JP2008260036A - Surface modification method and apparatus by electron beam irradiation - Google Patents

Surface modification method and apparatus by electron beam irradiation Download PDF

Info

Publication number
JP2008260036A
JP2008260036A JP2007103916A JP2007103916A JP2008260036A JP 2008260036 A JP2008260036 A JP 2008260036A JP 2007103916 A JP2007103916 A JP 2007103916A JP 2007103916 A JP2007103916 A JP 2007103916A JP 2008260036 A JP2008260036 A JP 2008260036A
Authority
JP
Japan
Prior art keywords
electron beam
irradiation
surface modification
irradiated
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007103916A
Other languages
Japanese (ja)
Inventor
Tadami Izumi
忠美 和泉
Daiji Matsuki
大二 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP2007103916A priority Critical patent/JP2008260036A/en
Publication of JP2008260036A publication Critical patent/JP2008260036A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface modification method and apparatus converting a low pressure ionized gas in a housing into plasma and irradiating a body to be irradiated with an electron beam from a cathode electrode, the method and apparatus being adapted to modify the inside surface of a cavity or a hole in the body to be irradiated by electron beam irradiation. <P>SOLUTION: When the inside surface of the cavity or the hole in the body to be irradiated is slightly angled relative to or parallel with the electron beam irradiation axis, a permanent magnet or an electromagnet is arranged in the cavity so that a magnetic flux goes along a surface to be irradiated, thereby deflecting the electron beam axis, making irradiation on the inside surface possible and materializing the modification thereof. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、各種金属部品、金型、工具、電気接続部品、医療用金属部品、金属装飾品などの表面を鏡面化、清浄化、アモルファス化、耐食化するために電子ビームを表面に照射して表面改質を行う技術に属する。 This invention irradiates the surface with an electron beam in order to make the surface of various metal parts, molds, tools, electrical connection parts, medical metal parts, metal ornaments, etc. mirror-like, cleaned, amorphized, and corrosion-resistant. Belongs to the technology for surface modification.

この発明技術は、電子ビームによる物質表面の改質装置、詳しくはLEHCEB( Low Energy High Current Electron Beam [非特許文献1] ) の電子銃 を用いる表面改質装置を改良し、応用範囲を拡張するものである。 従来の事例としては高電圧電極の表面平滑化のために開発されたもので、断面積10cm以上、低エネルギ10〜50kV、高電流10〜30kA、パルス巾数マイクロ秒の電子ビームパルスを、金属表面に照射して表面改質を施すもので、装置は電離気体plasmaが封入されて電子ビームの断面内密度を均一に保っているので、PFD(Plasma Filled Diode)電子銃と呼び特徴づけることもある。 また、plasma生成のグロー放電を安定にするため環状の放電電極が用いられ、電子銃の外周部には銃内に磁場を形成するソレノイドが設けられる。 The technology of the present invention improves a surface modification device using an electron beam of a material surface modification device by an electron beam, more specifically, a LEHCEB (Low Energy High Current Electron Beam [Non-Patent Document 1]), and expands the application range. Is. As a conventional example, it was developed for smoothing the surface of a high-voltage electrode. An electron beam pulse having a cross-sectional area of 10 cm 2 or more, a low energy of 10 to 50 kV, a high current of 10 to 30 kA, and a pulse width of several microseconds is used. The surface is modified by irradiating the metal surface, and the device is characterized as a PFD (plasma filled diode) electron gun because it contains ionized gas plasma and keeps the electron beam cross-section density uniform. There is also. In addition, an annular discharge electrode is used to stabilize plasma-generated glow discharge, and a solenoid that forms a magnetic field in the gun is provided on the outer periphery of the electron gun.

この装置の作用は従来の真空電子銃による高密度の電子ビームではなく、プラズマ化した電離ガスの中を通過する低いエネルギで広い面積に分散する電子ビームを用いるので、物質に照射されたとき深く加工作用することがなく、広い面積に一様な作用を与えるので表面の改質に利用される。ここでいう改質とは、物質表面に付着する異物の除去、浄化、表面あらさの改善、微視的凹凸を平坦化して鏡面となすこと、急激な加熱と冷却による金属のアモルファス化、耐食化などである。 The function of this device is not a high-density electron beam by a conventional vacuum electron gun, but an electron beam dispersed in a wide area with low energy that passes through plasma ionized gas. It is used for surface modification because it has no processing action and gives a uniform action over a wide area. The term “reformation” as used herein refers to removal and purification of foreign substances adhering to the material surface, improvement of surface roughness, flattening of microscopic irregularities to form a mirror surface, amorphization of metal by rapid heating and cooling, and corrosion resistance. Etc.

上述のように、この装置は一種の電子銃であるが真空室ではなく、0.1Pa以下の低圧電離ガスを充填しプラズマ化しているので、プラズマ電子銃ともよばれている。このプラズマを安定に保つために反射放電(Reflected Discharge)方式という円環状のプラズマ陽極が設けられ、外部にソレノイドが設けられて電子銃内空間に磁場を作り電子ビームの収縮(pinch)を防いでいる。 As described above, this apparatus is a kind of electron gun, but it is not a vacuum chamber, but is filled with a low piezoelectric separation gas of 0.1 Pa or less and is turned into plasma, so it is also called a plasma electron gun. In order to keep this plasma stable, an annular plasma anode called a reflected discharge method is provided, and a solenoid is provided outside to create a magnetic field in the space inside the electron gun to prevent electron beam contraction (pinch). Yes.

この装置の電子ビーム発射機構は、電界放射カソードとして、面積数10cmの円板状の金属または黒鉛陰極が用いられ、被照射体がターゲット陽極になる。両極間に10〜40kVの高圧コンデンサ放電を発生させて数μs〜0.1μs程度の電子ビームパルスを放射させる。プラズマ発生回路は、前記の環状陽極と電子銃ハウジングとの間にコンデンサ充放電による放電を作り電離ガスをプラズマ化する。プラズマ保持時間は100〜数100μsで、その時間内に前記の電子ビーム放射が行われる。プラズマ保持時間の前後を通じ電子銃内に磁場をつくるための前記ソレノイドに励磁する電源として、別のコンデンサ充放電回路が備えられている。 In the electron beam emission mechanism of this apparatus, a disk-like metal or graphite cathode having an area of several tens of cm 2 is used as the field emission cathode, and the irradiated object becomes the target anode. A high-voltage capacitor discharge of 10 to 40 kV is generated between both electrodes to emit an electron beam pulse of about several μs to 0.1 μs. The plasma generation circuit generates a discharge by charging / discharging the capacitor between the annular anode and the electron gun housing to turn the ionized gas into plasma. The plasma holding time is 100 to several hundreds μs, and the electron beam emission is performed within that time. Another capacitor charge / discharge circuit is provided as a power source for exciting the solenoid for creating a magnetic field in the electron gun before and after the plasma holding time.

表面改質を施す被照射体をターゲットとしてテーブルに設置し、電子銃内を一旦真空にしてから電離ガス、たとえばArガスを低圧に充填し、磁場形成、プラズマ形成、電子ビーム発射の順序で作動させると被照射体の表面が改質される。照射の回数は被照射体の条件によって変る。 The target to be surface-modified is placed on the table as a target, the inside of the electron gun is evacuated, then ionized gas, for example, Ar gas is filled at a low pressure, and the magnetic field formation, plasma formation, and electron beam firing are performed in this order. As a result, the surface of the irradiated object is modified. The number of times of irradiation varies depending on the condition of the irradiated object.

図7は、前述の従来公知のLEHCEB表面改質装置の全体構成図で、ハウジング4A、環状電極2A、カソード1A、励磁ソレノイド5A、テーブル6A、及び電子ビームのターゲット被照射体3Aを備えた電子ビーム照射表面改質装置である。被照射体3A、テーブル6A、及びハウジング4Aは同電位であり、カソード1A、環状電極2Aはそれぞれ絶縁されて独立している。また図示していないが、テーブル6Aは前後左右、上下の運動機構が適宜備えられている。
電子ビームはカソード端面から発してターゲット3Aに直進して達し、電子ビーム断面積はカソード端面積とほぼ等しくなっている。
FIG. 7 is an overall configuration diagram of the above-described conventionally known LEHCEB surface reforming apparatus. An electron including a housing 4A, an annular electrode 2A, a cathode 1A, an excitation solenoid 5A, a table 6A, and an electron beam target irradiated body 3A. This is a beam irradiation surface modification device. The irradiated body 3A, the table 6A, and the housing 4A are at the same potential, and the cathode 1A and the annular electrode 2A are insulated and independent. Although not shown, the table 6A is appropriately provided with front and rear, right and left movement mechanisms.
The electron beam is emitted from the cathode end face and travels straight to reach the target 3A, and the electron beam cross-sectional area is substantially equal to the cathode end area.

PROSKUROVSKY、D.I.外3、Use of Low-energy, High-current electron beam of surface treatment of metals、;surface and Coatings Technology 96(1997)、117−122PROSKUROVSKY, D.I. et al. 3, Use of Low-energy, High-current electron beam of surface treatment of metals, Surface and Coatings Technology 96 (1997), 117-122 G.E.OZUR 外3、Production and application of low-energy、high-current electron beams ;Laser and Paricle Beams(2003)、21、157−174 Cambridge University PressG.E.OZUR outside 3, Production and application of low-energy, high-current electron beams; Laser and Paricle Beams (2003), 21, 157-174 Cambridge University Press 特開2006−187799号公報JP 2006-187799 A 特願2006−290970号特許出願Patent application for Japanese Patent Application No. 2006-290970

上述の従来技術及び装置では、電子ビームはターゲットに直進して衝突するので、被照射面が電子ビームに直進軸に平行であるような場合には表面改質が行われないことになる。 In the above-described prior art and apparatus, the electron beam travels straight on and collides with the target, so that surface modification is not performed when the irradiated surface is parallel to the electron beam.

既に前述したように、この装置において改質処理するための電子ビームは、予め電子銃内の低圧電離気体をプラズマ化し外部ソレノイドにより銃中心に集めた上でカソードに高電圧のパルスを印加して発生させる。カソードから電子ビームパルスが被照射体に向けて直進して射突し、表面が熱作用で表面改質が行われるのであるが、電子ビームの飛行方向に平行な面の改質は不可能であり、またわずかの傾斜角を持つ傾斜面には改質効率が低い。   As described above, the electron beam for the modification treatment in this apparatus is obtained by applying a high-voltage pulse to the cathode after previously converting the low piezoelectric gas in the electron gun into plasma and collecting it at the gun center by an external solenoid. generate. The electron beam pulse travels straight from the cathode toward the irradiated object, and the surface is modified by thermal action. However, it is impossible to modify the surface parallel to the flight direction of the electron beam. Moreover, the reforming efficiency is low for the inclined surface having a slight inclination angle.

そこでこの発明は、被照射体のキャビティまたは孔の内面が電子ビームの照射飛行軸と平行またはわずかな傾斜角であるときに、磁石をキャビティ内に配置して電子ビーム軸を偏向させ、前記内面の改質を可能にすることにある。   Accordingly, the present invention provides a magnet disposed in the cavity to deflect the electron beam axis when the inner surface of the cavity or hole of the irradiated object is parallel to or slightly inclined with respect to the electron beam irradiation flight axis, This is to make it possible to reform the material.

この発明は、直進する電子ビームを被照射体のキャビティ、または孔に進入させた後に、該キャビティ内側面に沿って配置した磁石の磁力線の作用により、電子ビームの飛行方向を偏向させてキャビティ内側面への照射を可能にするものである。前記磁石とは、電子ビームパルスの飛行軸に対して直交する磁力線を発するように着磁された永久磁石もしくは電磁石をいう。 In the present invention, a linear electron beam is made to enter the cavity or hole of the irradiated object, and then the flight direction of the electron beam is deflected by the action of the magnetic field lines of the magnet disposed along the inner surface of the cavity. It enables irradiation to the side. The magnet refers to a permanent magnet or an electromagnet that is magnetized so as to generate a magnetic field line perpendicular to the flight axis of the electron beam pulse.

この発明は、カソードから発射された電子ビームの飛行軸に対して直交する磁力線を作用させると、飛行軸がローレンツの力の作用に従がって偏向する原理を利用するものである。 カソードからプラズマ空間に発射される電子ビームは、電子銃外部に設けられたプラズマ保持のためのソレノイドによる磁力線により膨張拡散が抑えられ、筒状になって被照射体の内部にほぼ直進する。 The present invention utilizes the principle that when a magnetic field line perpendicular to the flight axis of the electron beam emitted from the cathode is applied, the flight axis is deflected according to the Lorentz force. The electron beam emitted from the cathode to the plasma space is prevented from expanding and diffusing by the magnetic lines of force provided by the solenoid for holding the plasma provided outside the electron gun, and becomes almost cylindrical and travels straight into the irradiated body.

このとき図3及び図4に示すように、被照射体の中に永久磁石を配置して図3を上から見た図4のように前記ソレノイドの磁力線とは別の、電子ビームの照射飛行軸と交叉、好ましくは直交する偏向磁力線4を存在させれば、電子ビームの飛行方向を被照射体の内側面に向けることが可能になる。図3及び図4は永久磁石を用いた場合であり、特に、詳しくは図示しないが、電磁石2’に置換えることもできる。 At this time, as shown in FIGS. 3 and 4, a permanent magnet is arranged in the irradiated object, and the electron beam irradiation flight is different from the magnetic field lines of the solenoid as shown in FIG. 4 when FIG. 3 is viewed from above. If there exists a deflection magnetic force line 4 crossing the axis, preferably orthogonal, the flight direction of the electron beam can be directed to the inner surface of the irradiated object. 3 and 4 show a case where a permanent magnet is used, and in particular, although not shown in detail, it can be replaced by an electromagnet 2 '.

図3及び図4において1は被照射体、2は永久磁石、3は電子ビーム、3‘は黒丸で電子を示し紙面の方向に飛行しているものとし、磁力線4の作用の結果 →印の方向にローレンツの力を受けて偏向する。   3 and 4, 1 is an object to be irradiated, 2 is a permanent magnet, 3 is an electron beam, 3 ′ is a black circle and represents an electron and is flying in the direction of the paper surface. Deflection in the direction under the Lorentz force.

また、図4のように一つの永久磁石2の場合には被照射体1の片側約半分101が照射を受け反対側の面102には照射が行われない。 Further, as shown in FIG. 4, in the case of one permanent magnet 2, about half 101 on one side of the irradiated body 1 is irradiated and the surface 102 on the opposite side is not irradiated.

このとき、前記永久磁石2の磁力線4は、元の電子ビーム軸3と直交する面内で被改質面に沿った方向にとるべきであるから、筒状の内壁を全周にわたって表面改質せんとするときは、図5のように複数の永久磁石201、202を組み合わせることによって、被照射体1の内面の両側を照射することが可能になる。 At this time, the magnetic force lines 4 of the permanent magnet 2 should be in a direction along the surface to be reformed in a plane orthogonal to the original electron beam axis 3, so that the cylindrical inner wall is surface-modified over the entire circumference. When it is necessary to irradiate, it is possible to irradiate both sides of the inner surface of the irradiated object 1 by combining a plurality of permanent magnets 201 and 202 as shown in FIG.

また、被照射体1の形状大きさによっては、内側面のすべてを表面改質するために、永久磁石2を軸方向と旋回方向に移動させる手段を設ける。
さらに、電子ビーム3に曝される永久磁石2自体が、改質エネルギを吸収してしまうことを防止するために、永久磁石2は硝子あるいはセラミックスのような絶縁物16による被覆を施せば、更に、効率的な表面改質が可能になる。
Further, depending on the shape and size of the irradiated object 1, means for moving the permanent magnet 2 in the axial direction and the turning direction are provided in order to modify the entire inner surface.
Further, in order to prevent the permanent magnet 2 itself exposed to the electron beam 3 from absorbing the reforming energy, if the permanent magnet 2 is coated with an insulator 16 such as glass or ceramics, the permanent magnet 2 is further improved. Efficient surface modification becomes possible.

図1は、この発明の基本的な構成の装置の実施例の主軸中心断面図であり、また図2は図1のA−A’視断面である。装置は電子銃部20と架台部21とで構成される。 FIG. 1 is a sectional view of the principal axis of an embodiment of an apparatus having a basic configuration of the present invention, and FIG. 2 is a sectional view taken along line A-A 'of FIG. The apparatus includes an electron gun unit 20 and a gantry unit 21.

電子銃20は 被照射体1を収容し低気圧の電離気体(Ar)を気密に保つハウジング5と、カソード6とプラズマ生成陽極(アノードと称す)9よりなる。ハウジング5と被照射体1は電気的に接地され、カソード6及びアノード9に対しては耐高電圧絶縁体7及び10により絶縁されている。 接続子8と11は外部電気回路に接続する導線である。カソード6の電子ビーム発射面は、数10cmの面積の束状の金属線(Ti)、または黒鉛が用いられ、ターゲットとなる被照射体1に対向させる。アノード9は環状の電極であり、ハウジング5との間にグロー放電を起こさせて電離気体をプラズマ化する。
また、電子銃20には外部にソレノイド12が設けられ、ハウジング5の内部に磁界をつくり、プラズマの膨張拡散を抑えて電子ビームの照射を可能にする。
The electron gun 20 is composed of a housing 5 that houses the irradiated object 1 and keeps an ionized gas (Ar) at a low pressure hermetic, a cathode 6 and a plasma generation anode (referred to as an anode) 9. The housing 5 and the irradiated object 1 are electrically grounded, and are insulated from the cathode 6 and the anode 9 by high voltage withstanding insulators 7 and 10. The connectors 8 and 11 are conducting wires connected to an external electric circuit. The electron beam emitting surface of the cathode 6 is made of a bundle-like metal wire (Ti) or graphite having an area of several tens of cm 2 , and is opposed to the irradiated object 1 as a target. The anode 9 is an annular electrode, and causes glow discharge between the anode 9 and the housing 5 to turn the ionized gas into plasma.
In addition, the electron gun 20 is provided with a solenoid 12 outside, and a magnetic field is created inside the housing 5 to suppress the expansion and diffusion of the plasma and to irradiate the electron beam.

被照射体1は、取付け台13上に取付け具14により固定され、更に上端部をセラミックス製の絶縁性マスク15により被覆され、電子ビームが効率良くキャビテイに進入するようにする。 The irradiated body 1 is fixed on a mounting base 13 by a mounting tool 14, and its upper end is covered with a ceramic insulating mask 15 so that the electron beam efficiently enters the cavity.

磁石2は、セラミックス製の箱状をなしたセラミックスマスク16により被覆され、セラミックス板製の磁石ベース17に取り付けられてキャビテイ内において上下旋回移動自由に配置される。 磁石ベース17は移動桿18に固定されている。磁石2の作用については、前述の段落[0013]〜[0018]の項において、図3及び図4により説明した通りである。開閉扉19はハウジング5に設けられた、開口19a を密閉する扉であり、被照射体1の着脱、点検の際に開閉される。磁石2は永久磁石を用いた場合を図示しているが、右サイドに記載の電磁石2’に置換することもできる。その場合の励磁方法と被覆の方法は永久磁石を用いた場合と同様である。 The magnet 2 is covered with a ceramic box 16 made of a ceramic box, is attached to a ceramic base 17 made of a ceramic plate, and is arranged to freely move up and down in the cavity. The magnet base 17 is fixed to the moving rod 18. The operation of the magnet 2 is as described with reference to FIGS. 3 and 4 in the above paragraphs [0013] to [0018]. The opening / closing door 19 is a door provided in the housing 5 for sealing the opening 19a, and is opened and closed when the irradiated body 1 is attached / detached and inspected. Although the magnet 2 shows a case where a permanent magnet is used, the magnet 2 can be replaced with an electromagnet 2 'described on the right side. In this case, the excitation method and the coating method are the same as in the case of using a permanent magnet.

架台部21は、上面に基台23を備え上面に電子銃20を固定させ、また下部の脚部22が形成する空間に、図示しない給排気装置、電源装置、その他装置類を収容している。図1に図示されている上下旋回移動装置24は、磁石2を被照射体1の内部で上下旋回移動させるもので、移動桿18が気密摺動軸受け25を介して電子銃20内部に入り、上下旋回運動を磁石2に伝達する。 The gantry unit 21 includes a base 23 on the upper surface, the electron gun 20 is fixed to the upper surface, and a supply / exhaust device, a power supply device, and other devices (not shown) are accommodated in a space formed by the lower leg 22. . 1 is a device that moves the magnet 2 up and down inside the irradiated body 1, and a moving rod 18 enters the electron gun 20 through an airtight sliding bearing 25. The vertical swing motion is transmitted to the magnet 2.

上下旋回移動装置24は、移動桿18を駆動する装置で、円盤m8と歯車m9が一体となったシフタm10を操作桿18に取り付け、ブラッケットm3のシフタヨークm4が、円盤m8の両端面を挟む。ブラケットm3がコラムm1のガイドm2に案内され、モータm7、ねじm5、ナットm6により、上下移動すると、シフタヨークm4が、円盤m8の両端面を挟んで連結しているから、移動桿18が上下に移動する。また、ブラケットm3に取り付けられたモータm11、軸m12により、割り出し旋回する歯車m13は歯車m9と噛合って、永久磁石2を上下位置に関係なく所要の角度に旋回させる。コラムm1は基台23の下面に固定されている。 The vertical swing moving device 24 is a device that drives the moving rod 18, and a shifter m10 in which a disk m8 and a gear m9 are integrated is attached to the operating rod 18, and the shifter yoke m4 of the bracket m3 sandwiches both end surfaces of the disk m8. When the bracket m3 is guided by the guide m2 of the column m1 and moved up and down by the motor m7, the screw m5, and the nut m6, the shifter yoke m4 is connected across the both end surfaces of the disk m8, so that the moving rod 18 moves up and down. Moving. In addition, the motor m11 and the shaft m12 attached to the bracket m3 cause the indexing and turning gear m13 to mesh with the gear m9 to turn the permanent magnet 2 to a required angle regardless of the vertical position. The column m1 is fixed to the lower surface of the base 23.

図6は、本発明装置のプラズマ発生回路30、および、電子ビーム発生回路40の説明図であり、図1と符号は共通である。 FIG. 6 is an explanatory diagram of the plasma generation circuit 30 and the electron beam generation circuit 40 of the apparatus of the present invention, and the reference numerals are the same as those in FIG.

プラズマ発生回路30のコンデンサ31は、正極側を開閉制御素子(SCR)32を介してアノード9に接続され、負極側をハウジング5に接続されてプラズマ発生回路となる。開閉制御素子(SCR)32は、制御端子32aへの図示しない制御装置からの信号により導通する。
コンデンサ31を充電するために高圧直流電源33と充電抵抗34が、開閉器35を介してコンデンサ31に接続され充電回路を形成する。
The capacitor 31 of the plasma generation circuit 30 is connected to the anode 9 on the positive electrode side via an open / close control element (SCR) 32 and connected to the housing 5 on the negative electrode side to form a plasma generation circuit. The open / close control element (SCR) 32 is turned on by a signal from a control device (not shown) to the control terminal 32a.
In order to charge the capacitor 31, a high-voltage DC power supply 33 and a charging resistor 34 are connected to the capacitor 31 via a switch 35 to form a charging circuit.

電子ビーム発生回路40のコンデンサ41は、負極側をカソード6に接続し、正極側を開閉制御素子(ガススイッチ)42を介してハウジング5(被照射体1と同電位)に接続されて、電子ビーム発生回路となる。 開閉制御素子(ガススイッチ)42は制御端子42aの、図示しない制御装置からの信号により導通する。コンデンサ41を充電するために高圧直流電源43と充電抵抗44が、開閉器45を介してコンデンサ41に接続され充電回路を形成する。 The capacitor 41 of the electron beam generating circuit 40 has a negative electrode side connected to the cathode 6, and a positive electrode side connected to the housing 5 (the same potential as the irradiated object 1) via an open / close control element (gas switch) 42. It becomes a beam generation circuit. The opening / closing control element (gas switch) 42 is turned on by a signal from a control device (not shown) of the control terminal 42a. In order to charge the capacitor 41, a high-voltage DC power supply 43 and a charging resistor 44 are connected to the capacitor 41 via a switch 45 to form a charging circuit.

上述した実施例装置の使用手順はつぎの通りである。被照射体1をハウジング5内の取り付け台13に取り付けてから、上下旋回装置24により磁石2を被照射体1のキャビテイの照射位置に配置し、図示しない気圧調整装置により電子銃内の電離気体を所定の低気圧に保つ。磁石2に電磁石を用いた場合には励磁手段が加わり、励磁のタイミングは、前記外部ソレノイド12に同期させる。 The procedure for using the above-described embodiment apparatus is as follows. After the irradiated object 1 is attached to the mounting base 13 in the housing 5, the magnet 2 is arranged at the irradiation position of the cavity of the irradiated object 1 by the up-and-down turning device 24, and the ionized gas in the electron gun by the atmospheric pressure adjusting device (not shown). Is maintained at a predetermined low pressure. When an electromagnet is used as the magnet 2, excitation means is added, and the excitation timing is synchronized with the external solenoid 12.

次に、ソレノイド12を作動させて電子銃20内に磁界を作り、続いてプラズマ発生回路30を作動させて、電子銃20内の低圧気体をプラズマ化する。プラズマ化される部分は図6のアノード9の環内から下の部分Pであり、被照射体1のキャビテイ内部にまで達する。コンデンサ31の放電電流がピークに達したときに電子ビーム発生回路40を作動させ、コンデンサ41を放電させると、カソード6から電子ビーム3が被処理体1に向けて発射され、キャビテイ1内部に飛行する。 Next, the solenoid 12 is actuated to create a magnetic field in the electron gun 20, and then the plasma generation circuit 30 is actuated to turn the low-pressure gas in the electron gun 20 into plasma. A portion to be converted into plasma is a lower portion P from the inside of the ring of the anode 9 in FIG. 6 and reaches the inside of the cavity of the irradiated object 1. When the discharge current of the capacitor 31 reaches a peak and the electron beam generating circuit 40 is activated and the capacitor 41 is discharged, the electron beam 3 is emitted from the cathode 6 toward the object 1 and flies into the cavity 1. To do.

電子ビームの飛行方向は、キャビテイ側面と並行しているが磁石2の磁力線4の影響を受けて偏向するので、結果としてキャビテイ内側面に照射され表面改質が実行される。以上の手順で一回のサイクルとなるが、表面改質される部分は帯状であり、限定されているから全体部分を改質処理する必要があるときには磁石2の配置を変えて次のサイクルを実施する。 The flight direction of the electron beam is parallel to the cavity side surface, but is deflected by the influence of the magnetic force lines 4 of the magnet 2, and as a result, the inner surface of the cavity is irradiated and surface modification is performed. The above procedure is a single cycle, but the part to be surface-modified is band-shaped, and since it is limited, when the entire part needs to be modified, the arrangement of the magnet 2 is changed and the next cycle is performed. carry out.

以上の説明で、既に明らかであるが、前記被照射体1のキャビティまたは孔の中に挿入された磁石2によって形成される磁力線4が、照射電子ビーム3の飛行軸と交叉、多くの場合は、好ましくは水平方向に対して直交していて、そして、さらに前記磁力線4が照射内側面に対し旋回方向に沿うように形成されるよう配置、例えば、図5のような構成、配置とするのが目的達成に好ましいものである。 In the above description, as is already clear, the magnetic force lines 4 formed by the magnet 2 inserted into the cavity or hole of the irradiated object 1 intersect with the flight axis of the irradiated electron beam 3 and in many cases. , Preferably arranged so as to be orthogonal to the horizontal direction, and further so that the magnetic field lines 4 are formed along the turning direction with respect to the inner surface of the irradiation, for example, as shown in FIG. Is preferable for achieving the purpose.

本発明によれば、被照射体がキャビティまたは孔を有しその内側面が電子ビーム飛行軸と並行またはわずかの傾斜角であるとき、キャビティ内部に配置された磁石がつくる磁力線が前記電子ビームに作用して飛行軸をキャビティ内面に向けて偏向させることにより、該内面の表面改質を可能にする。 According to the present invention, when the irradiated object has a cavity or a hole and the inner surface thereof is parallel to the electron beam flight axis or has a slight inclination angle, the magnetic lines generated by the magnet disposed inside the cavity are applied to the electron beam. Acting and deflecting the flight axis towards the cavity inner surface allows surface modification of the inner surface.

本発明の装置全体の構成を説明する正面図を、カソード中心軸において横に切断した断面図である。ただし、架台部の上下旋回移動手段の一部は切断されていない。It is sectional drawing which cut | disconnected the front view explaining the structure of the whole apparatus of this invention horizontally in the cathode central axis. However, a part of the vertical turning movement means of the gantry is not cut. 装置の図1におけるA−A’ 視断面図。FIG. 2 is a cross-sectional view of the device taken along line A-A ′ in FIG. 1. 電子ビームを偏向させるために、被照射体内部に磁石を配置した場合の一部切り欠き説明図。FIG. 6 is a partially cutaway explanatory view when a magnet is arranged inside an irradiated body in order to deflect an electron beam. 磁石の磁力線が、電子ビームに作用して飛行方向が偏向することの説明図。Explanatory drawing of the flight direction deflect | deviating because the magnetic force line of a magnet acts on an electron beam. 図4の改良として複数の磁石を用いた場合の実施例説明図。FIG. 5 is an explanatory diagram of an embodiment in which a plurality of magnets are used as an improvement of FIG. 本発明装置のプラズマ発生回路および電子ビーム発射回路の実施例説明図。FIG. 3 is an explanatory diagram of an embodiment of a plasma generation circuit and an electron beam emission circuit of the apparatus of the present invention. 従来例技術を説明する装置の説明図。Explanatory drawing of the apparatus explaining a prior art example.

符号の説明Explanation of symbols

1、被照射体
2、磁石
3、電子ビーム
4、磁力線
5、ハウジング
6、カソード電極
7、10、絶縁体
8、11、接続子
9、アノード環状電極
12、ソレノイド
13、取付け台
14、取付け具
15、16、セラミック製マスク
17、磁石ベース
18、移動桿
19、開閉扉
19a、開口
20、電子銃
21、架台部
22、脚部
23、基台
24、上下旋回移動装置
25、気密摺動軸受
DESCRIPTION OF SYMBOLS 1, Irradiated body 2, Magnet 3, Electron beam 4, Magnetic field line 5, Housing 6, Cathode electrodes 7, 10, Insulators 8, 11, Connector 9, Anode annular electrode 12, Solenoid 13, Mounting base 14, Fixture 15, 16, ceramic mask 17, magnet base 18, moving rod 19, opening / closing door 19 a, opening 20, electron gun 21, gantry 22, leg 23, base 24, vertical swing moving device 25, hermetic sliding bearing

Claims (7)

カソードから発射される電子ビームを、プラズマ化した低圧気体を通過させて被照射体のキャビティまたは孔の中に照射して内側面を改質する電子ビーム照射表面改質方法において、
前記キャビティまたは孔の中において照射電子ビームの照射軸と交叉する磁力線を形成するように永久磁石または電磁石を挿設して前記電子ビームのパルスを発射させるようにしたことを特徴とする表面改質方法。
In an electron beam irradiation surface modification method in which an electron beam emitted from a cathode is irradiated into a cavity or hole of an object to be irradiated through a low-pressure gas that has been made into plasma and the inner surface is modified,
A surface modification characterized in that a permanent magnet or an electromagnet is inserted in the cavity or hole so as to form a line of magnetic force intersecting the irradiation axis of the irradiation electron beam, and the pulse of the electron beam is emitted. Method.
前記電子ビームの照射軸と磁力線の交叉角度がほぼ直角であって、前記磁力線が照射内側面に対し、水平旋回方向に沿うように形成されることを特徴とする請求項1記載の表面改質方法。   2. The surface modification according to claim 1, wherein a crossing angle between the irradiation axis of the electron beam and a magnetic force line is substantially a right angle, and the magnetic force line is formed along a horizontal turning direction with respect to the irradiation inner surface. Method. 前記磁力線を出力する永久磁石または電磁石を電子ビーム照射中心軸の廻りに旋回させながら照射を繰り返すことを特徴とする請求項1、または2に記載の表面改質方法。   3. The surface modification method according to claim 1, wherein the irradiation is repeated while rotating the permanent magnet or the electromagnet that outputs the lines of magnetic force around the electron beam irradiation central axis. 前記磁力線を出力する永久磁石または電磁石を、電子ビームの照射軸と平行な軸に沿って昇降させて照射を繰り返すことを特徴とする請求項1、2、または3に記載の表面改質方法。   The surface modification method according to claim 1, 2, or 3, wherein the irradiation is repeated by moving the permanent magnet or electromagnet that outputs the magnetic lines of force up and down along an axis parallel to the irradiation axis of the electron beam. 低圧気体をプラズマ化する環状アノード電極使用の電圧印加手段と、プラズマ化低圧気体の膨張拡散を抑える磁場形成用励磁手段と、カソード電極と被照射体との間に高圧の直流電圧を印加する手段とを有する電子ビーム照射表面改質装置において、
磁石から出力する磁力線が、前記被照射体のキャビティまたは孔内の改質側面に沿うとともに、電子ビームの照射軸と交叉するように永久磁石または電磁石を取り付ける磁石ベースを設けたことを特徴とする電子ビーム照射表面改質装置。
Voltage application means using an annular anode electrode for converting low-pressure gas into plasma, magnetic field forming excitation means for suppressing expansion and diffusion of plasma-generated low-pressure gas, and means for applying a high-voltage DC voltage between the cathode electrode and the irradiated object In an electron beam irradiation surface modification apparatus having
A magnet base for attaching a permanent magnet or an electromagnet is provided so that magnetic lines of force output from the magnet are along the modified side surface in the cavity or hole of the irradiated object and intersect the irradiation axis of the electron beam. Electron beam irradiation surface modification equipment.
前記電子ビームの照射軸と磁力線との交叉角度が直角で、前記磁石ベースが照射軸と平行な軸に沿って昇降及び旋回可能に構成保持されていることを特徴とする請求項5記載の電子ビーム照射表面改質装置。   6. The electron according to claim 5, wherein the crossing angle between the irradiation axis of the electron beam and the magnetic force line is a right angle, and the magnet base is configured and held so as to be able to move up and down and turn along an axis parallel to the irradiation axis. Beam irradiation surface modification equipment. 前記永久磁石または電磁石の表面が電子ビーム照射改質に耐性のあるセラミックスで被覆されているものであることを特徴とする請求項5、または6に記載の電子ビーム照射表面改質装置。   7. The electron beam irradiation surface modification device according to claim 5, wherein the surface of the permanent magnet or electromagnet is coated with ceramics resistant to electron beam irradiation modification.
JP2007103916A 2007-04-11 2007-04-11 Surface modification method and apparatus by electron beam irradiation Pending JP2008260036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007103916A JP2008260036A (en) 2007-04-11 2007-04-11 Surface modification method and apparatus by electron beam irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007103916A JP2008260036A (en) 2007-04-11 2007-04-11 Surface modification method and apparatus by electron beam irradiation

Publications (1)

Publication Number Publication Date
JP2008260036A true JP2008260036A (en) 2008-10-30

Family

ID=39982926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007103916A Pending JP2008260036A (en) 2007-04-11 2007-04-11 Surface modification method and apparatus by electron beam irradiation

Country Status (1)

Country Link
JP (1) JP2008260036A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013248653A (en) * 2012-06-01 2013-12-12 Nippon Steel & Sumitomo Metal Corp Method and device for cutting metal by gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013248653A (en) * 2012-06-01 2013-12-12 Nippon Steel & Sumitomo Metal Corp Method and device for cutting metal by gas

Similar Documents

Publication Publication Date Title
US11158481B2 (en) Ion milling device, ion source, and ion milling method
JP3328498B2 (en) Fast atom beam source
KR100307070B1 (en) High speed atomic beam supply source
Dubenkov et al. Acceleration of Ta10+ ions produced by laser ion source in RFQ MAXILAC
CN112164644A (en) Penning ion source
JP2008260036A (en) Surface modification method and apparatus by electron beam irradiation
CN112020900B (en) Atomic beam generating device, bonding device, surface modifying method, and bonding method
JPH04277500A (en) Source of high speed atomic ray
RU2387039C1 (en) High-frequency generator with discharge in hollow cathode
JPH0687408B2 (en) Plasma X-ray generator
JP2008077980A (en) Ionic mobility meter and ionic mobility measuring method
Kolpakov et al. Formation of an out-of-electrode plasma in a high-voltage gas discharge
Bhuyan et al. Experimental studies of ion beam anisotropy in a low energy plasma focus operating with methane
JP2009262172A (en) Electron beam irradiation device for reforming surface in through-hole
JPH01243349A (en) Plasma extreme ultraviolet light generator
JPH08102278A (en) Device and method for generating ion beam
US5382866A (en) Method of focusing a charged particle beam and plasma lens therefor
JP5187876B2 (en) Electron beam irradiation surface modification equipment
JP2009114482A (en) Method and apparatus for treating metal surface by electron beam
RU2306683C1 (en) Plasma electron source
JP2020173984A (en) Ion source, ion implanter, and magnesium ion generation method
JPH0614456B2 (en) Ultra-fine shape soft X-ray generator and method
JP6744694B1 (en) Surface modifying device and surface modifying method
CN110767524B (en) Self-suction type X-ray generating device and application thereof
CN212907638U (en) Penning ion source