JP2010096678A - Device and method of ionization - Google Patents

Device and method of ionization Download PDF

Info

Publication number
JP2010096678A
JP2010096678A JP2008269019A JP2008269019A JP2010096678A JP 2010096678 A JP2010096678 A JP 2010096678A JP 2008269019 A JP2008269019 A JP 2008269019A JP 2008269019 A JP2008269019 A JP 2008269019A JP 2010096678 A JP2010096678 A JP 2010096678A
Authority
JP
Japan
Prior art keywords
metal
ionization
thin film
tube
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2008269019A
Other languages
Japanese (ja)
Inventor
Mamoru Okubo
衛 大久保
Yoshinori Hosokawa
好則 細川
Takaomi Matsutani
貴臣 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SODA KOGYO KK
X RAY PREC Inc
X-RAY PRECISION Inc
Original Assignee
SODA KOGYO KK
X RAY PREC Inc
X-RAY PRECISION Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SODA KOGYO KK, X RAY PREC Inc, X-RAY PRECISION Inc filed Critical SODA KOGYO KK
Priority to JP2008269019A priority Critical patent/JP2010096678A/en
Publication of JP2010096678A publication Critical patent/JP2010096678A/en
Ceased legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and a method of ionization achieving efficient, stable and safe ionization. <P>SOLUTION: The ionization device includes an X-ray tube 1 and a metal thin film 2a disposed in a contact state with a gas flowing in a gas passage, and is configured so that X-ray beams 5 from the X-ray tube 1 irradiate the metal thin film 2a and thus photoelectrons are emitted in the gas passage. Because the ionization device adopts a configuration in which electrons generated when X-ray beams irradiate the metal thin film of a metal body are emitted in the gas passage and accelerated by an electric field, the electrons can be in contact with molecules flowing in the gas passage in a limited space (a space to form an ionization chamber) formed by the gas passage, and thus stable ionization are easily achieved by appropriately setting the cross-sectional area, cross-sectional shape, etc. of the gas passage. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、例えば大気圧下で用いられるイオン化装置及び方法に関する。   The present invention relates to an ionization apparatus and method used, for example, under atmospheric pressure.

従来のイオン化装置として、低エネルギーのX線を気体に照射し光イオン化によってイオン化させるように構成されたものがある。   As a conventional ionization apparatus, there is an apparatus configured to irradiate a gas with low energy X-rays and perform ionization by photoionization.

しかし、上記のイオン化装置では、広範囲の気体をイオン化することに適しているが局所的で小さい体積部分のイオン化を行うには効率が悪い。   However, the ionization apparatus described above is suitable for ionizing a wide range of gases, but is inefficient for ionizing a local and small volume portion.

本発明は上述の実情に鑑みてなされたもので、その目的は、高効率で安定性が良く安全なイオン化を実現可能なイオン化装置及び方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an ionization apparatus and method capable of realizing highly efficient, stable and safe ionization.

上記目的を達成するために、本発明に係るイオン化装置は、X線管と、ガス流路を流れるガスに接触する状態で設けられた金属薄膜とを備え、前記金属薄膜に前記X線管からのX線を照射して前記ガス流路中に光電子を放出するように構成されている(請求項1)。   In order to achieve the above object, an ionization apparatus according to the present invention includes an X-ray tube and a metal thin film provided in contact with a gas flowing in a gas flow path, and the metal thin film is formed from the X-ray tube. X-rays are emitted to emit photoelectrons into the gas flow path (Claim 1).

請求項1に係る発明において、前記金属薄膜が筒状の金属管の内側面に設けられ、この金属管の内側の空間が前記ガス流路となっており、また、この金属管の側壁に、前記X線管からのX線を前記金属薄膜に照射させるためのX線透過窓部が設けられていてもよい(請求項2)。前記X線透過窓部としては、例えばマイカ(雲母)製のX線透過窓が採用される。   In the invention according to claim 1, the metal thin film is provided on the inner surface of a cylindrical metal tube, the space inside the metal tube is the gas flow path, and the side wall of the metal tube An X-ray transmission window for irradiating the metal thin film with X-rays from the X-ray tube may be provided (Claim 2). As the X-ray transmission window portion, for example, an X-ray transmission window made of mica (mica) is employed.

この場合、前記金属管を非接触で挿通する金属線(直径が50μm程度かあるいはそれ以下の金属細線が好ましい)と、前記金属管及び前記金属線間に光電子を加速させるための電圧(数kV程度)を印加する印加手段とを備えており、電界(高電界)により前記金属薄膜で発生した光電子を加速カスケード状に増倍する手段を持つのがより望ましい(請求項3)。   In this case, a metal wire (a metal thin wire having a diameter of about 50 μm or less is preferable) that passes through the metal tube in a non-contact manner, and a voltage (several kV) for accelerating photoelectrons between the metal tube and the metal wire. It is more desirable to have a means for multiplying photoelectrons generated in the metal thin film by an electric field (high electric field) in an accelerated cascade.

上記目的を達成するために、本発明に係るイオン化方法は、請求項1〜3の何れかに記載のイオン化装置によって前記ガスをイオン化する(請求項4)。   In order to achieve the above object, an ionization method according to the present invention ionizes the gas by the ionization apparatus according to any one of claims 1 to 3 (claim 4).

請求項1〜4に係る発明では、高効率で安定性の良いイオン化を実現可能なイオン化装置及び方法が得られる。   According to the first to fourth aspects of the present invention, an ionization apparatus and method capable of realizing highly efficient and stable ionization can be obtained.

すなわち、請求項1に係る発明では、金属体の金属薄膜にX線を照射したときに生じる電子をガス流路中に放出し、電界加速する構成を採用しているので、ガス流路によって形成される限定された空間(イオン化室をなす空間)内において電子とガス流路を流れる分子とを接触させることができ、ガス流路の流路断面積や断面形状等を適宜に設定することにより、安定したイオン化を容易に実現することができる。   That is, in the invention according to claim 1, since a configuration is adopted in which electrons generated when X-rays are applied to the metal thin film of the metal body are emitted into the gas flow path and the electric field is accelerated. In a limited space (a space forming an ionization chamber), and electrons and molecules flowing through the gas flow channel can be brought into contact with each other by appropriately setting the flow channel cross-sectional area and cross-sectional shape of the gas flow channel. Stable ionization can be easily realized.

しかも、請求項1に係る発明では、構成がシンプルであり、コンパクト化や製造コストの低減化もが達成される。   Moreover, in the invention according to claim 1, the configuration is simple, and downsizing and reduction in manufacturing cost can be achieved.

請求項2に係る発明では、金属薄膜が内側面に設けられた金属管によってガス流路が構成されているので、構成を極めてシンプルにすることができる。この効果に加えて、請求項3に係る発明は、金属管内において生じた電子が加速電圧によって加速され、金属管を円筒状にしておけば、金属線と(円筒状の金属管からなる)円筒電極とによる集中電界(高電界)によって電子カスケードを生じ、電子衝撃によるイオン化効率を高効率化することができる。   In the invention which concerns on Claim 2, since a gas flow path is comprised by the metal pipe | tube with which the metal thin film was provided in the inner surface, a structure can be made very simple. In addition to this effect, the invention according to claim 3 is characterized in that the electrons generated in the metal tube are accelerated by the acceleration voltage, and the metal tube and the cylinder (consisting of a cylindrical metal tube) are made cylindrical. An electron cascade is generated by a concentrated electric field (high electric field) caused by the electrodes, and ionization efficiency by electron impact can be increased.

請求項4に係る発明では、上記の各効果が得られる。   In the invention according to claim 4, the above-described effects can be obtained.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の第1の実施の形態に係るイオン化装置を概略的に示す説明図であり、この図に示すように、本形態に係るイオン化装置は、X線管1と、金属管2と、金属管2を非接触で挿通する金属線(ワイヤ)3と、金属管2及び金属線3にわたって電圧を印加する印加手段4とを備えている。   FIG. 1 is an explanatory view schematically showing an ionization apparatus according to a first embodiment of the present invention. As shown in this figure, the ionization apparatus according to this embodiment includes an X-ray tube 1 and a metal tube 2. And a metal wire (wire) 3 that is inserted through the metal tube 2 in a non-contact manner, and an application means 4 that applies a voltage across the metal tube 2 and the metal wire 3.

X線管1は、窓部1aを有する真空容器内に、熱電子源とターゲット部1bとが設けられた公知の構成を有するものであり、さらに、熱電子発生用電源1f、熱電子加速電源(〜6kV程度)1cを備えている。そして、本形態におけるX線管1は、真空容器内において、電子源からの電子を受けてターゲット部が軟X線(例えば2〜4keV程度またはそれ未満の量子エネルギを有するX線)5を発生し、この軟X線5は窓部1aから外部に向かうように構成されているものであり、従ってX線管1は軟X線管である。   The X-ray tube 1 has a known configuration in which a thermoelectron source and a target portion 1b are provided in a vacuum vessel having a window portion 1a, and further includes a thermoelectron generating power source 1f, a thermoelectron accelerating power source. (About 6 kV) 1c. The X-ray tube 1 in this embodiment generates soft X-rays (for example, X-rays having a quantum energy of about 2 to 4 keV or less) 5 by receiving electrons from an electron source in a vacuum vessel. The soft X-ray 5 is configured to go outward from the window portion 1a. Therefore, the X-ray tube 1 is a soft X-ray tube.

ここで、窓部1aは、X線の透過性に優れ十分な強度を有する材料(本形態ではベリリウム(Be))からなる薄膜によって構成された窓である。   Here, the window portion 1a is a window formed of a thin film made of a material (beryllium (Be) in this embodiment) having excellent X-ray transmission and sufficient strength.

また、X線管1の前記熱電子源は、フィラメント1eと、このフィラメントから放出された電子を集束し加速するための電極1dとを有している。尚、このようにフィラメントを有する電子源に代えて、例えば冷陰極を有する電子源を用いることもできる。   The thermoelectron source of the X-ray tube 1 includes a filament 1e and an electrode 1d for converging and accelerating electrons emitted from the filament. Note that an electron source having a cold cathode, for example, may be used instead of the electron source having a filament.

また、X線管1の前記ターゲット部1bは、電子の衝突により軟X線5を放出するチタン(Ti)からなるターゲットと、このターゲットに電位を付与する電極とを有している。尚、ターゲットは、軟X線領域で特性X線を発生する他の金属からなるものであってもよい。   The target portion 1b of the X-ray tube 1 has a target made of titanium (Ti) that emits soft X-rays 5 by electron collision, and an electrode that applies a potential to the target. The target may be made of another metal that generates characteristic X-rays in the soft X-ray region.

金属管2は、筒状(図示例では円筒状)のステンレス製であり、この金属管2の内側の空間はガス流路となっている。また、この金属管2の内側面には、ガス流路を流れるガス(例えば試料ガス)が接触し光電子放出が多くなるように例えば重金属からなる金属薄膜2aが、適宜の手段(例えば蒸着)により付与される。さらに、この金属管2の側壁には、X線管1の窓部1aが臨み、このX線管1からの軟X線5を金属薄膜2aに照射させるためのマイカ(雲母)製のX線透過窓部2bが設けられている。   The metal tube 2 is made of a cylindrical (cylindrical in the illustrated example) stainless steel, and the space inside the metal tube 2 is a gas flow path. In addition, a metal thin film 2a made of, for example, heavy metal is attached to the inner side surface of the metal tube 2 by an appropriate means (for example, vapor deposition) so that a gas (for example, a sample gas) flowing through the gas flow channel is in contact with the inner surface. Is granted. Furthermore, a window portion 1a of the X-ray tube 1 faces the side wall of the metal tube 2, and X-rays made of mica (mica) for irradiating the metal thin film 2a with soft X-rays 5 from the X-ray tube 1 A transmissive window portion 2b is provided.

このX線透過窓部2bは、金属管2の側壁に設けられた窓でありマイカ(雲母)製で厚み数μm程度のX線減衰の少ないものである。これにより金属管2は閉塞されたガス流路となる。尚、X線透過窓部2bを窓とせずに単なる開口とし、この開口に前記窓部1aを密閉接続して、軟X線5を直接金属管2内(金属薄膜2a)に照射する態様としてもよい。   The X-ray transmissive window portion 2b is a window provided on the side wall of the metal tube 2 and is made of mica (mica) and has a small X-ray attenuation of about several μm. As a result, the metal pipe 2 becomes a closed gas flow path. The X-ray transmission window 2b is not a window, but a simple opening. The window 1a is hermetically connected to the opening, and the soft X-ray 5 is directly irradiated into the metal tube 2 (metal thin film 2a). Also good.

そして、筒状の金属管2の中心軸をほぼ通るように金属線3(例えばタングステンからなる直径50μm程度の金属細線)が配置され、この金属線3と金属管2とにわたって電位差を付与するために印加手段4が設けられている。   A metal wire 3 (for example, a metal thin wire made of tungsten having a diameter of about 50 μm) is disposed so as to pass substantially through the central axis of the cylindrical metal tube 2, and a potential difference is applied across the metal wire 3 and the metal tube 2. The application means 4 is provided in FIG.

次に、第1の実施の形態に係るイオン化方法の説明を兼ねて、上記構成を有するイオン化装置の作動について説明する。   Next, the operation of the ionization apparatus having the above-described configuration will be described together with the description of the ionization method according to the first embodiment.

まず、軟X線5が、X線管1の窓部1aから例えば150°程度の広がり角度を持って射出され、X線透過窓部2bから金属管2内に至り、金属薄膜2aに照射される。   First, soft X-rays 5 are emitted from the window portion 1a of the X-ray tube 1 with a spread angle of, for example, about 150 °, reach the inside of the metal tube 2 from the X-ray transmission window portion 2b, and are irradiated onto the metal thin film 2a. The

そして、この照射により、金属薄膜2aから光電子が金属管2内(すなわちガス流路中)に放出され、金属線3に向かって加速される。すなわち、印加手段4による金属管2と金属線3とにわたる電圧の印加は、金属管2から放出された電子が金属線3に向かって加速するようになされている。   By this irradiation, photoelectrons are emitted from the metal thin film 2 a into the metal tube 2 (that is, in the gas flow path) and accelerated toward the metal wire 3. That is, the application of voltage across the metal tube 2 and the metal wire 3 by the applying means 4 is such that electrons emitted from the metal tube 2 are accelerated toward the metal wire 3.

さらに、中心部電極たる金属線3に細線を採用しガス流路中の電界強度を十分大きくすることにより電子カスケードにより電子の増倍作用が期待できる。これにより、高効率のイオン化が達成される。   Furthermore, an electron multiplication effect can be expected by the electron cascade by adopting a thin wire for the metal wire 3 as the central electrode and sufficiently increasing the electric field strength in the gas flow path. Thereby, highly efficient ionization is achieved.

従って、金属管2の内側のガス流路を流れるガス中のガス分子(例えば試料分子)は前記電子によってイオン化されるのであり、金属管2内という限定された空間内でガス分子と電子とを接触させることができるので、高効率で安定性の良いイオン化が達成される。   Therefore, gas molecules (for example, sample molecules) in the gas flowing through the gas flow path inside the metal tube 2 are ionized by the electrons, and the gas molecules and electrons are separated in a limited space in the metal tube 2. Since they can be contacted, highly efficient and stable ionization is achieved.

さらに、軟X線5は金属薄膜2aに到達するまでの間にも気体ガスに衝突して光イオン化作用を及ぼすため、照射された軟X線5の利用効率が高い。   Furthermore, since the soft X-rays 5 collide with the gas gas before reaching the metal thin film 2a and exert a photoionization effect, the utilization efficiency of the irradiated soft X-rays 5 is high.

本発明の一実施の形態に係るイオン化装置を概略的に示す説明図である。It is explanatory drawing which shows schematically the ionization apparatus which concerns on one embodiment of this invention.

符号の説明Explanation of symbols

1 X線管
2 金属管
2a 金属薄膜
3 金属線
4 印加手段
5 軟X線
1 X-ray tube 2 Metal tube 2a Metal thin film 3 Metal wire 4 Application means 5 Soft X-ray

Claims (4)

X線管と、ガス流路を流れるガスに接触する状態で設けられた金属薄膜とを備え、前記金属薄膜に前記X線管からのX線を照射して前記ガス流路中に光電子を放出するように構成されたイオン化装置。   An X-ray tube and a metal thin film provided in contact with the gas flowing through the gas flow path are provided, and the metal thin film is irradiated with X-rays from the X-ray tube to emit photoelectrons into the gas flow path. An ionizer configured to: 前記金属薄膜が筒状の金属管の内側面に設けられ、この金属管の内側の空間が前記ガス流路となっており、また、この金属管の側壁に、前記X線管からのX線を前記金属薄膜に照射させるためのX線透過窓部が設けられている請求項1に記載のイオン化装置。   The metal thin film is provided on an inner surface of a cylindrical metal tube, and a space inside the metal tube serves as the gas flow path, and an X-ray from the X-ray tube is formed on a side wall of the metal tube. The ionization apparatus of Claim 1 with which the X-ray transmissive window part for making the said metal thin film irradiate is provided. 前記金属管を非接触で挿通する金属線と、前記金属管及び前記金属線にわたって光電子加速電圧を印加する印加手段を備え、電界によって前記光電子を加速し、カスケード電子を発生させるようにした請求項2に記載のイオン化装置。   A metal wire that is inserted through the metal tube in a non-contact manner, and an application unit that applies a photoelectron acceleration voltage across the metal tube and the metal wire, and the photoelectrons are accelerated by an electric field to generate cascade electrons. 2. The ionization apparatus according to 2. 請求項1〜3の何れかに記載のイオン化装置によって前記ガスをイオン化するイオン化方法。   An ionization method in which the gas is ionized by the ionization apparatus according to claim 1.
JP2008269019A 2008-10-17 2008-10-17 Device and method of ionization Ceased JP2010096678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008269019A JP2010096678A (en) 2008-10-17 2008-10-17 Device and method of ionization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008269019A JP2010096678A (en) 2008-10-17 2008-10-17 Device and method of ionization

Publications (1)

Publication Number Publication Date
JP2010096678A true JP2010096678A (en) 2010-04-30

Family

ID=42258464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008269019A Ceased JP2010096678A (en) 2008-10-17 2008-10-17 Device and method of ionization

Country Status (1)

Country Link
JP (1) JP2010096678A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252242A (en) * 1993-02-23 1994-09-09 Ebara Infilco Co Ltd Transfer apparatus including gas purifying means
JP2004053298A (en) * 2002-07-17 2004-02-19 Hamamatsu Photonics Kk Aerosol particle charging device
JP2007101298A (en) * 2005-10-03 2007-04-19 Rigaku Industrial Co Gas flow type proportional counter for x-ray, x-ray analysis device having it, and method for using gas flow type proportional counter for x-ray
JP2008077980A (en) * 2006-09-21 2008-04-03 Hamamatsu Photonics Kk Ionic mobility meter and ionic mobility measuring method
JP2008084656A (en) * 2006-09-27 2008-04-10 Kyoto Univ X-ray irradiation type ionizer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252242A (en) * 1993-02-23 1994-09-09 Ebara Infilco Co Ltd Transfer apparatus including gas purifying means
JP2004053298A (en) * 2002-07-17 2004-02-19 Hamamatsu Photonics Kk Aerosol particle charging device
JP2007101298A (en) * 2005-10-03 2007-04-19 Rigaku Industrial Co Gas flow type proportional counter for x-ray, x-ray analysis device having it, and method for using gas flow type proportional counter for x-ray
JP2008077980A (en) * 2006-09-21 2008-04-03 Hamamatsu Photonics Kk Ionic mobility meter and ionic mobility measuring method
JP2008084656A (en) * 2006-09-27 2008-04-10 Kyoto Univ X-ray irradiation type ionizer

Similar Documents

Publication Publication Date Title
US20030002627A1 (en) Cold emitter x-ray tube incorporating a nanostructured carbon film electron emitter
WO2013133169A1 (en) X-ray tube
JP2010186694A (en) X-ray source, x-ray generation method, and method for manufacturing x-ray source
JP5787626B2 (en) X-ray tube
KR101439208B1 (en) X-ray tube structure
WO2011034086A1 (en) Electron gun and vacuum processing device
KR101844537B1 (en) X-ray tube for improving electron focusing
JPH04277500A (en) Source of high speed atomic ray
JP4767646B2 (en) X-ray tube
JP2010096678A (en) Device and method of ionization
JP5763032B2 (en) X-ray tube
TWI730553B (en) Electron gun, X-ray generating device and X-ray imaging device
RU2459307C1 (en) Pulsed x-ray tube
US9324536B2 (en) Dual-energy X-ray tubes
JP3341397B2 (en) Ozone generator
JPH0451929B2 (en)
JPS6276144A (en) Beam plasma type ion gun
Kurilenkov et al. On Release and Trapping of the K α–Fe Line by the Interelectrode Medium of Nanosecond Vacuum Discharge
JP2019145451A (en) X-ray generation device
RU2645749C2 (en) Microfocus x-ray tube
JP2023142088A (en) Vacuum device
JP2008260036A (en) Surface modification method and apparatus by electron beam irradiation
CN114628226A (en) Compound light ionization source device of molecular beam mass spectrum
KR101537520B1 (en) X-ray tube structure for multidirectional ionzing
JPH06338279A (en) Electron gun

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20130925