JP3446985B2 - Gas cleaning method and apparatus - Google Patents
Gas cleaning method and apparatusInfo
- Publication number
- JP3446985B2 JP3446985B2 JP23129096A JP23129096A JP3446985B2 JP 3446985 B2 JP3446985 B2 JP 3446985B2 JP 23129096 A JP23129096 A JP 23129096A JP 23129096 A JP23129096 A JP 23129096A JP 3446985 B2 JP3446985 B2 JP 3446985B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- fine particles
- electric field
- photocatalyst
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 44
- 238000004140 cleaning Methods 0.000 title claims description 27
- 239000000463 material Substances 0.000 claims description 103
- 239000010419 fine particle Substances 0.000 claims description 70
- 230000005684 electric field Effects 0.000 claims description 48
- 239000011941 photocatalyst Substances 0.000 claims description 47
- 239000003344 environmental pollutant Substances 0.000 claims description 36
- 231100000719 pollutant Toxicity 0.000 claims description 36
- 239000007772 electrode material Substances 0.000 claims description 23
- 230000005855 radiation Effects 0.000 claims description 16
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 235000012431 wafers Nutrition 0.000 description 54
- 239000007789 gas Substances 0.000 description 46
- 238000003860 storage Methods 0.000 description 38
- 239000000126 substance Substances 0.000 description 24
- 239000000758 substrate Substances 0.000 description 23
- 229930195733 hydrocarbon Natural products 0.000 description 16
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 16
- 238000011109 contamination Methods 0.000 description 15
- 150000002430 hydrocarbons Chemical class 0.000 description 14
- 239000002245 particle Substances 0.000 description 14
- 239000010409 thin film Substances 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 239000010408 film Substances 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 239000013618 particulate matter Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 9
- 230000001699 photocatalysis Effects 0.000 description 9
- -1 phthalate ester Chemical class 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- 238000005202 decontamination Methods 0.000 description 8
- 230000003588 decontaminative effect Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229910010413 TiO 2 Inorganic materials 0.000 description 7
- 239000000428 dust Substances 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910017840 NH 3 Inorganic materials 0.000 description 5
- 239000000356 contaminant Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 229910052788 barium Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000002070 germicidal effect Effects 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000002952 polymeric resin Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 238000003980 solgel method Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 229910017518 Cu Zn Inorganic materials 0.000 description 3
- 229910017752 Cu-Zn Inorganic materials 0.000 description 3
- 229910017943 Cu—Zn Inorganic materials 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 238000004887 air purification Methods 0.000 description 3
- 229910052790 beryllium Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 3
- 238000007146 photocatalysis Methods 0.000 description 3
- 239000011265 semifinished product Substances 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002901 radioactive waste Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910017115 AlSb Inorganic materials 0.000 description 1
- 229910000497 Amalgam Inorganic materials 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N CuO Inorganic materials [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 229910005542 GaSb Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- 229910002089 NOx Inorganic materials 0.000 description 1
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910019023 PtO Inorganic materials 0.000 description 1
- 229910019899 RuO Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-NJFSPNSNSA-N Strontium-90 Chemical compound [90Sr] CIOAGBVUUVVLOB-NJFSPNSNSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-RNFDNDRNSA-N cesium-137 Chemical compound [137Cs] TVFDJXOCXUVLDH-RNFDNDRNSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- MXCPYJZDGPQDRA-UHFFFAOYSA-N dialuminum;2-acetyloxybenzoic acid;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3].CC(=O)OC1=CC=CC=C1C(O)=O MXCPYJZDGPQDRA-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N o-dicarboxybenzene Natural products OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000007540 photo-reduction reaction Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Catalysts (AREA)
- Electrostatic Separation (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、気体の清浄方法及
び装置に係り、特に、気体中に存在する微粒子と有害ガ
ス(ガス状汚染物質)を同時に除去できる気体の清浄方
法及び装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas cleaning method and apparatus, and more particularly to a gas cleaning method and apparatus capable of simultaneously removing fine particles and harmful gas (gaseous pollutants) existing in the gas.
【0002】[0002]
【従来の技術】従来の技術を、半導体製造工場における
クリーンルームの空気清浄を例にとり、以下説明する。
クリーンルームにおいては、外気より微粒子(粒子状物
質)、ガス状汚染物質(有害ガス)としてSOx、NO
x、HFのような酸性ガス、NH3 のようなアルカリ性
ガス、炭化水素などの有機性ガスが導入される。この
内、特に、微粒子や、自動車の排気ガス、民生品として
広く使用されている高分子樹脂製品からの脱ガスなどに
起因する空気中のメタン以外の極低濃度の炭化水素
(H.C)などのガス状物質が汚染物質として問題とな
る。特に、H.Cはガス状汚染物質として通常の空気
(室内空気及び外気)中の極低濃度のものが汚染をもた
らすので、除去する必要がある。2. Description of the Related Art A conventional technique will be described below by taking air cleaning in a clean room in a semiconductor manufacturing factory as an example.
In a clean room, fine particles (particulate matter) from the outside air, SOx and NO as gaseous pollutants (hazardous gas)
An acidic gas such as x and HF, an alkaline gas such as NH 3 , and an organic gas such as hydrocarbon are introduced. Of these, in particular, extremely low concentration hydrocarbons (HC) other than methane in the air due to particulates, exhaust gas from automobiles, degassing from polymer resin products widely used as consumer products, etc. Gaseous substances such as are problematic as pollutants. In particular, H. C has a very low concentration of gaseous pollutants in ordinary air (indoor air and outside air), which causes pollution, and thus needs to be removed.
【0003】また、最近ではクリーンルームの構成材の
高分子樹脂類からの脱ガスがH.C発生源として問題と
なっている。すなわち、H.Cの起因として通常のクリ
ーンルームでは、外気から導入されたH.C(クリーン
ルームでのフィルタでは、H.Cは除去できないので、
外気中のH.Cは導入されてしまう)に、前記のクリー
ンルーム内で発生したH.Cが加わるので、外気に比べ
てクリーンルーム中のH.Cは高濃度となり、ウェハ基
板や基材を汚染する。H.Cは、クリーンルームにおけ
る作業で生じる各種の溶剤(アルコール、ケトン類な
ど)も濃度が高くなると汚染物質として問題となる。す
なわち、上述の汚染物質(微粒子及びH.C)がウェ
ハ、半製品、製品の基板表面へ付着すれば、 微粒子
では基板表面回路(パターン)の断線や短絡を引き起こ
し欠陥を生じさせる。一方、 H.Cは基板とレジス
トとの親和性(なじみ)に影響を与える。そして、親和
性が悪くなるとレジストの膜厚に悪影響を与えたり、基
板とレジストとの密着性に悪影響を与える。In recent years, degassing from polymer resins of clean room components has been reported by H.S. It is a problem as a source of C. That is, H.264. As a cause of C, in a normal clean room, H.C. C (Since HC cannot be removed by a filter in a clean room,
H. in the open air C. is introduced), H.C. generated in the clean room described above. Since C is added, H.C. C has a high concentration and contaminates the wafer substrate and the base material. H. C also poses a problem as a pollutant when the concentration of various solvents (alcohols, ketones, etc.) generated during work in a clean room becomes high. That is, if the above-mentioned contaminants (fine particles and HC) adhere to the substrate surface of the wafer, semi-finished product, or product, the fine particles cause disconnection or short circuit of the circuit (pattern) on the substrate surface, causing defects. On the other hand, H. C affects the affinity (familiarity) between the substrate and the resist. When the affinity is deteriorated, the film thickness of the resist is adversely affected, or the adhesion between the substrate and the resist is adversely affected.
【0004】このような原因により、これらの汚染物質
は、半導体製品の生産性(歩留り)を低下させる。特
に、ガス状汚染物質としてのH.Cは上述の発生起因に
より、また最近では省エネの観点でクリーンルーム空気
の循環を多くして用いるので、クリーンルーム中のH.
C濃度は濃縮され、外気に比べかなりの高濃度となって
おり、基材や基板に付着し、該表面を汚染する。この汚
染の程度は、基材や基板表面の接触角で表わすことがで
き、汚染が激しいと接触角が大きい。接触角が大きい基
材や基板は、その表面に成膜しても膜の付着強度が弱く
(なじみが悪い)、歩留りの低下をまねく。ここで、接
触角とは水によるぬれの接触角のことであり、基板表面
の汚染の程度を示すものである。すなわち、基板表面に
疎水性(油性)の汚染物質が付着すると、その表面は水
をはじき返してぬれにくくなる。すると基板表面と水滴
との接触角は大きくなる。従って接触角が大きいと汚染
度が高く、逆に接触角が小さいと汚染度が低い。Due to these causes, these pollutants reduce the productivity (yield) of semiconductor products. In particular, H. C. is used because of the above-mentioned cause of occurrence, and recently, since a large amount of circulation of clean room air is used from the viewpoint of energy saving, H.C.
The C concentration is concentrated and has a considerably high concentration as compared with the outside air, and adheres to the base material or the substrate to contaminate the surface. The degree of this contamination can be expressed by the contact angle of the base material or the substrate surface, and when the contamination is severe, the contact angle is large. A base material or a substrate having a large contact angle has a weak adhesion strength of the film even if a film is formed on the surface of the base material or the substrate (is not well adapted to the film), leading to a decrease in yield. Here, the contact angle is a contact angle of wetting with water, and indicates the degree of contamination on the substrate surface. That is, when a hydrophobic (oil-based) contaminant adheres to the substrate surface, the surface repels water and becomes difficult to wet. Then, the contact angle between the substrate surface and the water droplet becomes large. Therefore, if the contact angle is large, the degree of contamination is high, and conversely, if the contact angle is small, the degree of contamination is low.
【0005】従来のクリーンルームの空気を浄化する方
法あるいはそのための装置には、大別して、(1)機械
的ろ過方法(HEPAフィルターなど)、(2)静電的
に微粒子の捕集を行う、高電圧による荷電あるいは導電
性フィルターによるろ過方式(HESAフィルターな
ど)、がある。これらの方法は、いずれも微粒子の除去
を目的としており、メタン以外の炭化水素(H.C)の
ような、接触角を増大させるガス状の汚染物質の除去に
対しては効果がない。一方、ガス状の汚染物質である
H.Cの除去法としては、燃焼分解法、O3 分解法など
が知られている。しかし、これらの方法は、クリーンル
ームへの導入空気中に含有する極低濃度のH.Cの除去
には効果がない。Conventional methods for purifying air in a clean room or devices therefor are roughly classified into (1) mechanical filtration method (HEPA filter, etc.), (2) electrostatic collection of fine particles, and There is a charging method using a voltage or a filtration method using a conductive filter (HESA filter etc.). All of these methods are aimed at removing fine particles and are not effective for removing gaseous pollutants that increase the contact angle, such as hydrocarbons (HC) other than methane. On the other hand, H. Known methods for removing C include a combustion decomposition method and an O 3 decomposition method. However, these methods have a very low concentration of H. It has no effect on the removal of C.
【0006】これらに対して、本発明者らは、光電子放
出材から光電子を発生させて、微粒子(粒子状物質)を
除去する空間の清浄化について、下記の提案をしてい
る。例えば、(1)空間清浄化に関する特許では、特公
平3−5859号、特公平6−74908号、特公平6
−74909号、特公平6−74710号、特公平8−
211号、特開平5−68910号、特開平6−293
73号公報。
(2)研究論文では、(a)Proceedings of the 8th.
World Clean Air Congress. 1989.Vol.3. Hagu
e, p735〜740(1989)、(b)エアロゾル
研究、第7巻、第3号、p245〜247(199
2)、(c)エアロゾル研究、第8巻、第3号、p23
9〜248(1993)、(d)同第8巻、第4号、p
315〜324(1993)。これらの方法及び装置で
は、光電子放出のための電場形成用の電極材として、通
常の荷電装置における電極材、例えば、タングステン、
Cu−Zn(網状、板状)のような金属物質を用いてい
る。On the other hand, the inventors of the present invention have made the following proposals for cleaning the space in which photoelectrons are generated from the photoelectron emitting material to remove fine particles (particulate matter). For example, (1) Patents related to space cleaning include Japanese Patent Publication No. 3-5859, Japanese Patent Publication No. 6-74908, and Japanese Patent Publication No. 6908.
-74909, Japanese Patent Fair 6-74710, Japanese Patent Fair 8-
211, JP-A-5-68910, JP-A-6-293.
No. 73 publication. (2) In the research paper, (a) Proceedings of the 8th.
World Clean Air Congress. 1989. Vol.3. Hagu
e, p735-740 (1989), (b) Aerosol Research, Volume 7, No. 3, p245-247 (199).
2), (c) Aerosol Research, Volume 8, Issue 3, p23
9-248 (1993), (d) Vol. 8, No. 4, p.
315-324 (1993). In these methods and devices, as an electrode material for forming an electric field for photoelectron emission, an electrode material in a normal charging device, for example, tungsten,
A metal substance such as Cu-Zn (net-like or plate-like) is used.
【0007】これらの方法及び装置は、粒子状物質の除
去には有効であるが、用途によっては、更なる高機能化
が必要であった。すなわち、近年の先端産業の発展にお
いて、半導体製品の高精密化、高品質化に伴ない、従来
問題とならなかったガス状汚染物質、特にH.Cがウェ
ハへのガス状汚染物質として問題となってきた。言い換
えると、H.Cの付着により歩留りの低下をもたらす
((a)「空気清浄」第33巻、第1号、p16〜2
1、(1995)、(b)第13回空気清浄とコンタミ
ネーションコントロール研究大会、p219〜223
(1995))。すなわち、ウェハを取扱う製造工程で
は、微粒子除去に加えて、ガス状汚染物質も同時に除去
する必要がでてきた。また、今後の先端産業の発展とお
いては、微粒子に共存するH.Cのみならず、NH3 な
ど他のガス状汚染物質も厳しく管理、制御する必要が出
てくると考えられる。Although these methods and devices are effective for removing particulate matter, depending on the application, higher performance is required. That is, in the recent development of advanced industries, gaseous pollutants that have not been a problem in the past, particularly H. s. C has become a problem as a gaseous contaminant to the wafer. In other words, H.264. The adhesion of C causes a decrease in yield ((a) "Air Purification", Vol. 33, No. 1, p16-2).
1, (1995), (b) 13th Air Cleaning and Contamination Control Research Conference, pp. 219-223
(1995)). That is, in the manufacturing process for handling wafers, in addition to removing fine particles, it is necessary to simultaneously remove gaseous pollutants. Further, in the future development of advanced industries, H. Not only C, but also other gaseous pollutants such as NH 3 will need to be strictly controlled and controlled.
【0008】[0008]
【発明が解決しようとする課題】本発明は、上記の事実
及び今後の発展に鑑み、光電子放出材を用いた微粒子の
除去において、共存するガス状汚染物質も同時に除去で
きる気体の清浄方法及びその装置を提供することを課題
とする。SUMMARY OF THE INVENTION In view of the above facts and future developments, the present invention provides a method for cleaning a gas, which can simultaneously remove coexisting gaseous pollutants when removing fine particles using a photoelectron emitting material. An object is to provide a device.
【0009】[0009]
【課題を解決するための手段】上記課題を解決するため
に、本発明では、電場下で、光電子放出材に紫外線及び
/又は放射線を照射することにより光電子を放出せし
め、該光電子により空間中に含まれている微粒子を荷電
して捕集する気体の清浄方法において、前記電場設定用
の電極材が、光触媒を含有し、気体中のガス状汚染物質
を同時に除去することとしたものである。また、本発明
では、紫外線及び/又は放射線源と、光電子放出材と、
電場設定用電極材及び荷電微粒子捕集材とを有する微粒
子の荷電・捕集装置を備えてなる気体の清浄装置におい
て、前記電場設定用の電極材が光触媒を含有することと
したものである。In order to solve the above-mentioned problems, in the present invention, a photoelectron emitting material is irradiated with ultraviolet rays and / or radiation under an electric field to emit photoelectrons, and the photoelectrons are emitted into a space. In the method for cleaning a gas in which the contained fine particles are charged and collected, the electrode field setting electrode material contains a photocatalyst and simultaneously removes gaseous pollutants in the gas. Further, in the present invention, an ultraviolet and / or radiation source, a photoelectron emitting material,
In a gas cleaning device provided with a fine particle charging / collecting device having an electric field setting electrode material and a charged fine particle collecting material, the electric field setting electrode material contains a photocatalyst.
【0010】[0010]
【発明の実施の形態】本発明を半導体製造工場における
クリーンルームを例に説明する。本発明は、次の5つの
知見に基づいて発明されたものである。即ち、(1)通
常の空気(外気)中には、ガス状汚染物質として、NO
x、SOx、HClのような酸性ガス、アンモニア、ア
ミンのようなアルカリ性ガス及び炭化水素及びその誘導
体(H.C)と呼ばれるような有機性ガスが存在し、ク
リーンルームにおけるフィルタでは、これらの有害ガス
の捕集はできないので、これらの有害ガスはクリーンル
ームに導入されてしまう。この内、通常の空気中濃度レ
ベルではウェハなどの基板表面に付着し接触角の増加へ
の関与は非メタンH.Cが大きい(空気清浄、第33
巻、第1号、p16−21、1995)。
(2)H.Cは、紫外線照射された光触媒により分解、
除去される。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described by taking a clean room in a semiconductor manufacturing factory as an example. The present invention was made based on the following five findings. That is, (1) NO in the normal air (outside air) is a gaseous pollutant.
x, SOx, acidic gases such as HCl, ammonia, alkaline gases such as amines and organic gases such as hydrocarbons and their derivatives (HC) exist, and these harmful gases are present in filters in clean rooms. These harmful gases are introduced into the clean room because they cannot be collected. Among them, at a normal concentration level in the air, it is attached to the surface of a substrate such as a wafer and contributes to the increase of the contact angle. Large C (air purification, 33rd
Vol. 1, No. 1, p 16-21, 1995). (2) H. C is decomposed by a photocatalyst irradiated with ultraviolet rays,
To be removed.
【0011】(3)少なくとも、1部が有機物(高分子
樹脂)で構成されるクリーンルーム環境では、該有機物
から極微量の有機性ガス(H.C)が発生し、クリーン
ルーム空間中の収容物(ウェハやガラス基板などの原
料、半製品)を汚染する。すなわち、クリーンルーム空
間では、少なくともその一部に有機物(例、プラスチッ
ク容器、パッキン材、シール材、接着材、壁面の材料
等)を使用しており、該有機物から極微量の有機性ガス
が発生する。例えば、シール材からはシロキサン、収納
容器の材料であるプラスチック材からはフタル酸エステ
ルなどが発生し、これらの有機性ガスは、発生濃度は極
く低濃度であるが、クリーンルームは閉鎖系であり、閉
じ込められ、さらに、最近クリーンルームは省エネの点
で空気の循環使用の比率が高いので、該濃度は徐々に高
くなり、クリーンルーム内の収容物の上に付着し悪い影
響を与えてしまう。(3) In a clean room environment in which at least a part is composed of an organic substance (polymer resin), an extremely small amount of organic gas (HC) is generated from the organic substance, and the contained matter ( Raw materials such as wafers and glass substrates, semi-finished products) are contaminated. That is, in a clean room space, an organic substance (eg, plastic container, packing material, sealing material, adhesive material, wall material, etc.) is used for at least a part thereof, and an extremely small amount of organic gas is generated from the organic substance. . For example, siloxane is generated from the seal material, and phthalate ester is generated from the plastic material that is the material of the storage container. These organic gases have a very low concentration, but the clean room is a closed system. Furthermore, since the clean room has a high rate of air circulation in recent years in terms of energy saving, the concentration gradually increases and adheres to the contents in the clean room, which has a bad influence.
【0012】例えば、収納物のウェハ表面上の接触角が
増加すると、該基板上に成膜してもその付着力は弱い。
このように、クリーンルーム中のH.Cは外気からの導
入H.Cにクリーンルーム内部からの発生ガスが加わる
ので、多成分、かつ高濃度となっており、最近ではクリ
ーンルームはH.Cに関しては、ダーティルームと言わ
れており、効果的なH.C処理法が必要になっている。
(4)本発明の対象分野である先端産業では、従来粒子
除去のみで十分であったものが、製品の高品質化、高精
密化により、今後、ガス状汚染物質、特にH.Cの影響
を受けるようになる。For example, when the contact angle of the stored object on the wafer surface increases, even if a film is formed on the substrate, the adhesive force is weak.
In this way, the H. C is introduced from the outside air. Since the gas generated from the inside of the clean room is added to C, it is a multi-component and high concentration. Regarding C, it is said to be a dirty room, and it is effective H.264. The C treatment method is needed. (4) In the high-tech industry, which is the target field of the present invention, the conventional removal of particles was sufficient. However, due to the improvement in quality and precision of products, gaseous pollutants, especially H. Being influenced by C.
【0013】(5)電場下で光電子放出材に紫外線及び
/又は放射線照射して光電子放出を行うにおいて、該電
場設定用電極(正極)に、光触媒を用いると光触媒によ
るガス状汚染物質の分解作用が促進され、効果的に該ガ
ス状汚染物質が分解される。そこで、本発明では、本発
明者らが先に提案した光電子を用いる微粒子(粒子状物
質)除去における光電子放出のため電極材の少なくとも
一部に、光触媒(正極の材料)を用い、これにより電場
を形成して微粒子の除去を行うと同時に、共存するガス
状汚染物質、特に有機性ガス(H.C)を分解除去(ウ
ェハなどの製品に影響を与えない無害な形態、あるいは
ウェハに付着しても接触角に影響を与えない安定な形に
変換)するものである。(5) When a photocatalyst is used for the electric field setting electrode (positive electrode) when the photoelectron emitting material is irradiated with ultraviolet rays and / or radiation under an electric field to perform photoelectron emission, the photocatalyst decomposes a gaseous pollutant. Are promoted and the gaseous pollutants are effectively decomposed. Therefore, in the present invention, a photocatalyst (a material of the positive electrode) is used as at least a part of the electrode material for photoelectron emission in the removal of fine particles (particulate matter) using the photoelectrons previously proposed by the present inventors, and the electric field To form fine particles to remove fine particles, and at the same time decompose and remove coexisting gaseous pollutants, especially organic gas (HC) (innocuous form that does not affect products such as wafers, or adheres to wafers). Even if it is converted to a stable shape that does not affect the contact angle).
【0014】次に、本発明の夫々の構成を詳細に説明す
る。光電子放出材は、紫外線又は放射線の照射により光
電子を放出するものであれば何れでも良く、光電的な仕
事関数が小さなもの程好ましい、効果や経済性の面か
ら、Ba,Sr,Ca,Y,Gd,La,Ce,Nd,
Th,Pr,Be,Zr,Fe,Ni,Zn,Cu,A
g,Pt,Cd,Pb,Al,C,Mg,Au,In,
Bi,Nb,Si,Ti,Ta,U,B,Eu,Sn,
P,Wのいずれか又はこれらの化合物又は合金又は混合
物が好ましく、これらは単独で又は二種以上を複合して
用いられる。複合材としては、アマルガムの如く物理的
な複合材も用いうる。例えば、化合物としては酸化物、
ほう化物、炭化物があり、酸化物にはBaO,SrO,
CaO,Y2 O5 ,Gd2 O3 ,Nd2 O3 ,Th
O2 ,ZrO2 ,Fe2 O3 ,ZnO,CuO,Ag2
O,La2 O3 ,PtO,PbO,Al2O3 ,Mg
O,In2 O3 ,BiO,NbO,BeOなどがあり、
またほう化物には、YB6 ,GdB6 ,LaB5 ,Nd
B6 ,CeB6 ,EuB6 ,PrB6,ZrB2 などが
あり、さらに炭化物としてはUC,ZrC,TaC,T
iC,NbC,WCなどがある。Next, the respective constitutions of the present invention will be explained in detail. The photoelectron emitting material may be any as long as it emits photoelectrons by irradiation with ultraviolet rays or radiation, and the smaller the photoelectric work function is, the more preferable. From the viewpoint of effect and economy, Ba, Sr, Ca, Y, Gd, La, Ce, Nd,
Th, Pr, Be, Zr, Fe, Ni, Zn, Cu, A
g, Pt, Cd, Pb, Al, C, Mg, Au, In,
Bi, Nb, Si, Ti, Ta, U, B, Eu, Sn,
Either P or W or a compound, alloy or mixture thereof is preferable, and these are used alone or in combination of two or more kinds. As the composite material, a physical composite material such as amalgam can also be used. For example, the compound is an oxide,
There are borides and carbides, and oxides include BaO, SrO,
CaO, Y 2 O 5 , Gd 2 O 3 , Nd 2 O 3 , Th
O 2 , ZrO 2 , Fe 2 O 3 , ZnO, CuO, Ag 2
O, La 2 O 3 , PtO, PbO, Al 2 O 3 , Mg
O, In 2 O 3 , BiO, NbO, BeO, etc.,
Further, the boride includes YB 6 , GdB 6 , LaB 5 , and Nd.
B 6, CeB 6, EuB 6 , PrB 6, ZrB 2 include, as a further carbide UC, ZrC, TaC, T
There are iC, NbC, WC, etc.
【0015】また、合金としては黄銅、青銅、リン青
銅、AgとMgとの合金(Mgが2〜20wt%)、C
uとBeとの合金(Beが1〜10wt%)及びBaと
Alとの合金を用いることができ、上記AgとMgとの
合金、CuとBeとの合金及びBaとAlとの合金が好
ましい。酸化物は金属表面のみを空気中で加熱したり、
或いは薬品で酸化することによっても得ることができ
る。さらに他の方法としては使用前に加熱し、表面に酸
化層を形成して長期にわたって安定な酸化層を得ること
もできる。この例としてはMgとAgとの合金を水蒸気
中で300〜400℃の温度の条件下でその表面に酸化
膜を形成させることができ、この酸化薄膜は長期間にわ
たって安定なものである。これらの物質は、バルク状
(固体状、板状)で、また適宜の母材(支持体)へ付加
して使用できる(特開平3−108698号公報)。例
えば、紫外線透過性物質の表面又は該表面近傍に付加す
る(特公平7−93098号公報)。As the alloy, brass, bronze, phosphor bronze, an alloy of Ag and Mg (Mg is 2 to 20 wt%), C
An alloy of u and Be (1 to 10 wt% of Be) and an alloy of Ba and Al can be used, and the alloy of Ag and Mg, the alloy of Cu and Be, and the alloy of Ba and Al are preferable. . Oxide heats only the metal surface in air,
Alternatively, it can be obtained by oxidizing with a chemical. As another method, it is also possible to heat before use to form an oxide layer on the surface to obtain a stable oxide layer for a long period of time. As an example of this, an alloy of Mg and Ag can form an oxide film on its surface in water vapor at a temperature of 300 to 400 ° C., and this oxide thin film is stable for a long period of time. These substances can be used in a bulk form (solid form, plate form) or added to an appropriate base material (support) (JP-A-3-108698). For example, it is added to the surface of the ultraviolet-transparent substance or in the vicinity thereof (Japanese Patent Publication No. 7-93098).
【0016】付加の方法は、紫外線又は放射線の照射に
より光電子が放出されれば何れでも良い。例えば、ガラ
ス板上へコーティングして使用する方法、他の例として
板状物質表面近傍へ埋込んで使用する方法や板状物質上
に付加し更にその上に別の材料をコーティングして使用
する方法、紫外線透過性物質と光電子を放出する物質を
混合して用いる方法等がある。また、付加は、薄膜状に
付加する方法、網状、線状、粒状、島状、帯状に付加す
る方法等適宜用いることが出来る。光電子を放出する材
料の付加の方法は、適宜の材料の表面に周知の方法でコ
ーティング、あるいは付着させて作ることができる。例
えば、イオンプレーティング法、スパッタリング法、蒸
着法、CVD法、メッキによる方法、塗布による方法、
スタンプ印刷による方法、スクリーン印刷による方法を
適宜用いることができる。Any addition method may be used as long as photoelectrons are emitted by irradiation with ultraviolet rays or radiation. For example, a method of coating on a glass plate for use, a method of embedding in the vicinity of the surface of a plate-like substance as another example, or a method of applying on a plate-like substance and further coating another material thereon There is a method, a method of using a mixture of an ultraviolet transparent substance and a substance that emits photoelectrons, and the like. Further, the addition can be appropriately performed by a method of adding in a thin film shape, a method of adding in a net shape, a linear shape, a granular shape, an island shape, or a belt shape. As a method of adding a material that emits photoelectrons, the surface of an appropriate material can be coated or attached by a known method. For example, ion plating method, sputtering method, vapor deposition method, CVD method, plating method, coating method,
A method using stamp printing or a method using screen printing can be appropriately used.
【0017】薄膜の厚さは、紫外線又は放射線照射によ
り光電子が放出される厚さであれば良く、5Å〜5,0
00Å、通常20Å〜500Åが一般的である。母材の
使用形状は、板状、プリーツ状、円筒状、棒状、線状、
網状等、があり表面の形状を適宜凹凸状とし使用するこ
とが出来る。また、凸部の先端を先鋭状あるいは球面状
とすることも出来る(特公平6−74908号公報)。
母材への薄膜の付加は、本発明者が既に提案したよう
に、1種類又は2種類以上の材料を1層又は多層重ねて
用いることができる。すなわち、薄膜を適宜複数(複
合)で使用し、2重構造あるいはそれ以上の多重構造と
することができる(特開平4−152296号公報)。
これらの最適な形状や紫外線又は放射線の照射により光
電子を放出する材料の種類や付加法、薄膜厚は、装置の
種類、規模、形状、光電子放出材の種類、母材の種類、
後述電場の強さ、かけ方、効果、経済性等で適宜予備試
験を行い決めることが出来る。The thickness of the thin film may be such that photoelectrons are emitted by irradiation with ultraviolet rays or radiation, and 5Å to 5,0.
00Å, usually 20Å to 500Å is common. The base material has a plate shape, a pleated shape, a cylindrical shape, a rod shape, a linear shape,
There is a net shape and the like, and the surface shape can be appropriately made into an uneven shape for use. Further, the tip of the convex portion can be sharpened or spherical (Japanese Patent Publication No. 6-74908).
For the addition of the thin film to the base material, one type or two or more types of materials can be used in a single layer or in a multi-layered manner, as already proposed by the present inventor. That is, a plurality of thin films (composite) can be appropriately used to form a double structure or a multiple structure having more than that (Japanese Patent Laid-Open No. 4-152296).
The optimum shape, type of material that emits photoelectrons by irradiation of ultraviolet rays or radiation, addition method, thin film thickness, device type, scale, shape, type of photoelectron emitting material, type of base material,
It can be decided by conducting a preliminary test as appropriate according to the strength of the electric field, how to apply, effect, economical efficiency, etc. as described later.
【0018】前記光電子放出材を母材に付加して使用す
る場合の母材は、前記した紫外線透過性物質の他にセラ
ミック、粘土、周知の金属材がある。また、後述の光源
の表面に上記光電子放出材を被覆(光源と光電子放出材
を一体化)して行うこともできる(特開平4−2435
40号公報)。光電子放出材への紫外線又は放射線照射
による光電子の発生は、光電子放出材(負極)と、後述
の少なくとも一部が光触媒からなる電極(正極)間に電
場(電界)を形成して行うと、光電子放出材からの光電
子発生が効果的に起こる。電場の形成方法(構造)とし
ては、荷電部の形状、構造、適用分野、装置の種類或い
は期待する効果(精度)等によって適宜選択することが
出来る。電場の強さは、光電子放出材や母材への付加の
種類等で適宜決めることが出来、このことについては本
発明者の別の発明がある。電場の強さは、一般に0.1
V/cm〜2kV/cmである。When the photoelectron emitting material is added to the base material and used, the base material includes ceramics, clay, and well-known metal materials in addition to the above-mentioned UV-transparent material. Alternatively, the surface of a light source, which will be described later, may be coated with the above-mentioned photoelectron emitting material (the light source and the photoelectron emitting material are integrated) (Japanese Patent Laid-Open No. 4-2435).
No. 40). Generation of photoelectrons by irradiating the photoelectron emitting material with ultraviolet rays or radiation is carried out by forming an electric field between the photoelectron emitting material (negative electrode) and an electrode (positive electrode) at least a part of which will be described later, which is a photocatalyst. Photoelectrons are effectively generated from the emitting material. The method (structure) for forming the electric field can be appropriately selected depending on the shape and structure of the charged portion, the field of application, the type of device, the expected effect (accuracy), and the like. The strength of the electric field can be appropriately determined by the type of addition to the photoelectron emitting material or the base material, and there is another invention of the present inventor in this regard. The electric field strength is generally 0.1
V / cm to 2 kV / cm.
【0019】本発明では、このような電場の形成によ
り、電極材の光触媒が後記するように光触媒作用を加速
するので、実用上効果的な形態にできることである。本
発明の光触媒の電場の効果の詳細は、不明であるが、電
場の設定における正極にすることにより、光触媒中の電
位勾配が増大し、フォトキャリアの再結合が抑制される
ためと推定される。次に、光電子放出のための電場形成
用電極材としての光触媒について説明する。光触媒は、
前記光電子放出材との間の電場の形成用電極材の少なく
とも一部に含有でき、紫外線又は放射線の照射により、
気体中の微粒子に共存するガス状汚染物質(有害ガス)
を分解・除去するものであれば何れでも良い。In the present invention, the formation of such an electric field accelerates the photocatalytic action of the photocatalyst of the electrode material, as will be described later, so that a practically effective form can be obtained. The details of the effect of the electric field of the photocatalyst of the present invention are unknown, but it is presumed that by using a positive electrode in the setting of the electric field, the potential gradient in the photocatalyst increases and the recombination of photocarriers is suppressed. . Next, a photocatalyst as an electric field forming electrode material for photoelectron emission will be described. Photocatalyst
It can be contained in at least a part of the electrode material for forming an electric field between the photoelectron emitting material, and by irradiation with ultraviolet rays or radiation,
Gaseous pollutants (harmful gases) that coexist with fine particles in the gas
Any may be used as long as it can be decomposed and removed.
【0020】通常、半導体材料が効果的であり、容易に
入手出来、加工性も良いことから好ましい。効果や経済
性の面から、Se,Ge,Si,Ti,Zn,Cu,A
l,Sn,Ga,In,P,As,Sb,C,Cd,
S,Te,Ni,Fe,Co,Ag,Mo,Sr,W,
Cr,Ba,Pbのいずれか、又はこれらの化合物、又
は合金、又は酸化物が好ましく、これらは単独で、また
2種類以上を複合して用いる。例えば、元素としてはS
i,Ge,Se、化合物としてはAlP,AlAs,G
aP,AlSb,GaAs,InP,GaSb,InA
s,InSb,CdS,CdSe,ZnS,MoS2 ,
WTe2 ,Cr2 Te3 ,MoTe,Cu2 S,W
S2 、酸化物としてはTiO2 ,Bi2 O3 ,CuO,
Cu2 O,ZnO,MoO3 ,InO3 ,Ag2 O,P
bO,SrTiO3 ,BaTiO3 ,Co3O4 ,Fe
2 O3 ,NiOなどがある。In general, semiconductor materials are preferable because they are effective, easily available and have good workability. From the viewpoint of effect and economy, Se, Ge, Si, Ti, Zn, Cu, A
l, Sn, Ga, In, P, As, Sb, C, Cd,
S, Te, Ni, Fe, Co, Ag, Mo, Sr, W,
Any one of Cr, Ba, and Pb, or a compound, an alloy, or an oxide thereof is preferable, and these are used alone or in combination of two or more kinds. For example, the element is S
i, Ge, Se, as compounds AlP, AlAs, G
aP, AlSb, GaAs, InP, GaSb, InA
s, InSb, CdS, CdSe, ZnS, MoS 2 ,
WTe 2 , Cr 2 Te 3 , MoTe, Cu 2 S, W
S 2 , oxides such as TiO 2 , Bi 2 O 3 , CuO,
Cu 2 O, ZnO, MoO 3 , InO 3 , Ag 2 O, P
bO, SrTiO 3 , BaTiO 3 , Co 3 O 4 , Fe
2 O 3 , NiO, etc.
【0021】光触媒の固定化は、適宜の材料(母材)に
蒸着法、スパッタリング法、焼結法、ゾル−ゲル法、塗
布による方法、焼付け塗装による方法など、周知の付加
方法を適宜用いることができる。付加の形状は、薄膜
状、線状、網状、帯状、くし状、島状などを後述母材な
どにより適宜に選択し、用いることができる。上記Ti
やZnは、例えば板状Tiを酸化することにより、光触
媒とすることができるので、装置の種類によっては好適
に使用できる。光触媒の固定化の例として、光触媒を母
材として、周知の導電性材料、例えばSUS,Cu−Z
n,Al、又はセラミック、フッ素樹脂、ガラスあるい
はガラス状物質の表面へコーティングしたり、光触媒を
板状、線状、網状、膜あるいは繊維状などの適宜の材料
にコーティングしたり、あるいは包み、又は挟み込んで
固定して用いてもよい。例として、ゾルゲル法によるガ
ラス板への二酸化チタンのコーティングがある。光触媒
は、粉体状のままでも用いることが出来るが、焼結、蒸
着、スパッタリングなどの周知の方法で適宜の形状にし
て用いることができる。To fix the photocatalyst, a well-known addition method such as a vapor deposition method, a sputtering method, a sintering method, a sol-gel method, a coating method, or a baking coating method is appropriately used for an appropriate material (base material). You can As the additional shape, a thin film shape, a linear shape, a net shape, a strip shape, a comb shape, an island shape, or the like can be appropriately selected and used depending on a base material to be described later. Above Ti
Since Zn or Zn can be used as a photocatalyst by, for example, oxidizing plate-like Ti, it can be suitably used depending on the type of device. As an example of immobilizing the photocatalyst, the photocatalyst is used as a base material and a well-known conductive material such as SUS or Cu-Z is used.
n, Al, or coating on the surface of ceramic, fluororesin, glass or glass-like substance, or coating or encapsulating the photocatalyst on an appropriate material such as plate, line, net, film or fiber, or You may pinch and fix and use it. An example is the coating of titanium dioxide on glass plates by the sol-gel method. The photocatalyst can be used in a powder form as it is, but can be used in an appropriate shape by a known method such as sintering, vapor deposition, or sputtering.
【0022】また、光触媒作用の向上のために、上記光
触媒にPt,Ag,Pd,RuO2,Co3 O4 の様な
物質を加えて使用することも出来る。該物質の添加は、
光触媒作用が促進されるので好ましい。これらは、一種
類又は複数組合せて用いることができる。通常、添加量
は、光触媒に対して、0.01〜10重量%であり、適
宜添加物質の種類や要求性能などにより、予備試験を行
い適正濃度を選択することができる。添加の方法は、含
浸法、光還元法、スパッタ蒸着法、混練法など周知手段
を適宜用いることができる。光触媒は、導電性の材料の
少なくとも一部に付加、あるいは導電性の材料と一体化
することで、前記電場の形成が効果的となる。次に例を
挙げると、SUS材へ網状あるいは島状に光触媒を付加
(SUSが正極)するか、セラミックへ膜状に光触媒を
付加し、目のあらい網状のSUS材で挟み込む(SUS
が正極)ことによる。Further, in order to improve the photocatalytic action, a substance such as Pt, Ag, Pd, RuO 2 , Co 3 O 4 may be added to the above photocatalyst and used. The addition of the substance is
It is preferable because the photocatalytic action is promoted. These can be used alone or in combination. Usually, the addition amount is 0.01 to 10% by weight with respect to the photocatalyst, and an appropriate concentration can be selected by performing a preliminary test depending on the type of the added substance and required performance. As a method of addition, well-known means such as an impregnation method, a photoreduction method, a sputter deposition method, and a kneading method can be appropriately used. The photocatalyst is added to at least a part of the conductive material or is integrated with the conductive material to effectively form the electric field. For example, the photocatalyst is added to the SUS material in the form of a mesh or island (SUS is the positive electrode), or the photocatalyst is added to the ceramic in the form of a film, and it is sandwiched by the mesh SUS material having a rough mesh (SUS).
Is the positive electrode).
【0023】次に、紫外線又は放射線の照射について述
べれば、その照射源は照射により、上記光電子放出材か
らの光電子の放出と、光触媒の光触媒作用を発揮するも
のであれば何れでも良い。紫外線源は、通常、水銀灯、
水素放電管、キセノン放電管、ライマン放電管などを適
宜使用出来る。光源の例としては、殺菌ランプ、ブラッ
クライト、蛍光ケミカルランプ、UV−B紫外線ラン
プ、キセノンランプがある。放射線としては、α線、β
線、γ線などが用いられ、照射手段としてコバルト6
0、セシウム137、ストロンチウム90などの放射性
同位元素、又は原子炉内で生成する放射性廃棄物及びこ
れに適当な処理加工した放射性物質を線源として用いる
ことができる。Next, the irradiation of ultraviolet rays or radiation will be described. The irradiation source may be any one as long as it exhibits the photoelectron emission from the photoelectron emitting material and the photocatalytic action of the photocatalyst upon irradiation. UV sources are usually mercury lamps,
A hydrogen discharge tube, a xenon discharge tube, a Lyman discharge tube, etc. can be used as appropriate. Examples of light sources include germicidal lamps, black lights, fluorescent chemical lamps, UV-B ultraviolet lamps, and xenon lamps. As radiation, α rays, β
Rays, γ rays, etc. are used, and cobalt 6 is used as an irradiation means.
Radioisotopes such as 0, cesium 137, and strontium 90, or radioactive waste generated in a nuclear reactor and radioactive materials appropriately processed for the radioactive waste can be used as the radiation source.
【0024】荷電微粒子の捕集材(集じん材)は、荷電
微粒子を確実に捕集するものであればいずれでも使用で
きる。通常の荷電装置における集じん板、集じん電極等
各種電極材や静電フィルター方式が一般的であるが、ス
チールウール電極、タングステンウール電極のようなウ
ール状構造のものも有効である。エレクトレット材も好
適に使用できる。光電子放出材、光触媒、照射源、荷電
微粒子の捕集材の種類や形状の選択や、使用条件、電場
の条件は、適用装置の規模、形状、構造、要求性能、経
済性などにより、適宜予備試験を行い、決めることがで
きる。As the collecting material (dust collecting material) for the charged fine particles, any material can be used as long as it can reliably collect the charged fine particles. Various electrode materials such as a dust collecting plate and a dust collecting electrode in an ordinary charging device and an electrostatic filter system are generally used, but a wool-like structure such as a steel wool electrode and a tungsten wool electrode is also effective. Electret materials can also be preferably used. The type and shape of the photoelectron emitting material, photocatalyst, irradiation source, and collection material for charged fine particles, as well as the usage conditions and electric field conditions are appropriately reserved depending on the scale, shape, structure, required performance, economical efficiency of the applicable device. Can test and decide.
【0025】次に、クリーンルームにおけるガス状汚染
物質の内、ウェハなどの基板に付着し、接触角の増加を
もたらす(関与が大きい)H.Cの本発明による分解・
除去作用について説明する。接触角を増加させる有機性
ガスは、ウェハやウェハ上の薄膜の種類、性状によって
異なるが、本発明者らの研究によると次のように考えら
れる。すなわち、通常クリーンルーム環境における基板
や基材表面の接触角を増加させる有機性ガス(H.C)
で共通して言えることは、高分子量のH.Cが主であ
り、その構造として−CO、−COO結合(親水性を有
する)を持つことである。このH.Cは親水部(−C
O、−COO結合部)を有する疎水性物質(H.Cの基
本構造の−C−C−の部分)と考えることができる。具
体例で説明すると、通常のクリーンルームにおける基板
(製品、半製品、原材料)表面の接触角を増加させる有
機性ガスは、C16〜C20の高分子量H.C、例えばフタ
ル酸エステル、高級脂肪酸フェノール誘導体であり、こ
れらの成分に共通することは化学的構造として、−C
O、−COO結合(親水性を有する)を持つことであ
る。Next, among the gaseous pollutants in the clean room, they are attached to a substrate such as a wafer and cause an increase in contact angle (contribution is large). Disassembly of C according to the present invention
The removing action will be described. The organic gas that increases the contact angle varies depending on the type and properties of the wafer and the thin film on the wafer, but according to the study by the present inventors, it is considered as follows. That is, an organic gas (HC) that usually increases the contact angle of the substrate or substrate surface in a clean room environment.
It is common to say that the high molecular weight H. C is the main, and it has -CO and -COO bonds (having hydrophilicity) as its structure. This H. C is a hydrophilic part (-C
It can be considered as a hydrophobic substance (O—, —COO bond portion) (the —C—C— portion of the basic structure of HC). To explain in concrete example, the substrate in a conventional cleanroom organic gases increase the contact angle (products, semi-finished products, raw materials) surface, high molecular weight of C 16 -C 20 H. C, for example, a phthalic acid ester and a higher fatty acid phenol derivative, and common to these components is -C
It is to have O and -COO bonds (having hydrophilicity).
【0026】これらの汚染有機性ガスの起因は、高分子
製品の可塑剤、離型剤、酸化防止剤などであり、高分子
製品の存在する個所が発生源である(「空気清浄」第3
3巻、第1号、p16〜21、1995)。光触媒によ
るこれらの有機性ガスの処理メカニズムの詳細は不明で
あるが、次のように推定できる。すなわち、これらの有
機性ガスは−CO、−COO結合の部分がウェハやガラ
ス表面のOH基と水素結合し、その上部は疎水面とな
り、結果としてウェハやガラス表面は疎水性になり、接
触角が大きくなり、その表面に成膜すると膜の付着力は
弱い。本発明では、電極材の少なくとも一部に光触媒を
用いるので、正極により光触媒作用が加速された光触媒
に上記有機性ガスが接触し、その活性部である−CO、
−COO結合部が、光触媒表面に吸着し、光触媒作用を
受け安定な形態に変換(酸化・分解)される。その結果
として、有機性ガスは安定な形態となり、ウェハやガラ
ス基板上は付着しないか、又は付着しても疎水性を示さ
ないと考えられる。The cause of these polluted organic gases is a plasticizer, a mold release agent, an antioxidant, etc. of the polymer product, and the place where the polymer product is present is the generation source (“Air Purification” No. 3).
Volume 3, No. 1, p16-21, 1995). The details of the mechanism of treatment of these organic gases by the photocatalyst are unknown, but it can be estimated as follows. That is, in these organic gases, the -CO and -COO bond portions are hydrogen-bonded to the OH groups on the wafer or glass surface, and the upper part thereof becomes a hydrophobic surface, resulting in the wafer or glass surface becoming hydrophobic and the contact angle. Becomes large, and when a film is formed on the surface, the adhesion of the film is weak. In the present invention, since the photocatalyst is used for at least a part of the electrode material, the organic gas is brought into contact with the photocatalyst whose photocatalytic action is accelerated by the positive electrode, and its active portion, -CO,
The —COO bond is adsorbed on the surface of the photocatalyst and is converted into a stable form (oxidation / decomposition) by photocatalysis. As a result, it is considered that the organic gas has a stable form and does not adhere to the wafer or the glass substrate, or does not exhibit hydrophobicity even when adhered.
【0027】本発明は、通常のクリーンルームにおける
空気中をはじめ各種気体中例えばN2 、Ar中でも同様
に使用できる。また、H.C以外のガス状有害成分、例
えば、NOx、NH3 、S又はNを含有する臭気性成分
(例、アミン、メルカプタン、サルファイド、脂肪酸)
が、不純物として(共有物として)含まれる場合も、該
ガス状汚染物質の除去において、本発明を同様に実施で
きることは言うまでもない。本発明を適用し得る空間と
は、上述の大気圧下の他に、加圧下、減圧下、真空下を
指し、同様に実施できる。通常のクリーンルームでは、
ガス状汚染物質として、H.Cが外気濃度レベルでも基
板の接触角を増加させ、汚染物として、特に関与が大き
いので、本発明では、主にH.Cの処理について説明し
た。すなわち、H.C除去を指標として基材や基板と接
触する気体を処理すれば良い。例えば、クリーンルーム
において酸やアルカリ性物質が高濃度で存在する場合、
例えば酸やアルカリ性物質を用いる洗浄工程における発
生NOxやNH3 がクリーンルームに流出している場
合、該ガス状の汚染物質の濃度によっては、上述の接触
角増加に関与する。この場合は、該ガス状の汚染物も本
発明の光触媒による作用により処理される。The present invention can be similarly used in air in a normal clean room as well as in various gases such as N 2 and Ar. In addition, H. Gaseous harmful components other than C, for example, odorous components containing NOx, NH 3 , S or N (eg amine, mercaptan, sulfide, fatty acid)
However, it is needless to say that the present invention can be similarly applied to the removal of the gaseous pollutant when it is included as an impurity (as a covalent substance). The space to which the present invention can be applied refers to under pressure, under reduced pressure, or under vacuum, in addition to the above-mentioned atmospheric pressure, and can be similarly implemented. In a normal clean room,
As a gaseous pollutant, H. Since C increases the contact angle of the substrate even at the outside air concentration level and is particularly involved as a contaminant, in the present invention, H.C. The process of C has been described. That is, H.264. The gas that comes into contact with the base material or the substrate may be treated using C removal as an index. For example, if a high concentration of acid or alkaline substance is present in a clean room,
For example, when NOx or NH 3 generated in the cleaning process using an acid or an alkaline substance is flowing out to the clean room, it contributes to the increase in the contact angle depending on the concentration of the gaseous pollutant. In this case, the gaseous contaminants are also treated by the action of the photocatalyst of the present invention.
【0028】[0028]
【実施例】以下、本発明を実施例により具体的に説明す
る。
実施例1
図1は、本発明の方法を半導体製造工場におけるエアー
ナイフ用の供給空気の浄化に適用した例である。図1に
おいて、1はクラス10000のクリーンルームであ
り、空気2が、粗フィルタ3、光触媒からなる光電子放
出、及びガス状汚染物質除去のための電場形成用電極材
4、光電子放出材と紫外線ランプが一体化された、すな
わち紫外線ランプの表面に光電子放出材を被覆した紫外
線ランプ5(特開平4−243540号)、及び荷電微
粒子捕集材6よりなる汚染除去装置(微粒子とガスの同
時除去装置)7によって、クリーンルーム1内で処理さ
れる。空気2は、該装置7を通過した後には、除塵され
てかつ、ガス状汚染物質(本例ではH.C)が分解され
た清浄な空気8となっていて、ウェハ(基板)を洗浄す
るためのエアーナイフ装置9へ供給される。EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 FIG. 1 is an example in which the method of the present invention is applied to purification of supply air for an air knife in a semiconductor manufacturing factory. In FIG. 1, reference numeral 1 denotes a clean room of class 10000, in which air 2 includes a coarse filter 3, a photoelectron emission consisting of a photocatalyst, and an electric field forming electrode material 4 for removing gaseous pollutants, a photoelectron emitting material and an ultraviolet lamp. A contamination removing device (simultaneous removal device for fine particles and gas) comprising an integrated ultraviolet lamp 5 having a photoelectron emitting material coated on the surface of the ultraviolet lamp (JP-A-4-243540) and a charged fine particle collecting material 6 Processed in the clean room 1 by 7. After passing through the device 7, the air 2 becomes clean air 8 from which dust is removed and gaseous pollutants (HC in this example) are decomposed to clean the wafer (substrate). Is supplied to the air knife device 9 for.
【0029】以下、本例を詳細に説明する。クリーンル
ーム1内に入る前の外気10は、まず粗フィルタ11と
空気調和器12で処理される。次いで空気はクリーンル
ーム1に入る際にHEPAフィルタ13によって除塵さ
れて、極低濃度のH.Cが共存するクラス10000の
濃度の空気14となる。すなわち、主に自動車や民生品
としてのプラスチックなどの有機高分子樹脂から発生す
る極低濃度のH.Cは粗フィルタ11、空気調和器1
2、及びHEPAフィルタ13では除去されないため、
クリーンルーム1内に導入されてしまう。また、クリー
ンルーム1では、その構成部材の一部や作業の器具や装
置にプラスチックなどの有機物が使用されており、それ
らの材料から微量の有機性ガスの発生がある。また、ク
リーンルーム1内の空気は、省エネの点で一部が循環使
用されているので(図示せず)、クリーンルーム1内の
空気2中のH.C濃度は、非メタンH.C濃度として
0.8〜1.2ppmとなっている(外気10よりも高
い濃度となっている)。空気2は、先ず粗フィルタ3に
より除塵される。The present example will be described in detail below. The outside air 10 before entering the clean room 1 is first treated by the coarse filter 11 and the air conditioner 12. Then, when the air enters the clean room 1, it is dust-removed by the HEPA filter 13 and has an extremely low concentration of H.V. The air 14 has a concentration of class 10000 in which C coexists. That is, H.V. of extremely low concentration generated mainly from organic polymer resins such as automobiles and plastics as consumer products. C is a coarse filter 11 and an air conditioner 1
2 and since it is not removed by the HEPA filter 13,
It is introduced into the clean room 1. Further, in the clean room 1, organic materials such as plastic are used for some of the constituent members and working tools and devices, and a trace amount of organic gas is generated from these materials. In addition, since a part of the air in the clean room 1 is circulated and used from the viewpoint of energy saving (not shown), the H. 2 in the air 2 in the clean room 1 is used. C concentration is non-methane H. The C concentration is 0.8 to 1.2 ppm (higher than the outside air 10). The air 2 is first dust-removed by the coarse filter 3.
【0030】次いで、微粒子(粒子状物質)及びH.C
を含む空気は、電場形成のための電極材(光触媒)4、
光電子放出材が一体化された紫外線ランプ5、荷電微粒
子捕集材により構成される汚染除去装置(微粒子とガス
状汚染物質の同時除去装置)7にて微粒子がクラス10
以下(クラス:1ft3 中の0.1μm以上の微粒子の
個数)、H.Cが非メタンH.Cを指標として0.2p
pm、好ましくは0.1ppm以下にまで分解される。
ここでの電極材4は、光電子放出用の電場形成のため、
及び微粒子に共存するH.C除去のためである。電極材
(正極)としての光触媒は電場の作用でH.C分解が効
果的となる。すなわち、粗フィルタ3で除去されない微
粒子は、光電子放出材(負極)5と電極(正極)4間に
電場を形成することにより、光電子放出材5から効果的
に放出される光電子15により荷電され、荷電微粒子と
なり、該荷電微粒子は、後方の荷電微粒子捕集材6で捕
集・除去される。一方、上記微粒子を含む空気中に共存
するH.Cは紫外線照射と電場形成により活性化された
光触媒4に接触し、分解・除去される。ここで、H.C
以外に共存するガス状汚染物質、例えば、NH3 、NO
xも同様に処理される。Then, fine particles (particulate matter) and H. C
The air containing air is an electrode material (photocatalyst) 4 for forming an electric field,
Fine particles are classified as class 10 by the ultraviolet lamp 5 in which the photoelectron emitting material is integrated, and the pollution removing device (simultaneous removing device for fine particles and gaseous pollutants) 7 composed of the charged fine particle collecting material.
The following (class: number of fine particles of 0.1 μm or more in 1 ft 3 ), H. C is non-methane H. 0.2p with C as index
It is decomposed to pm, preferably 0.1 ppm or less.
The electrode material 4 here is for forming an electric field for photoelectron emission,
And H. coexisting in fine particles. This is for removing C. The photocatalyst as the electrode material (positive electrode) is subjected to H. C decomposition becomes effective. That is, the fine particles not removed by the coarse filter 3 are charged by the photoelectrons 15 effectively emitted from the photoelectron emitting material 5 by forming an electric field between the photoelectron emitting material (negative electrode) 5 and the electrode (positive electrode) 4. The particles become charged fine particles, and the charged fine particles are collected and removed by the charged fine particle collecting material 6 at the rear. On the other hand, H. C contacts the photocatalyst 4 activated by ultraviolet irradiation and electric field formation, and is decomposed and removed. Here, H. C
Gaseous pollutants coexisting in addition, for example, NH 3, NO
x is processed similarly.
【0031】ここでの紫外線ランプは殺菌ランプ、光電
子放出材はAuで7nmを殺菌ランプ表面に被覆したも
のである。また、電極材4はCu−Zn板にTiO2 を
ゾル−ゲル法で被覆したものである。光電子放出材(負
極)5と、電極(正極)4間の電場電圧は20V/cm
である。これにより、ウェハに付着すると汚染をもたら
す微粒子、接触角増加に関与する分子量の大きいH.C
及び活性なH.CはH.Cの種類によって接触角が増加
しない分子量の小さいH.Cもしくは二酸化炭素や水に
分解される。このようにして、微粒子が除去された、か
つ接触角の増加をもたらさない超清浄な空気8が得ら
れ、エアーナイフ装置9へ供給される。Here, the ultraviolet lamp is a germicidal lamp, and the photoelectron emitting material is Au having a thickness of 7 nm coated on the germicidal lamp surface. The electrode material 4 is a Cu—Zn plate coated with TiO 2 by a sol-gel method. The electric field voltage between the photoelectron emitting material (negative electrode) 5 and the electrode (positive electrode) 4 is 20 V / cm.
Is. As a result, fine particles that cause contamination when attached to the wafer and H.V. C
And active H. C is H. The H. C. having a small molecular weight does not increase the contact angle depending on the type of C. C or decomposed into carbon dioxide or water. In this way, ultra-clean air 8 from which fine particles are removed and which does not increase the contact angle is obtained and supplied to the air knife device 9.
【0032】実施例2
実施例1における非メタンH.C濃度が0.8〜1.2
ppmのクラス10000のクリーンルームの半導体工
場におけるウェハ保管庫(ウエハ収納ストッカ)の空気
清浄を、図2に示した本発明の基本構成図を用いて説明
する。ウェハ保管庫Cの空気清浄として、先ず微粒子除
去を説明する。微粒子除去は、ウェハ保管庫Cの片側に
設置された紫外線ランプ5-1、紫外線の反射面16、光
電子放出材5-2、電場設置のための電極4及び荷電微粒
子の捕集材6(汚染除去装置、B)にて実施される。Example 2 Non-methane H. C concentration is 0.8 to 1.2
Air cleaning of a wafer storage (wafer storage stocker) in a semiconductor factory in a ppm class 10,000 clean room will be described with reference to the basic configuration diagram of the present invention shown in FIG. As the air cleaning of the wafer storage C, the removal of fine particles will be described first. The particles are removed by an ultraviolet lamp 5 -1 , installed on one side of the wafer storage C, an ultraviolet reflecting surface 16, a photoelectron emission material 5-2 , an electrode 4 for setting an electric field, and a charged particle collection material 6 (contamination). Removal device, B).
【0033】すなわち、ウェハ保管庫C中の微粒子(粒
子状物質)17は、紫外線ランプ(殺菌ランプ)からの
紫外線が照射された光電子放出材5-2から放出される光
電子15により荷電され、荷電微粒子となり、該荷電微
粒子は荷電微粒子の捕集材6に捕集され(汚染除去装
置、B)、ウェハの存在する被処理空間部(清浄化空間
部、A)は高清浄化される。18a,18b,18c
は、保管庫内の空気の流れを示す。すなわち、汚染除去
部(B)に移動した空気は、紫外線ランプの照射により
加温されるため、上昇気流が生じ保管庫C内を矢印、1
8a,18b,18cの様に動く。この空気の動きによ
り、保管庫内の微粒子17は、汚染除去装置(B)に効
果的に移動するため、保管庫C内は迅速に清浄化され
る。That is, the fine particles (particulate matter) 17 in the wafer storage C are charged and charged by the photoelectrons 15 emitted from the photoelectron emitting material 5-2 irradiated with the ultraviolet rays from the ultraviolet lamp (sterilization lamp). The particles become fine particles, and the charged fine particles are collected by the collection member 6 for charged fine particles (contamination removing device, B), and the to-be-processed space portion (cleaning space portion, A) where the wafer exists is highly cleaned. 18a, 18b, 18c
Indicates the flow of air in the storage. That is, the air moved to the decontamination section (B) is heated by the irradiation of the ultraviolet lamp, so that an ascending air current is generated and the inside of the storage cabinet C is indicated by an arrow, 1.
It moves like 8a, 18b, 18c. The movement of the air effectively moves the fine particles 17 in the storage cabinet to the contamination removing device (B), so that the storage cabinet C is quickly cleaned.
【0034】ここで、遮光材19は被処理空間部Aと汚
染除去部Bの間に設置されており、紫外線ランプ5-1か
らの紫外線がウェハキャリヤ20中のウェハ21に直接
照射されるのを防いでいる。ここでの光電子放出材5-1
は、ガラス材表面にAuを薄膜状に付加したものであ
り、このような構成の光電子放出材については、本発明
者の別の発明がある(特公平7−93098号公報)。
このようにして、ウェハ保管庫C中の微粒子(粒子状物
質)17は捕集・除去される。上記において、光電子放
出材5-2への紫外線の照射は、曲面状の反射面16を用
い、紫外線ランプ5-1から紫外線を板状の光電子放出材
5-2に効率よく照射している。[0034] Here, the light blocking member 19 is installed between the decontamination unit B and the object space A, the ultraviolet rays from the ultraviolet lamp 5-1 is directly irradiated on the wafer 21 in the wafer carrier 20 Is preventing. Photoelectron emission material here 5-1
Is a thin film of Au added to the surface of a glass material, and there is another invention of the present inventor regarding the photoelectron emitting material having such a structure (Japanese Patent Publication No. 7-93098).
In this way, the fine particles (particulate matter) 17 in the wafer storage C are collected and removed. In the above, for the irradiation of the photoelectron emitting material 5-2 with the ultraviolet rays, the curved reflecting surface 16 is used to efficiently irradiate the plate-like photoelectron emitting material 5-2 with the ultraviolet rays from the ultraviolet lamp 5-1 .
【0035】電場形成用電極4は、その一部が光触媒か
らなり、該電極4は、光電子放出材5-2からの光電子放
出を電場形成により効果的に行うため、及び後述微粒子
に共存するH.C除去を効果的に行うためのものであ
る。すなわち、光電子放出材(負極)5-2と電極(正
極)4の間は、電場を形成しており、この場所は微粒子
除去においては、微粒子の荷電部(光電子を効果的に発
生させ、微粒子を荷電させる場所)、そしてH.C除去
においてはH.C除去部である。ここでの微粒子の荷電
は、電場において光電子放出材5-2に紫外線照射するこ
とにより発生する光電子15により効率よく実施され
る。ここでの電場の電圧は、50V/cmである。微粒
子の荷電部で荷電された荷電微粒子の捕集は、後方の電
極板6により捕集・除去される。The electric field forming electrode 4 is partially made of the photocatalyst, the electrode 4, coexist photoemission from the photoelectron emitting member 5-2 for performing effectively by the electric field formed, and later microparticles H . This is for effectively removing C. That is, an electric field is formed between the photoelectron emitting material (negative electrode) 5-2 and the electrode (positive electrode) 4, and at this place, in removing fine particles, the charged portion of the fine particles (photoelectrons are effectively generated, Where H. is charged), and H. In removing C. It is a C removal unit. The charging of the fine particles here is efficiently performed by the photoelectrons 15 generated by irradiating the photoelectron emitting material 5-2 with ultraviolet rays in an electric field. The voltage of the electric field here is 50 V / cm. The collection of the charged fine particles charged in the charging section of the fine particles is collected and removed by the electrode plate 6 at the rear.
【0036】次に、ウェハ保管庫C中の上記微粒子を含
む空気に共存するガス状汚染物質としてのH.C22の
除去について説明する。H.C除去は、紫外線ランプ
(殺菌ランプ)5-1の照射を受けた光触媒(TiO2 を
Cu−Znの母材に被覆したもの)4にて実施される。
ウェハ保管庫Cには、保管庫Cの開閉により保管庫Cが
設置されたクラス10000のクリーンルーム内空気が
入る。この空気には、H.Cが非メタン炭化水素として
0.8〜1.2ppm含有する。該H.Cを含む空気
は、空気の流れ18a,18b,18cにより、汚染除
去装置Bに効果的に移動するため、紫外線照射と電場形
成により活性化された光触媒4に効果的に接触し、分子
量の大きいH.C及び活性なH.Cが効果的にH.Cの
種類によって活性が低い分子量の小さいH.C、もしく
は二酸化炭素や水に分解される。H.Cは、非メタン
H.Cを指標として、0.1ppm以下となるまで分解
される。Next, H. 2 as a gaseous pollutant coexisting in the air containing the above-mentioned fine particles in the wafer storage C. The removal of C22 will be described. H. C removal is carried out by a photocatalyst (having a base material of Cu—Zn coated with TiO 2 ) 4 irradiated with an ultraviolet lamp (sterilization lamp) 5 −1 .
When the storage C is opened and closed, the air in the clean room of class 10000 in which the storage C is installed enters the wafer storage C. This air contains H. C is contained as 0.8 to 1.2 ppm as a non-methane hydrocarbon. The H. The air containing C is effectively moved to the decontamination device B by the air streams 18a, 18b, 18c, so that it effectively contacts the photocatalyst 4 activated by the ultraviolet irradiation and the electric field formation, and has a large molecular weight. H. C and active H. C is effective in H. Depending on the type of C. Decomposed into C, carbon dioxide or water. H. C is non-methane H. With C as an index, it is decomposed to 0.1 ppm or less.
【0037】以上のようにして、微粒子除去(除塵)と
H.Cの分解により、清浄化空間部Aは清浄化され、保
管庫内は微粒子がクラス1以下まで除去され、またガス
状汚染物質が除去された超清浄空気となる。これによ
り、該超清浄空気をウェハ表面に暴露しておくことによ
り、ウェハ表面の汚染は防止される。この結果、ウェハ
上の接触角の増加が防止される。図2において、図1と
同じ記号は、同じ意味を示す。As described above, fine particle removal (dust removal) and H. By the decomposition of C, the cleaning space A is cleaned, and the inside of the storage becomes ultra-clean air in which fine particles are removed to class 1 or less and gaseous pollutants are removed. Thus, by exposing the ultra-clean air to the wafer surface, contamination of the wafer surface is prevented. As a result, the contact angle on the wafer is prevented from increasing. 2, the same symbols as those in FIG. 1 have the same meanings.
【0038】実施例3
実施例2における半導体工場のウェハ保管庫の別のタイ
プ(構成)のものを図3、4を用いて説明する。ウェハ
保管庫Cにおける空気清浄は、紫外線源としての紫外線
ランプ5-1を、光電子放出材5-2及び一部が光触媒でな
る光電子放出のための電場形成用電極4で囲み一体化し
たユニットBにて行われる。図3は、ウェハ保管庫Cの
断面図であり、ウェハ保管庫C中の空気清浄は、保管庫
の空間にユニット化した汚染除去装置(Bの部分)を設
置することで実施される。前記Bの汚染除去装置は、図
4にその基本構成図として示すように、紫外線ランプ5
-1、該ランプを囲む形状(円筒状)のガラス母材上にA
uを被覆した光電子放出材5-2、該光電子放出材5-2を
囲む形状(円筒状)の光触媒からなる電場形成用電極
4、その後方に設置された荷電微粒子の捕集材6より成
る。Third Embodiment Another type (structure) of the wafer storage of the semiconductor factory in the second embodiment will be described with reference to FIGS. Air cleaning in the wafer stocker C is an ultraviolet lamp 5-1 as an ultraviolet light source, the unit light emission material 5-2 and part are integrated enclosed in field forming electrode 4 for light emission comprising photocatalytic B Will be held in. FIG. 3 is a cross-sectional view of the wafer storage C, and air cleaning in the wafer storage C is performed by installing a unitized contamination removing device (B portion) in the space of the storage. The B decontamination device has an ultraviolet lamp 5 as shown in FIG.
-1 , A on the glass base material of the shape (cylindrical) surrounding the lamp
photoelectron emitting material 5-2 obtained by coating a u, field forming electrode 4 made of photocatalyst shape (cylindrical) surrounding the photoelectron emitting member 5-2, consisting of trapping material 6 of the installed charged particles behind it .
【0039】先ず、ウェハ保管庫C中の微粒子(粒子状
物質)17の除去について説明する。ウェハ保管庫中の
微粒子(微粒子状物質)17は図4に示した紫外線ラン
プ5-1からの紫外線が照射された光電子放出材5-2から
放出される光電子15により荷電され、荷電微粒子とな
り、該荷電微粒子は荷電微粒子の捕集材6に捕集され、
ウェハの存在する清浄化空間部(A)は高清浄化され
る。ここでの光電子放出材5-2は、ガラス材表面5nm
Auを薄膜状に付加したものである。このようにし
て、ウェハ保管庫中の微粒子(粒子状物質)は捕集・除
去され、ウェハ保管庫内は超清浄化される。電極4は、
光触媒(TiO2 を、SUS母材に被覆したもの)でな
り、光電子放出材(負極)5-1と該電極(正極)4の間
に電場を形成している(光電子放出部)。ここでの電場
電圧は、50V/cmである。この電場形成により、光
電子放出材5-2からの光電子15の放出及び後述H.C
の除去が効果的に起こる。微粒子除去においては、該電
場形成により光電子が効率良く放出されるので、微粒子
の荷電が効果的に行われ、荷電微粒子は荷電微粒子の捕
集材6にて捕集される。First, the removal of the fine particles (particulate matter) 17 in the wafer storage C will be described. The fine particles (fine particle substances) 17 in the wafer storage are charged by the photoelectrons 15 emitted from the photoelectron emitting material 5-2 irradiated with the ultraviolet rays from the ultraviolet lamp 5-1 shown in FIG. The charged fine particles are collected by the charged fine particle collecting material 6,
The cleaning space (A) where the wafer exists is highly cleaned. The photoemissive material 5-2 here is a glass material surface of 5 nm.
It is a thin film of Au added. In this way, the fine particles (particulate matter) in the wafer storage are collected and removed, and the inside of the wafer storage is ultra-cleaned. The electrode 4 is
It is made of a photocatalyst (TiO 2 is coated on a SUS base material) and forms an electric field between the photoelectron emitting material (negative electrode) 5-1 and the electrode (positive electrode) 4 (photoelectron emitting portion). The electric field voltage here is 50 V / cm. Due to this electric field formation, the emission of the photoelectrons 15 from the photoelectron emission material 5-2 and the H.S. C
Removal effectively occurs. In removing the fine particles, photoelectrons are efficiently emitted due to the formation of the electric field, so that the fine particles are effectively charged, and the charged fine particles are collected by the collector 6 for the charged fine particles.
【0040】次に、ウェハ保管庫C内の上記微粒子を含
む空気に共存するガス状汚染物質としてのH.C22の
除去について説明する。H.C22の除去は、紫外線ラ
ンプ(殺菌ランプ)5-1の照射を受けた光触媒4にて実
施される。実施例2で述べたごとくH.C22は、保管
庫内の空気流れ18a,18b,18cにより、汚染除
去装置Bに効果的に移動するため紫外線照射と電場形成
により活性化された光触媒4に効果的に接触し、分子量
の小さいH.C、もしくは二酸化炭素や水に分解され
る。保管庫においてH.Cは、非メタンH.Cを指標と
して、0.1ppm以下となるまで分解される。以上の
ようにして、微粒子除去(除塵)とH.Cの分解によ
り、清浄化空間部Aは清浄化され保管庫内は微粒子はク
ラス1以下まで除去され、またガス状汚染物質が除去さ
れた超清浄空気となる。これにより、該超清浄空気をウ
ェハ表面に暴露しておくことにより、ウェハ表面の汚染
は防止される。この結果、ウェハ上の接触角の増加が防
止される。図3、4において、図1、図2と同じ記号
は、同じ意味を示す。Next, H. 2 as a gaseous pollutant coexisting with the air containing the above fine particles in the wafer storage C. The removal of C22 will be described. H. The removal of C22 is carried out by the photocatalyst 4 irradiated with the ultraviolet lamp (sterilization lamp) 5 -1 . As described in Example 2, H.264. C22 is effectively moved to the decontamination device B by the air flows 18a, 18b, 18c in the storage, so that it effectively contacts the photocatalyst 4 activated by ultraviolet irradiation and electric field formation, and H22 having a small molecular weight is used. . Decomposed into C, carbon dioxide or water. H. C is non-methane H. With C as an index, it is decomposed to 0.1 ppm or less. As described above, fine particle removal (dust removal) and H. Due to the decomposition of C, the cleaning space A is cleaned, and fine particles are removed to class 1 or less in the storage, and gaseous ultra-clean air is obtained. Thus, by exposing the ultra-clean air to the wafer surface, contamination of the wafer surface is prevented. As a result, the contact angle on the wafer is prevented from increasing. 3 and 4, the same symbols as those in FIGS. 1 and 2 have the same meanings.
【0041】実施例4
実施例3の図4の別の構造のものを図5に示す。図5
は、網状の光電子放出材5-2、網状の光触媒(網状金属
材にTiO2 を付加したもの)4を用いている。図5に
おいて、図4と同一符号は、同じ意味を示す。Fourth Embodiment FIG. 5 shows another structure of the third embodiment shown in FIG. Figure 5
Uses a net-like photoelectron emitting material 5-2 and a net-like photocatalyst (a net-like metal material to which TiO 2 is added) 4. 5, the same symbols as those in FIG. 4 indicate the same meanings.
【0042】実施例5
実施例3の図4の別の構造のものを図6に示す。図6
は、紫外線ランプ5-1の表面に光電子放出材5-2を被覆
して一体化し、その外周方向にその一部が光触媒でなる
電極材4、荷電微粒子捕集としての金網状集じん電極6
を用いている。図6において、図4と同一符号は、同じ
意味を示す。Embodiment 5 FIG. 6 shows another structure of Embodiment 3 different from that of FIG. Figure 6
An ultraviolet lamp 5-1 surface and covers the photoelectron emitting member 5 -2 integrally, electrode material 4, a part on the outer periphery direction is in the photocatalyst, a wire mesh-like dust collecting electrode as a charged particle sampling 6
Is used. 6, the same symbols as those in FIG. 4 indicate the same meanings.
【0043】実施例6
図2に示した構成の保管庫に下記試料空気を入れ、電場
用電圧の印加及び紫外線照射を行い、保管庫内の微粒子
濃度と非メタンH.C濃度の測定を、また保管庫内にウ
ェハを収納し、ウェハ表面の接触角の測定を行った。
導入試料空気; 半導体工場のクラス10000のクリ
ーンルーム空気(非メタンH.C濃度:1.2ppm)
(クラスとは1ft3 中の0.1μm以上の微粒子の個
数)
保管庫大きさ; 80リットル
光電子放出材; 石英ガラス:薄膜状にAu(6nm)
を被覆したもの。
光電子放出用電極材; SUS板上にTiO2 をゾルゲ
ル法にて付加。
紫外線ランプ; 殺菌灯(254nm)
光電子放出材とTiO2 を付加した電極間の電場電圧;
50V/cm
荷電微粒子捕集材; SUS電極(600V/cm)
ウェハ; 5インチウェハ
微粒子濃度測定器; 光散乱式:パーティクルカウンタ
(0.1μm以上)
非メタンH.C濃度測定器; ガスクロマトグラフ
接触角測定器; 水滴接触角計Example 6 The following sample air was put into the storage having the configuration shown in FIG. 2, and the voltage for the electric field was applied and the ultraviolet irradiation was carried out. The C concentration was measured, and the wafer was stored in the storage to measure the contact angle of the wafer surface. Sample air introduced: Class 10000 clean room air in a semiconductor factory (non-methane HC concentration: 1.2 ppm)
(Class is the number of fine particles of 0.1 μm or more in 1 ft 3 ) Storage size; 80 liter photoelectron emitting material; Quartz glass: Au (6 nm) in thin film form
Coated with. Photoelectron emission electrode material: TiO 2 is added on the SUS plate by the sol-gel method. UV lamp; germicidal lamp (254 nm) Electric field voltage between photoemissive material and electrode with TiO 2 added;
50 V / cm Charged particulate collection material; SUS electrode (600 V / cm) Wafer; 5 inch wafer particulate concentration measuring instrument; Light scattering type: Particle counter (0.1 μm or more) Non-methane H. C concentration measuring instrument; gas chromatograph contact angle measuring instrument; water drop contact angle meter
【0044】結 果
1)0.1μm以上の微粒子濃度を測定器で測定した。
その結果を1ft3 中の微粒子の個数(クラス)で表1
に示す。なお、ブランクとして紫外線照射なし、光電子
放出用電極への電圧の印加なしの場合の1時間放置後の
保管庫内の微粒子濃度を調べたところ、初期濃度(入口
濃度)に対して85%が認められた(測定された)。Result 1) The fine particle concentration of 0.1 μm or more was measured with a measuring instrument.
The results are shown in Table 1 by the number (class) of fine particles in 1ft 3.
Shown in. As a blank, when the ultraviolet irradiation was not performed and the voltage was not applied to the photoelectron emission electrode, the concentration of fine particles in the storage cabinet after being left for 1 hour was examined and found to be 85% of the initial concentration (inlet concentration). Was measured.
【表1】 [Table 1]
【0045】2)非メタンH.C濃度を測定器で測定
し、その結果を表1に示す。なお、ブランクとして紫外
線照射なし、光電子放出用電極への電圧の印加なしの場
合、1時間放置後の保管庫内の非メタンH.C濃度を調
べたところ、1.0〜1.1ppmであった。
3)保管庫に収納したウェハ表面の接触角を測定し、そ
の結果を図7に示す。図7はウェハの収納(保管)時間
に対する接触角の値(角度)、本発明のもの−○−、比
較として試料空気にそのまま暴露したもの−●−、本保
管庫のUV点灯(有り)のみ(電場なし)のもの−△
−、UV点灯なし、電場なしのものを−□−に示す。な
お、用いた接触角を検出し得る角度(検出下限の接触
角、θ、度)は、4〜5度であり、図7中↓印は検出限
界を示す。2) Non-methane H. The C concentration was measured with a measuring instrument, and the results are shown in Table 1. In addition, in the case where the blank was not irradiated with ultraviolet light and no voltage was applied to the photoelectron emission electrode, the non-methane H. When the C concentration was examined, it was 1.0 to 1.1 ppm. 3) The contact angle of the wafer surface stored in the storage was measured, and the result is shown in FIG. FIG. 7 shows the value (angle) of the contact angle with respect to the storage (storage) time of the wafer, the one of the present invention- ○-, the one directly exposed to the sample air for comparison- ●-, only the UV lighting (present) of the main storage. (Without electric field)-△
-, No UV lighting, no electric field is shown in-□-. The angle at which the contact angle used can be detected (contact angle at the lower limit of detection, θ, degrees) is 4 to 5 degrees, and the ↓ mark in FIG. 7 indicates the detection limit.
【0046】[0046]
【発明の効果】本発明によれば、次のような効果を奏す
る。
1)光電子放出材に紫外線及び/又は放射線照射する気
体の清浄において、光電子放出のための電場設定用電極
材の少なくとも一部を光触媒とすることにより、
光電子放出(及びそれに続く粒子の荷電)による粒
子状物質の除去と、光触媒によるガス状汚染物質の除
去、すなわち粒子とガスの同時除去が1つの装置ででき
た。従来の光電子放出による粒子除去のための電場が、
粒子に共存するガス状汚染物質の除去に利用でき、電場
の設定が一石二鳥(2つの役目)をするようになった。
紫外線又は放射線が有効利用された。
電場下で光触媒を用いることで、光触媒作用が加速
された。The present invention has the following effects. 1) In cleaning gas for irradiating the photoelectron emitting material with ultraviolet rays and / or radiation, by using at least a part of the electric field setting electrode material for photoelectron emission as a photocatalyst, photoelectron emission (and subsequent charge of particles) is caused. The removal of particulate matter and the removal of gaseous pollutants by photocatalysis, that is, the simultaneous removal of particles and gas, was achieved in one device. The electric field for particle removal by conventional photoemission is
It can be used to remove the gaseous pollutants that coexist in the particles, and the setting of the electric field now plays the role of two birds with one stone (two roles).
Ultraviolet rays or radiation was effectively used. The photocatalysis was accelerated by using the photocatalyst under the electric field.
【0047】2)先端産業の装置への利用においては被
清浄空間中の粒子とガス状汚染物質が同時に効果的に処
理され、処理気体は接触角が増加しないクラス1よりも
清浄となった。すなわち、超清浄な空間が簡便に創出で
きた。
3)光触媒によりH.Cに共存する他のガス状汚染物質
(有害ガス)、例えば酸性ガス、アルカリ性ガス、臭気
性ガスも同時除去されるので、適用分野が広がった。
4)従来、光電子放出材の長時間運転では、微粒子に共
存するガス状汚染物質が光電子放出材へ付着し、劣化原
因となっていたが、該ガス状汚染物質は除去されるの
で、本装置の長時間の耐久性の課題が解決された。
5)前記よりコンパクトな粒子とガス状物質が同時処理
できる清浄化装置となった。これより、実用性が向上し
た。利用分野が広がった。2) In the use in the equipment of the advanced industry, the particles and the gaseous pollutants in the space to be cleaned were effectively treated at the same time, and the treated gas was cleaner than the class 1 in which the contact angle was not increased. That is, an ultra-clean space could be easily created. 3) H. Since other gaseous pollutants (harmful gases) coexisting with C, such as acidic gas, alkaline gas, and odorous gas, are simultaneously removed, the field of application has expanded. 4) In the past, when the photoelectron emitting material was operated for a long time, the gaseous pollutant coexisting with the fine particles adhered to the photoelectron emitting material and caused deterioration, but since the gaseous pollutant is removed, this device is used. The problem of long-term durability was solved. 5) A cleaning device that is capable of simultaneously treating particles and gaseous substances that are more compact than the above. From this, the practicality is improved. The field of use has expanded.
【図1】本発明を半導体製造工場におけるエアーナイフ
用の空気の浄化に用いた構成図。FIG. 1 is a configuration diagram in which the present invention is used to purify air for an air knife in a semiconductor manufacturing factory.
【図2】本発明をウェハ保管庫の空気清浄に用いた構成
図。FIG. 2 is a configuration diagram in which the present invention is used for cleaning air in a wafer storage.
【図3】本発明をウェハ保管庫の空気清浄に用いた構成
図。FIG. 3 is a configuration diagram in which the present invention is used for air cleaning of a wafer storage.
【図4】図3の汚染除去装置の拡大図。4 is an enlarged view of the decontamination device of FIG.
【図5】図4の別の汚染除去装置の拡大図。5 is an enlarged view of another decontamination device of FIG.
【図6】図4の別の汚染除去装置の拡大図。FIG. 6 is an enlarged view of another decontamination device of FIG. 4.
【図7】保管時間(h)による接触角(度)の変化を示
すグラフ。FIG. 7 is a graph showing a change in contact angle (degree) with storage time (h).
1:クリーンルーム、2:空気、3:粗フィルタ、4:
電場形成用電極材、5:光電子放出材を被覆した紫外線
ランプ、5-1:紫外線ランプ、5-2:光電子放出材、
6:荷電微粒子捕集材、7:汚染除去装置、8:清浄な
空気、9:エアーナイフ装置、10:外気、11:粗フ
ィルタ、12:空気調和器、13:HEPAフィルタ、
14:空気、15:光電子、16:反射板、17:微粒
子、18:空気の動き、19:遮光材、20:ウェハキ
ャリヤ、21:ウェハ、22:有機性ガス、1: Clean room, 2: Air, 3: Coarse filter, 4:
Electrode field forming electrode material, 5: UV lamp coated with photoelectron emitting material, 5 -1 : UV lamp, 5 -2 : photoelectron emitting material,
6: Charged particulate trapping material, 7: Contamination removal device, 8: Clean air, 9: Air knife device, 10: Outside air, 11: Coarse filter, 12: Air conditioner, 13: HEPA filter,
14: Air, 15: Photoelectron, 16: Reflector, 17: Fine particles, 18: Movement of air, 19: Light shielding material, 20: Wafer carrier, 21: Wafer, 22: Organic gas,
フロントページの続き (51)Int.Cl.7 識別記号 FI B03C 3/60 B01D 53/36 J (56)参考文献 特開 平1−266864(JP,A) 特開 平5−317749(JP,A) 特開 平3−288559(JP,A) 特開 平8−71447(JP,A) 特開 平6−252242(JP,A) 特開 平6−198215(JP,A) 特開 平5−96125(JP,A) 特開 平6−205930(JP,A) (58)調査した分野(Int.Cl.7,DB名) B03C 3/00 - 3/88 Continuation of front page (51) Int.Cl. 7 identification code FI B03C 3/60 B01D 53/36 J (56) References JP-A-1-266864 (JP, A) JP-A-5-317749 (JP, A ) JP-A-3-288559 (JP, A) JP-A-8-71447 (JP, A) JP-A-6-252242 (JP, A) JP-A-6-198215 (JP, A) JP-A-5-198245 (JP, A) 96125 (JP, A) JP-A-6-205930 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B03C 3/00-3/88
Claims (2)
又は放射線を照射することにより光電子を放出せしめ、
該光電子により空間中に含まれている微粒子を荷電して
捕集する気体の清浄方法において、前記電場設定用の電
極材が、光触媒を含有し、気体中のガス状汚染物質を同
時に除去することを特徴とする気体の清浄方法。1. A photoelectron emitting material containing ultraviolet rays and / or
Or it emits photoelectrons by irradiating with radiation,
In a method for cleaning a gas in which the fine particles contained in the space are charged and collected by the photoelectrons, the electrode material for setting the electric field contains a photocatalyst and simultaneously removes gaseous pollutants in the gas. A method for cleaning a gas characterized by:
出材と、電場設定用電極材及び荷電微粒子捕集材とを有
する微粒子の荷電・捕集装置を備えてなる気体の清浄装
置において、前記電場設定用の電極材が光触媒を含有す
ることを特徴とする気体の清浄装置。2. A gas cleaning device comprising a fine particle charging / collecting device having an ultraviolet and / or radiation source, a photoelectron emitting material, an electric field setting electrode material and a charged fine particle collecting material, A gas cleaning device, characterized in that an electrode material for setting an electric field contains a photocatalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23129096A JP3446985B2 (en) | 1996-08-14 | 1996-08-14 | Gas cleaning method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23129096A JP3446985B2 (en) | 1996-08-14 | 1996-08-14 | Gas cleaning method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1057838A JPH1057838A (en) | 1998-03-03 |
JP3446985B2 true JP3446985B2 (en) | 2003-09-16 |
Family
ID=16921297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23129096A Expired - Fee Related JP3446985B2 (en) | 1996-08-14 | 1996-08-14 | Gas cleaning method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3446985B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3389187B2 (en) * | 1998-12-31 | 2003-03-24 | エルジー電子株式会社 | Film type photocatalyst |
US20040022700A1 (en) * | 2000-06-10 | 2004-02-05 | Kim Hak Soo | Method and apparatus for removing pollutants using photoelectrocatalytic system |
CN100394654C (en) * | 2003-01-16 | 2008-06-11 | 松下电器产业株式会社 | Photoelectronic discharge plate and negative particle generator charged clear device and the like equipment using the plate |
CN100406124C (en) * | 2006-08-22 | 2008-07-30 | 北京大学 | Planar photocatalytic device and its preparing method |
-
1996
- 1996-08-14 JP JP23129096A patent/JP3446985B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1057838A (en) | 1998-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0769322B1 (en) | Method of cleaning gases with a photocatalyst | |
JP3446985B2 (en) | Gas cleaning method and apparatus | |
JP3460500B2 (en) | Gas cleaning apparatus, method for cleaning closed space using the same, and closed space | |
EP1258917A1 (en) | Method and device for preventing oxidation on substrate surface | |
JP3303125B2 (en) | Space cleaning material and space cleaning method using the same | |
JP3429522B2 (en) | Conveying device having gas cleaning means | |
JP3460465B2 (en) | Gas cleaning method and equipment | |
JP3695684B2 (en) | Substrate surface cleaning method and apparatus | |
JP2863419B2 (en) | Method and apparatus for preventing contamination of substrate or substrate surface | |
JPH11147051A (en) | Method and device for cleaning storage space | |
JP2000300936A (en) | Method and apparatus for obtaining negative ion- containing clean air for removing static electricity | |
JP3841196B2 (en) | Method for charging particulate matter and method and apparatus for using the same | |
JP3797635B2 (en) | SPACE CLEANING MATERIAL AND SPACE CLEANING METHOD USING THE SAME | |
JP3827263B2 (en) | Storage container for substrate or substrate | |
JP3696037B2 (en) | GAS CLEANING UNIT DEVICE AND CLEANING METHOD | |
JP3661840B2 (en) | GAS CLEANING UNIT DEVICE AND CLEANING METHOD | |
JPH11285623A (en) | Method and device for purifying gas | |
KR100485918B1 (en) | Gas purification method and apparatus | |
JP3518784B2 (en) | Method and apparatus for removing harmful components in gas | |
JP3696038B2 (en) | Particulate matter collection device and collection method | |
JP2006314999A (en) | Method and apparatus for separation and classification of granular matter | |
JP3635318B2 (en) | Gas purification unit equipment | |
JP2722297B2 (en) | Gas cleaning method and apparatus | |
JP2991963B2 (en) | Method and apparatus for preventing contamination of substrate or substrate surface | |
JP3552148B2 (en) | Photoemission device, method of charging particulate matter using the same, and method of cleaning space |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |