の条件(光電子放出による微粒子の荷電・捕
集部は搬送装置に等間隔で5個所設置) 非メタン炭化水素の除去材:シリカゲルとフッ素化合物
樹脂をバインダとした繊維状のガラス材の組合せ。 非メタン炭化水素除去材への空気流速:SV 1,00
0(h-1) ウエハ:A社製5インチウエハ ウエハの搬送方式:ロボット方式 搬送長さ:2m 紫外線ランプ:殺菌灯3W、3本 光電子放出材:AuメッキしたCu−Zn材 電場の強さ:50V/cm
Example 8 The contact angle (the number of adhered particles) on the wafer was examined in the case where the wafer was transferred in the atmosphere of air from which the non-methane hydrocarbon was removed in Example 5. 1) Conditions of the transport section (five particles are charged / collected by photoelectron emission at equal intervals in the transport system) Non-methane hydrocarbon removing material: Fibrous glass material with silica gel and fluorine compound resin as binder Combination of. Air velocity to non-methane hydrocarbon removal material: SV 1.00
0 (h -1 ) Wafer: 5-inch wafer manufactured by A. Wafer transfer method: robot method Transfer length: 2 m Ultraviolet lamp: germicidal lamp 3 W, 3 photoelectron emission materials: Cu-Zn material plated with Au Electric field strength : 50V / cm

【0062】2)ストッカ部条件 大きさ:60リットル 紫外線ランプ:殺菌灯10W、3本 光電子放出材:石英ガラスにITO50Å及びAu50
Åを被覆 電極:AuメッキしたCu−Zn(格子状) 遮光材:AuメッキしたCu−Zn板 電場の強さ:50V/cm 尚、ウエハ表面の付着粒子数は、レーザ光方式のウエハ
・ゴミ検出装置(WM−3、TOPCON社製)、また
接触角は液滴方式の接触角計(CA−D型、協和界面科
学社製)で測定した。
2) Stocker conditions Size: 60 liters Ultraviolet lamp: Sterilization lamp 10W, 3 photoelectron emitting materials: Quartz glass with ITO 50Å and Au 50
Å coating Electrode: Au-plated Cu-Zn (lattice) Light-shielding material: Au-plated Cu-Zn plate Electric field strength: 50 V / cm The number of adhered particles on the wafer surface is a laser beam type wafer / dust The contact angle was measured with a detection device (WM-3, manufactured by TOPCON), and the contact angle was measured by a droplet type contact angle meter (CA-D type, manufactured by Kyowa Interface Science Co., Ltd.).

【0063】結果 結果は10枚のウエハの平均値で示
す。 (1)初期のウエハ上付着粒子数:6、接触角:11度
のウエハを搬送装置に入れ、出口のウエハ上付着粒子数
と接触角を調べたところ、付着粒子数6個、接触角11
度であった。比較として、非メタン炭化水素を除去しな
い空気で同様に実施したところ、初期付着粒子数:6、
接触角:11度のウエハが、出口で付着粒子数:6、接
触角:16度であった。
Results Results are shown as the average value of 10 wafers. (1) An initial wafer number of adhered particles: 6, a contact angle: 11 degrees, was placed in a transfer device, and the number of adhered particles on the wafer at the exit and the contact angle were examined.
It was degree. As a comparison, when the same operation was performed with air in which non-methane hydrocarbons were not removed, the number of initial adhered particles: 6,
A wafer having a contact angle of 11 degrees had a number of adhered particles of 6 at the outlet and a contact angle of 16 degrees.

【0064】(2)上記搬送途中のウエハ(初期ウエハ
上付着粒子数:6個、接触角:11度)をストッカに2
日間入れ、2日後取り出して、同様にウエハ上付着粒子
数と接触角を調べたところ付着粒子数6個、接触角12
度であった。比較として、上記1の搬送装置出口のウエ
ハ(ウエハ上付着粒子数:6、接触角11度)をクラス
1,000のクリーンベンチに2日間放置し、2日後同
様にウエハ上付着粒子数と接触角を調べたところ、付着
粒子数398個、接触角45度であった。
(2) Two wafers (the number of particles adhered on the initial wafer: 6 and a contact angle: 11 degrees) being transferred are put in the stocker 2
It was put in for one day and taken out after two days. Similarly, the number of adhered particles and the contact angle on the wafer were examined. As a result, the number of adhered particles was 6 and the contact angle was 12
It was degree. As a comparison, the wafer at the exit of the transfer device of the above 1 (number of adhered particles on wafer: 6, contact angle: 11 degrees) was left on a clean bench of class 1,000 for 2 days, and contacted with the number of adhered particles on the wafer after 2 days. When the angles were examined, the number of adhered particles was 398 and the contact angle was 45 degrees.

【0065】[0065]

【発明の効果】本発明によれば、次のような効果を奏す
ることができる。 (1)搬送装置に少なくとも光電子放出材、紫外線及び
/又は放射線源、電極を設けることにより、 搬送空間における微粒子、例えば搬送品(例、ウエ
ハ、液晶)に同伴された微粒子や、搬送の駆動部などか
ら発生する微粒子(粒子状物質)が、荷電捕集されるの
で、搬送空間は高清浄に維持される。 短波長紫外線及び/又は放射線照射条件により、除
電作用を加えることができた。 上記により、搬送品の汚染が無くなり、歩留まりが
向上した。
According to the present invention, the following effects can be obtained. (1) By providing at least a photoelectron emitting material, an ultraviolet ray and / or a radiation source, and an electrode in the transfer device, particles in the transfer space, for example, particles entrained in a transfer product (eg, wafer, liquid crystal), or a drive unit for transfer Since the fine particles (particulate matter) generated from the above are charged and collected, the transport space is kept highly clean. The static elimination effect could be added depending on the short wavelength ultraviolet ray and / or radiation irradiation conditions. Due to the above, the contamination of the conveyed product was eliminated and the yield was improved.

【0066】(2)搬送装置に、少なくとも光電子放出
材、紫外線源及び/又は放射線源、電極を備えて成るス
トッカを一体化したことにより、 搬送品を外部にさらす(暴露する)ことなくストッ
クできた(搬送品を高清浄な状態で維持できた)。 適宜(任意)の時間後、高清浄な状態のまま次の工
程に搬送できた。 歩留まりが向上した。
(2) By integrating a stocker having at least a photoelectron emitting material, an ultraviolet ray source and / or a radiation source, and an electrode with the carrying device, the goods to be carried can be stocked without being exposed (exposed) to the outside. (Transported goods could be maintained in a highly clean state). After an appropriate (arbitrary) time, it could be conveyed to the next step in a highly clean state. Yield improved.

【0067】(3)搬送装置において、搬送品に触れる
気体中炭化水素を非メタン炭化水素を指標として、0.
2ppm以下まで除去することにより、 搬送品の接触角の増加防止ができた。 搬送品の歩留まりが向上した。 (4)1〜3において、紫外線として短波長紫外線(1
00〜150mm、例、重水素ランプ)、放射線源とし
て軟X線を用いると除塵作用に、除電作用が顕著に加わ
るので、利用分野によっては好ましい。特に、短波長紫
外線の場合、気体として窒素を用いると、効果的となる
ことから利用分野によっては好ましい。
(3) In the transfer device, the hydrocarbons in the gas which come into contact with the transferred product are set to 0.
By removing up to 2 ppm or less, it was possible to prevent an increase in the contact angle of the conveyed product. The yield of transported products has improved. (4) In 1 to 3, short wavelength ultraviolet rays (1
When using soft X-rays as a radiation source, a static elimination effect is remarkably added to the dust removal effect, which is preferable in some fields of use. In particular, in the case of short-wavelength ultraviolet light, it is preferable to use nitrogen as a gas depending on the field of use because it is effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】ストッカを備えた搬送装置の説明図。FIG. 1 is an explanatory diagram of a transfer device including a stocker.

【図2】本発明の搬送装置の断面図。FIG. 2 is a cross-sectional view of the transfer device of the present invention.

【図3】図1のストッカの断面図。FIG. 3 is a sectional view of the stocker in FIG.

【図4】本発明の他の搬送装置の断面図。FIG. 4 is a cross-sectional view of another conveyance device of the present invention.

【図5】本発明の別の搬送装置の断面図。FIG. 5 is a cross-sectional view of another conveyance device of the present invention.

【図6】本発明のもう一つの搬送装置の断面図。FIG. 6 is a cross-sectional view of another transfer device according to the present invention.

【図7】H.C.除去装置を設けたクリーンルームの概
略説明図。
7: H. C. The schematic explanatory drawing of the clean room provided with the removal device.

【図7】窒素ガスで行うH.C.除去装置を設けたクリ
ーンルームの概略説明図。
FIG. 7: H.V. performed with nitrogen gas C. The schematic explanatory drawing of the clean room provided with the removal device.

【符号の説明】[Explanation of symbols]

1:搬送装置、2:ストッカ、3,13:ウエハ、4:
駆動装置、5:微粒子、6:紫外線ランプ、7:光電子
放出材、8:電極、9:紫外線反射面、10:光電子、
11:荷電微粒子、12:透過窓、14:ウァハキャリ
ア、15:遮光材、100:クリーンルーム、101:
外気、102:粗フィルタ、103:空気調和器、10
4:HEPAフィルタ、105:空気、106:除湿
器、107:ガス吸着除去装置、108:シリカゲル、
109:フッ素化合物樹脂フィルタ、110:窒素
1: carrier device, 2: stocker, 3, 13: wafer, 4:
Driving device, 5: fine particles, 6: ultraviolet lamp, 7: photoelectron emitting material, 8: electrode, 9: ultraviolet reflecting surface, 10: photoelectron,
11: charged fine particles, 12: transmission window, 14: wafer carrier, 15: light-shielding material, 100: clean room, 101:
Outside air, 102: Coarse filter, 103: Air conditioner, 10
4: HEPA filter, 105: air, 106: dehumidifier, 107: gas adsorption / removal device, 108: silica gel,
109: Fluorine compound resin filter, 110: Nitrogen

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年1月13日[Submission date] January 13, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】ストッカを備えた搬送装置の説明図。FIG. 1 is an explanatory diagram of a transfer device including a stocker.

【図2】本発明の搬送装置の断面図。FIG. 2 is a cross-sectional view of the transfer device of the present invention.

【図3】図1のストッカの断面図。FIG. 3 is a sectional view of the stocker in FIG.

【図4】本発明の他の搬送装置の断面図。FIG. 4 is a cross-sectional view of another conveyance device of the present invention.

【図5】本発明の別の搬送装置の断面図。FIG. 5 is a cross-sectional view of another conveyance device of the present invention.

【図6】本発明のもう一つの搬送装置の断面図。FIG. 6 is a cross-sectional view of another transfer device according to the present invention.

【図7】H.C.除去装置を設けたクリーンルームの概
略説明図。
7: H. C. The schematic explanatory drawing of the clean room provided with the removal device.

【図8】窒素ガスで行うH.C.除去装置を設けたクリ
ーンルームの概略説明図。
FIG. 8 is a diagram showing an H. C. The schematic explanatory drawing of the clean room provided with the removal device.

【符号の説明】 1:搬送装置、2:ストッカ、3,13:ウエハ、4:
駆動装置、5:微粒子、6:紫外線ランプ、7:光電子
放出材、8:電極、9:紫外線反射面、10:光電子、
11:荷電微粒子、12:透過窓、14:ウァハキャリ
ア、15:遮光材、100:クリーンルーム、101:
外気、102:粗フィルタ、103:空気調和器、10
4:HEPAフィルタ、105:空気、106:除湿
器、107:ガス吸着除去装置、108:シリカゲル、
109:フッ素化合物樹脂フィルタ、110:窒素
[Explanation of Codes] 1: Transfer device, 2: Stocker, 3, 13: Wafer, 4:
Driving device, 5: fine particles, 6: ultraviolet lamp, 7: photoelectron emitting material, 8: electrode, 9: ultraviolet reflecting surface, 10: photoelectron,
11: charged fine particles, 12: transmission window, 14: wafer carrier, 15: light-shielding material, 100: clean room, 101:
Outside air, 102: Coarse filter, 103: Air conditioner, 10
4: HEPA filter, 105: air, 106: dehumidifier, 107: gas adsorption / removal device, 108: silica gel,
109: Fluorine compound resin filter, 110: Nitrogen

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 密閉可能な空間を有する搬送装置におい
て、該空間内に光電子放出材と紫外線源及び/又は放射
線源と電極とを有する気体清浄化手段を設けたことを特
徴とする搬送装置。
1. A carrier device having a hermetically sealed space, wherein a gas cleaning means having a photoelectron emitting material, an ultraviolet ray source and / or a radiation source and an electrode is provided in the space.
【請求項2】 前記密閉可能な空間の一部がストッカで
あることを特徴とする請求項1記載の搬送装置。
2. The transfer device according to claim 1, wherein a part of the sealable space is a stocker.
【請求項3】 前記密閉可能な空間内の気体は、吸着、
吸収、紫外線及び/又は放射線照射から選ばれた1種類
以上の手段を用いて浄化された気体であることを特徴と
する請求項1記載の搬送装置。
3. The gas in the sealable space is adsorbed,
The transport apparatus according to claim 1, wherein the gas is purified by one or more kinds of means selected from absorption, ultraviolet ray and / or radiation irradiation.
【請求項4】 前記密閉可能な空間内の気体が窒素であ
ることを特徴とする請求項1記載の搬送装置。
4. The transfer device according to claim 1, wherein the gas in the sealable space is nitrogen.
JP05632393A 1993-02-23 1993-02-23 Conveying device having gas cleaning means Expired - Fee Related JP3429522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05632393A JP3429522B2 (en) 1993-02-23 1993-02-23 Conveying device having gas cleaning means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05632393A JP3429522B2 (en) 1993-02-23 1993-02-23 Conveying device having gas cleaning means

Publications (2)

Publication Number Publication Date
JPH06252242A true JPH06252242A (en) 1994-09-09
JP3429522B2 JP3429522B2 (en) 2003-07-22

Family

ID=13023974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05632393A Expired - Fee Related JP3429522B2 (en) 1993-02-23 1993-02-23 Conveying device having gas cleaning means

Country Status (1)

Country Link
JP (1) JP3429522B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387333B2 (en) 2000-06-20 2002-05-14 Samsung Electronics Co., Ltd. Gas purifying system
JP2003172565A (en) * 2001-12-05 2003-06-20 Mitsubishi Electric Corp Refrigerator, and method for determining odor level of refrigerator
JP2010096678A (en) * 2008-10-17 2010-04-30 Soda Kogyo:Kk Device and method of ionization
KR102024046B1 (en) * 2018-10-28 2019-09-24 센서클라우드주식회사 Dust collecting sheet, dust collector for ambient particulate matter and the driving method thereof
KR20200047225A (en) * 2018-10-28 2020-05-07 센서클라우드주식회사 Dust collecting sheet, dust collector for ambient particulate matter and the driving method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107314923B (en) * 2017-06-28 2020-07-28 深圳市华星光电技术有限公司 Gas enrichment device and liquid crystal bubble component analysis method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387333B2 (en) 2000-06-20 2002-05-14 Samsung Electronics Co., Ltd. Gas purifying system
JP2003172565A (en) * 2001-12-05 2003-06-20 Mitsubishi Electric Corp Refrigerator, and method for determining odor level of refrigerator
JP2010096678A (en) * 2008-10-17 2010-04-30 Soda Kogyo:Kk Device and method of ionization
KR102024046B1 (en) * 2018-10-28 2019-09-24 센서클라우드주식회사 Dust collecting sheet, dust collector for ambient particulate matter and the driving method thereof
KR20200047225A (en) * 2018-10-28 2020-05-07 센서클라우드주식회사 Dust collecting sheet, dust collector for ambient particulate matter and the driving method thereof

Also Published As

Publication number Publication date
JP3429522B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
US6620385B2 (en) Method and apparatus for purifying a gas containing contaminants
EP0769322B1 (en) Method of cleaning gases with a photocatalyst
JP3830533B2 (en) Method and apparatus for cleaning gases containing pollutants
JP3693315B2 (en) Gas cleaning method and apparatus in clean room
JP3429522B2 (en) Conveying device having gas cleaning means
JP3320730B2 (en) Method and apparatus for preparing clean gas
JP2989031B2 (en) Method and apparatus for removing hydrocarbon
US20030118476A1 (en) Method and device for preventing oxidation on substrate surface
JP3460500B2 (en) Gas cleaning apparatus, method for cleaning closed space using the same, and closed space
JP3446985B2 (en) Gas cleaning method and apparatus
JP3695684B2 (en) Substrate surface cleaning method and apparatus
JP2863419B2 (en) Method and apparatus for preventing contamination of substrate or substrate surface
JP2000300936A (en) Method and apparatus for obtaining negative ion- containing clean air for removing static electricity
JP3303125B2 (en) Space cleaning material and space cleaning method using the same
JP3841196B2 (en) Method for charging particulate matter and method and apparatus for using the same
JP3981386B2 (en) Method and apparatus for preventing contamination of substrate or substrate surface
JP2722297B2 (en) Gas cleaning method and apparatus
JP2006314999A (en) Method and apparatus for separation and classification of granular matter
JP2000167435A (en) Generating method of negative ion and device therefor
JPH11285623A (en) Method and device for purifying gas
JP3346687B2 (en) Method and apparatus for preventing contamination of substrate or substrate surface
JPH1057839A (en) Method and device for cleaning gas
JPH10211419A (en) Space cleaning material and method for cleaning space using space cleaning material
JP3346677B2 (en) Method and apparatus for preventing contamination of substrate or substrate surface
JP3759062B2 (en) Clean gas adjustment device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees