JPH06251875A - Electroluminescent element - Google Patents

Electroluminescent element

Info

Publication number
JPH06251875A
JPH06251875A JP5031769A JP3176993A JPH06251875A JP H06251875 A JPH06251875 A JP H06251875A JP 5031769 A JP5031769 A JP 5031769A JP 3176993 A JP3176993 A JP 3176993A JP H06251875 A JPH06251875 A JP H06251875A
Authority
JP
Japan
Prior art keywords
current limiting
fine powder
layer
antimony
limiting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5031769A
Other languages
Japanese (ja)
Inventor
Yuichi Aoki
裕一 青木
Shiro Kobayashi
史朗 小林
Toshiaki Anzaki
利明 安崎
Shunji Wada
俊司 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP5031769A priority Critical patent/JPH06251875A/en
Publication of JPH06251875A publication Critical patent/JPH06251875A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the luminance unevenness of a emitted light and prevent the generation of a breakdown by using, as a conductive fine powder for current limiting layer, an antimony contained-thin oxide fine powder in which a specified part of thin atom is substituted by antimony atom. CONSTITUTION:A transparent electrode material such as ITO is formed as a transparent electrode 2 on a glass plate 1 by means of spattering, and a light emitting layer 3 is formed thereon by vacuum evaporation. On the layer 3, a powder layer of several 10mum formed by solidifying the conductive fine powder of a tin oxide containing 0.01-1% of antimony with an organic resin binder is formed as a current limiting layer 4 by means of spraying. A film of a metal such as aluminum is formed thereon as a back plate 5 by means of vacuum evaporation or spattering to form an EL element. Since the antimony- contained tin oxide fine powder has a temperature coefficient of electric resistance of substantially 0, the current of the layer 4 is never changed, and the luminance unevenness or life shortening of the luminescence center can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、改良されたエレクトロ
ルミネッセンス(以下ELと略す)素子に関し、さらに
詳述すると電流制限層が改良されて、輝度ムラが無く、
かつ、発光のブレークダウンが生じないようにされた直
流駆動可能な混成型EL素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved electroluminescence (hereinafter abbreviated as EL) element. More specifically, the current limiting layer is improved so that there is no uneven brightness.
In addition, the present invention relates to a hybrid drive type EL element that can be driven by direct current so that breakdown of light emission does not occur.

【0002】[0002]

【従来の技術】EL素子を応用したELディスプレイ
は、近年ポータブルタイプのコンピュータの端末などに
急速に普及しつつある有望なフラットディスプレイの1
つである。EL素子には、薄膜型EL素子とパウダー型
EL素子の2つのタイプが知られているが、最近では薄
膜層とパウダー層とを組み合わせた混成型EL素子が、
有力なEL素子の1種として注目されるようになってき
た(例えば英国特許公報2176340号公報、同21
76341号公報)。
2. Description of the Related Art An EL display to which an EL element is applied is one of the promising flat displays that are rapidly becoming popular in portable computer terminals in recent years.
Is one. Two types of EL elements are known, a thin film type EL element and a powder type EL element. Recently, a mixed molding EL element in which a thin film layer and a powder layer are combined is
It has come to be noticed as one of the prominent EL elements (for example, British Patent Publications 2176340 and 21).
No. 76341).

【0003】[0003]

【発明が解決しようとする課題】上記従来技術の混成型
EL素子においては、電流制限層を構成する導電性微粉
末として、二酸化マンガン(MnO2)が用いられてい
る。導電性微粉末として二酸化マンガンを用いて電流制
限層を形成したEL素子は、EL素子が発光している間
に電流制限層の温度が上昇するので、それにより電流制
限層の電気抵抗の低下をきたし、EL素子の発光を開始
した時点よりも大きな電流がEL素子中に流れるように
なる。これにより更に電流制限層の温度が上昇するとい
う現象が生じ、EL素子を長時間安定して連続発光させ
ることが困難になり、またこの現象はEL素子に輝度む
らを発生させる原因になっていた。また、発光を停止し
たときに、完全に発光が認められない状態で消光せず、
残光が一定時間肉眼で認められ、ELデイスプレイとし
て表示品位を低下させる原因となっていた。本発明は、
上記の問題点を解決するためになされたものであって、
その目的は発光を長時間継続しても輝度むらが生じるこ
となく、過大電流による素子のブレークダウンが発生す
るのを防止したEL素子を提供するにある。
In the above-mentioned conventional hybrid EL device, manganese dioxide (MnO 2 ) is used as the conductive fine powder forming the current limiting layer. In the EL element in which the current limiting layer is formed by using manganese dioxide as the conductive fine powder, the temperature of the current limiting layer rises while the EL element emits light, which lowers the electric resistance of the current limiting layer. However, a larger current than that at the time when the EL element starts to emit light comes to flow in the EL element. This causes a phenomenon that the temperature of the current limiting layer further rises, which makes it difficult for the EL element to stably emit light continuously for a long time, and this phenomenon causes uneven brightness in the EL element. . Also, when the light emission is stopped, the light is not completely extinguished and the light is not extinguished.
Afterglow was observed with the naked eye for a certain period of time, which was a cause of deteriorating the display quality as an EL display. The present invention is
It was made to solve the above problems,
It is an object of the present invention to provide an EL element in which unevenness in luminance does not occur even when light emission is continued for a long time and breakdown of the element due to an excessive current is prevented.

【0004】[0004]

【課題を解決するための手段】本発明は、透明な電気絶
縁性基板上に透明電極、発光層、導電性微粉末を有機樹
脂バインダーで固定した電流制限層および背面電極をこ
の順序で積層したエレクトロルミネッセンス素子であっ
て、前記電流制限層の導電性微粉末として、錫原子の
0.01〜1%をアンチモン原子に置換させたアンチモ
ン含有酸化錫微粉末を用いたエレクトロルミネッセンス
素子である。
According to the present invention, a transparent electrode, a light emitting layer, a current limiting layer having conductive fine powder fixed with an organic resin binder, and a back electrode are laminated in this order on a transparent electrically insulating substrate. The electroluminescent element is an electroluminescent element using antimony-containing tin oxide fine powder in which 0.01 to 1% of tin atoms are replaced with antimony atoms, as the conductive fine powder of the current limiting layer.

【0005】本発明に用いられる透明な電気絶縁性基板
は、窓ガラスに用いられるソーダライムシリカ組成のガ
ラス板、低膨張ガラス(たとえばコーニングガラス社製
商品名7059)などのガラス板が用いられる。電気絶
縁性基板上の透明電極は、錫をドープした酸化インジウ
ム(以下ITOという)などの透明電極材料をスパッ
タ、真空蒸着法などの方法により成膜して設けられる。
本発明の発光層に用いる物質は、ZnS、ZnSe、C
dSなどの2−6族化合物にMn、Cuなどの遷移金属
やTb、Sm、Dyなどの希土類元素あるいはそれらの
フッ化物、塩化物などを発光中心としてドープしたもの
が例示でき、発光層は真空蒸着法、スパッタ法、MOC
VD法などの方法を用いて設けることができる。
As the transparent electrically insulating substrate used in the present invention, a glass plate having a soda lime silica composition used for window glass, a low expansion glass (for example, Corning Glass Co., Ltd., trade name 7059), or the like is used. The transparent electrode on the electrically insulating substrate is provided by forming a film of a transparent electrode material such as tin-doped indium oxide (hereinafter referred to as ITO) by a method such as sputtering or vacuum deposition.
The materials used for the light emitting layer of the present invention are ZnS, ZnSe, C
Illustrative examples include those in which a 2-6 group compound such as dS is doped with a transition metal such as Mn or Cu or a rare earth element such as Tb, Sm, or Dy or a fluoride or chloride thereof as an emission center, and the light emitting layer is vacuum. Vapor deposition method, sputtering method, MOC
It can be provided using a method such as the VD method.

【0006】本発明の電流制限層は、錫原子の0.01
〜1%をアンチモン原子に置換させたアンチモン含有酸
化錫微粉末が有機樹脂バインダーにより固定されて形成
されている。本発明の電流制限層に用いることができる
有機樹脂バインダーとしては、例えばビニル系樹脂、ポ
リエステル系樹脂、ポリアミド系樹脂、セルロース系樹
脂、ポリウレタン系樹脂、尿素系樹脂、エポキシ系樹
脂、メラミン系樹脂、シリコーン系樹脂等が挙げられる
が、特に、水酸基、カルボキシル基、スルホニル基、ニ
トロ基等の極性基や、エポキシ基、イソシアヌル基、シ
ラノール基等の反応性基を有した有機樹脂が好適に用い
られる。本発明に用いる酸化錫微粉末は、酸化錫微粉末
のみを、100kg/cm2程度の圧力をかけて固めて
錠剤形状としたものの抵抗率は、約1×103Ωcm〜
約2×105Ωcmを示す。本発明の電流制限層の抵抗
値が大きくなると、過電流が流れることによる素子破壊
が生じる危険性が小さくなるが、電流制限層での電圧降
下が大きくなり、素子の駆動に要する電圧が大きくなる
ので、両特性から電流制限層は、その厚みを5μm〜3
0μmとし、厚み方向に対し単位面積(1cm2)当り
10Ω〜2000Ωの抵抗値とするのが好ましい。その
ために電流制限層の抵抗率は、約1×104Ωcm〜約
2×106Ωcmにするのが好ましい。
The current limiting layer of the present invention contains 0.01 atom of tin atoms.
It is formed by fixing antimony-containing tin oxide fine powder in which ˜1% is replaced with antimony atoms, fixed by an organic resin binder. Examples of the organic resin binder that can be used in the current limiting layer of the present invention include vinyl resins, polyester resins, polyamide resins, cellulose resins, polyurethane resins, urea resins, epoxy resins, melamine resins, Examples of the silicone resin include organic resins having a polar group such as a hydroxyl group, a carboxyl group, a sulfonyl group, and a nitro group, or a reactive group such as an epoxy group, an isocyanuric group, and a silanol group. . The tin oxide fine powder used in the present invention has a resistivity of about 1 × 10 3 Ωcm to which only the tin oxide fine powder is hardened into a tablet shape by applying a pressure of about 100 kg / cm 2.
It shows about 2 × 10 5 Ωcm. When the resistance value of the current limiting layer of the present invention increases, the risk of element destruction due to overcurrent flowing decreases, but the voltage drop in the current limiting layer increases and the voltage required to drive the element increases. Therefore, from both characteristics, the current limiting layer has a thickness of 5 μm to 3 μm.
The resistance value is preferably 0 μm and a resistance value of 10 Ω to 2000 Ω per unit area (1 cm 2 ) in the thickness direction. Therefore, the resistivity of the current limiting layer is preferably about 1 × 10 4 Ωcm to about 2 × 10 6 Ωcm.

【0007】本発明の電流制限層に用いられる酸化錫微
粉末の粒子径は1μm以下が好ましく、100nm以下
がより好ましい。特に100nm以下の粒子径を主とし
て含む酸化錫微粒子を用いると電流制限層が可視光線に
対して透明になるので、背面電極に透明電極を使用すれ
ば発光を背面電極側からも取り出すことができる。本発
明のアンチモン含有酸化錫微粉末は、錫およびアンチモ
ンの塩化物、オキシ塩化物などの加水分解によって沈澱
を析出させその後焼成する公知の方法により得ることが
できる。
The particle size of the tin oxide fine powder used in the current limiting layer of the present invention is preferably 1 μm or less, more preferably 100 nm or less. In particular, when tin oxide fine particles mainly containing a particle size of 100 nm or less are used, the current limiting layer becomes transparent to visible light. Therefore, if a transparent electrode is used as the back electrode, light emission can be extracted from the back electrode side. The antimony-containing tin oxide fine powder of the present invention can be obtained by a known method of precipitating a precipitate by hydrolysis of chlorides and oxychlorides of tin and antimony, and then calcining.

【0008】そして、アンチモン含有酸化錫微粉末と有
機樹脂バインダーの比率は、電流制限層内の占有体積比
率で表して、微粉末/有機樹脂バインダー=0.4〜
2.5の範囲内にするのが好ましい。上記比率が0.4
よりも小さいと、電流制限層の抵抗が大きくなり、2.
5よりも大きいと、電流制限層に亀裂が生ずるなどの層
の安定性が低下するので好ましくない。電流制限層を発
光層の上に設ける具体的方法としては、アンチモン含有
酸化錫微粉末と有機樹脂バインダーの混合物や、アンチ
モン含有酸化錫微粒子を水あるいは有機溶剤に分散させ
たゾルとバインダー溶液の混合物を例えばスプレーなど
により塗布する。本発明の背面電極は、アルミニウム
(Al)などの金属を真空蒸着あるいはスパッタ法で成
膜することにより設けられる。そして、EL素子の耐湿
性を確保するために、背面電極を覆うようにしたカバー
ガラスで素子を封止することができる。
The ratio of the antimony-containing tin oxide fine powder to the organic resin binder is expressed by the volume ratio occupied in the current limiting layer: fine powder / organic resin binder = 0.4-
It is preferably within the range of 2.5. The ratio is 0.4
If it is smaller than 1, the resistance of the current limiting layer increases, and
If it is larger than 5, the stability of the layer such as cracks in the current limiting layer is deteriorated, which is not preferable. As a specific method of providing the current limiting layer on the light emitting layer, a mixture of antimony-containing tin oxide fine powder and an organic resin binder, or a mixture of a sol and a binder solution in which antimony-containing tin oxide fine particles are dispersed in water or an organic solvent is used. Is applied, for example, by spraying. The back electrode of the present invention is provided by depositing a metal such as aluminum (Al) by vacuum deposition or sputtering. Then, in order to secure the humidity resistance of the EL element, the element can be sealed with a cover glass that covers the back electrode.

【0009】また、本発明のEL素子の電流制限層を用
いるアンチモン含有酸化錫微粉末を粒径100nm以下
の粒子が主として含まれるようにして可視光線に対して
透明になるようにし、かつ、背面電極に公知のITO
(錫をドープした酸化インジュウム)や酸化錫などの透
明導電物質を用いることにより、発光を背面電極からも
取り出すことができるEL素子とすることができる。こ
のとき、発光層で生ずる発光のうち背面電極側に取り出
す光の割合を多くするには、電気絶縁性基板上に設ける
透明電極の透明性を低下させ、または不透明にして、発
光が前記電気絶縁性基板を通して外部に出ないようにす
るのがよい。前記のように発光を背面電極側のみから外
部に出るようにしたEL素子は、素子の耐湿性を確保す
るために背面電極を覆うようにしてEL素子を構成する
積層体を封止するためのガラス板を設け、そのガラス板
の内面あるいは外面に背面電極の形状に応じて、または
背面電極表面に直接有機染料や有機顔料からなるカラー
フィルターを設ければ、輝度が大きい多色表示が可能な
EL素子とすることができる。
Further, the antimony-containing tin oxide fine powder for use in the current limiting layer of the EL device of the present invention is made to mainly contain particles having a particle size of 100 nm or less so as to be transparent to visible light, and the back surface thereof. Known ITO for electrodes
By using a transparent conductive material such as (indium oxide doped with tin) or tin oxide, it is possible to obtain an EL element in which light emission can also be extracted from the back electrode. At this time, in order to increase the ratio of the light emitted to the back electrode side in the light emission generated in the light emitting layer, the transparency of the transparent electrode provided on the electrically insulating substrate is reduced or made opaque, so that the light emission is caused by the electrical insulation. It is better to prevent it from going out through the flexible substrate. As described above, the EL element in which the emitted light is emitted only from the back electrode side is used for sealing the laminate forming the EL element by covering the back electrode in order to secure the moisture resistance of the element. If a glass plate is provided and a color filter made of an organic dye or organic pigment is provided on the inner surface or the outer surface of the glass plate according to the shape of the back electrode or directly on the back electrode surface, multicolor display with high brightness is possible. It can be an EL element.

【0010】[0010]

【作用】本発明のEL素子の電流制限層に用いるアンチ
モン含有酸化錫微粉末は、電子伝導性であり、その電気
抵抗の温度係数はほぼゼロである。したがって、EL素
子が発光しているときの発熱により電流制限層の温度が
上昇しても、電流制限層の電気抵抗が変化せず一定の電
流がEL素子に流れるので、素子の温度上昇により電流
制限層の電気抵抗が低下して、より大きな電流が流れ、
それによりさらに温度上昇が生じるという従来のELが
有していた欠点が解消される。これにより、EL素子の
発光中に輝度むらが生じたり、寿命短縮を起こすことが
抑制される。また、発光を停止したときに生ずる発光パ
ターンの残光が見られなくなる。
The antimony-containing tin oxide fine powder used in the current limiting layer of the EL device of the present invention is electronically conductive, and its temperature coefficient of electric resistance is almost zero. Therefore, even if the temperature of the current limiting layer rises due to heat generated when the EL element is emitting light, a constant current flows through the EL element without changing the electric resistance of the current limiting layer. The electric resistance of the limiting layer decreases, and a larger current flows,
As a result, the disadvantage of the conventional EL that the temperature further rises is solved. As a result, it is possible to suppress uneven brightness and shorten the life of the EL element during light emission. In addition, the afterglow of the light emission pattern that occurs when the light emission is stopped will not be seen.

【0011】また、本発明に用いる酸化錫微粒子には、
錫原子の0.01〜1%をアンチモン原子に置換させ
て、微粒子の電気抵抗率を調整しているので、有機樹脂
バインダーと混合固定した電流制限層の電気抵抗率を最
適に調整することができる。
The tin oxide fine particles used in the present invention include
The electric resistivity of the fine particles is adjusted by substituting 0.01 to 1% of tin atoms with antimony atoms, so that the electric resistivity of the current limiting layer mixed and fixed with the organic resin binder can be optimally adjusted. it can.

【0012】[0012]

【実施例】図1は、本発明の混成型EL素子の一実施例
の積層構造を示す断面図である。図2は混成型EL素子
の他の実施例の積層構造を示す断面図である。図1を用
いて本発明の混成型EL素子を説明する。ガラス基板1
上に、透明電極2としてITOなどの透明電極材料をス
パッタ、真空蒸着法などの方法により成膜する。その上
に発光層3を真空蒸着法、スパッタ法、MOCVD法な
どの方法を用いて形成する。発光層3の上に、電流制限
層としてアンチモンを0.01〜1%含有する酸化錫導
電性の微粉末を有機樹脂バインダーで固めた数十μm程
度の粉末層をスプレー法などの方法によって成膜し固め
る。そして、電流制限層の上に背面電極としてアルミニ
ウム(Al)などの金属を真空蒸着あるいはスパッタ法
で成膜することによりEL素子とする。ドットマトリッ
クス型のディスプレイパネルを製造する場合は、背面電
極と電流制限層をダイアモンド針等を用いて機械的に引
っかいて背面電極と電流制限層のパターン加工を同時に
行うのがよい。かかる方法でパターン加工をするために
は、電流制限層の膜厚としては、5μmから30μmの
範囲が好ましい。図1の電流制限層4および背面電極5
は、紙面に垂直な方向にストライプ状のパターン加工を
引っかきにより行った後の断面形状を示している。必要
に応じてこのEL素子は、樹脂あるいはガラスで封止し
耐湿防止対策が施される。
1 is a cross-sectional view showing a laminated structure of an embodiment of a hybrid EL device of the present invention. FIG. 2 is a sectional view showing a laminated structure of another embodiment of the hybrid EL device. The hybrid EL device of the present invention will be described with reference to FIG. Glass substrate 1
A transparent electrode material such as ITO is deposited as a transparent electrode 2 on the upper surface by a method such as sputtering or vacuum deposition. The light emitting layer 3 is formed thereon by a method such as a vacuum vapor deposition method, a sputtering method, or a MOCVD method. On the light emitting layer 3, a powder layer of several tens of μm in which tin oxide conductive fine powder containing 0.01 to 1% of antimony is hardened with an organic resin binder as a current limiting layer is formed by a method such as a spray method. Membrane and harden. Then, a metal such as aluminum (Al) is formed as a back electrode on the current limiting layer by vacuum deposition or sputtering to form an EL element. When manufacturing a dot matrix type display panel, it is preferable that the back electrode and the current limiting layer are mechanically scratched using a diamond needle or the like to simultaneously perform patterning of the back electrode and the current limiting layer. In order to perform pattern processing by such a method, the thickness of the current limiting layer is preferably in the range of 5 μm to 30 μm. The current limiting layer 4 and the back electrode 5 of FIG.
Shows the cross-sectional shape after the stripe-shaped pattern processing is performed by scratching in the direction perpendicular to the paper surface. If necessary, this EL element is sealed with resin or glass to take a moisture resistance prevention measure.

【0013】実施例1 ガラス基板1上に、透明電極2としてITOを反応性ス
パッタ法を用いて約500nmの厚さに成膜した後、フ
ォトリソグラフィ法により紙面とは平行な方向にストラ
イプ形状にパターニング加工した。続いて、発光層3と
してマンガン(Mn)を0.3重量%ドープしたZnS
を約1μm、電子ビーム蒸着法を用いて成膜した。次
に、アンチモンを錫原子に対して0.5原子%置換して
含有する酸化錫微粉末とポリエステル系バインダー樹脂
(日本合成製商品名TP−249)の固化後の体積比率
が4対6になるようにバインダー樹脂とシンナーとの混
合液と若干量の黒色顔料を加えてビーズミルで1時間攪
拌し、10μmテフロンメンブランフィルターで濾過
し、次に5μmテフロンメンブランフィルターで濾過し
た塗料をスプレー法で塗装、乾燥させ、抵抗率が1×1
5Ωcmで、膜厚が10μmの電流制限層を形成し
た。作製した電流制限層は、空隙の見られない、樹脂バ
インダーによって固定された、ほぼ均一厚みの黒色層と
なっていた。
Example 1 ITO was formed as a transparent electrode 2 on a glass substrate 1 to a thickness of about 500 nm by a reactive sputtering method, and then formed into a stripe shape in a direction parallel to the paper surface by a photolithography method. It was patterned. Subsequently, ZnS doped with 0.3% by weight of manganese (Mn) was used as the light emitting layer 3.
Was deposited to a thickness of about 1 μm using an electron beam evaporation method. Next, the volume ratio after solidification of the tin oxide fine powder containing antimony substituted by 0.5 atom% with respect to the tin atom and the polyester binder resin (trade name TP-249 manufactured by Nippon Gohsei) is 4 to 6. Add a mixture of binder resin and thinner and a small amount of black pigment, stir in a bead mill for 1 hour, filter with a 10 μm Teflon membrane filter, then paint with a spray method using a 5 μm Teflon membrane filter. , Dried, resistivity 1 × 1
A current limiting layer having a thickness of 0 5 Ωcm and a thickness of 10 μm was formed. The produced current limiting layer was a black layer having no voids and fixed by a resin binder and having a substantially uniform thickness.

【0014】次に、背面電極として、Al膜を真空蒸着
法で1μm程度成膜し、その後前記の電流制限層とAl
膜を、ダイヤモンド針を用いて同時にスクライブするこ
とにより、ストライプ状の背面電極5を形成した。この
ようにして作製したEL素子の層構造を図1に示す。こ
のEL素子を直流駆動回路に接続して発光させたとこ
ろ、均一に発光しており、輝度むらは観測されなかっ
た。
Next, an Al film is formed as a back electrode by vacuum evaporation to a thickness of about 1 μm, and then the current limiting layer and Al are formed.
The striped back electrode 5 was formed by simultaneously scribing the film using a diamond needle. The layered structure of the EL device thus manufactured is shown in FIG. When this EL element was connected to a DC drive circuit to emit light, it uniformly emitted light, and no uneven brightness was observed.

【0015】実施例2 図2に示すようにガラス基板1上に、電極2Aとして可
視光線に対して不透明なタンタル金属膜をスパッタ法を
用いて約500nmの厚さに成膜した後、フォトリソグ
ラフィ法により所定の形状にパターニングした。続い
て、電極2A上に発光層3としてMnを0.3重量%ド
ープした約1μmのZnS層をスパッタ法を用いて成膜
した。次に、アンチモンを錫原子に対して0.3原子%
置換して含有する酸化錫微粉末とポリエステル系バイン
ダー樹脂(日本合成製商品名TP−249)の固化後の
体積比率が5対5になるように樹脂バインダーとシンナ
ーとの混合液を加えてビーズミルで1時間攪拌し、10
μmテフロンメンブランフィルターで濾過し、次に5μ
mテフロンメンブランフィルターで濾過して得た塗料
を、スプレー法で塗装し乾燥させて、抵抗率が2×10
5Ωcmで膜厚が15μmの電流制限層を形成した。作
製した電流制限層は、空隙の見られない、樹脂バインダ
ーによって固定された、ほぼ均一な厚みの無色透明な層
となっていた。
Example 2 As shown in FIG. 2, a tantalum metal film which is opaque to visible light is formed as a electrode 2A on a glass substrate 1 by sputtering to a thickness of about 500 nm, and then photolithography. It was patterned into a predetermined shape by the method. Subsequently, a ZnS layer of about 1 μm doped with 0.3% by weight of Mn was formed as a light emitting layer 3 on the electrode 2A by a sputtering method. Next, 0.3 atom% of antimony with respect to tin atom
A bead mill in which a mixed liquid of a resin binder and a thinner was added so that the volume ratio after solidification of the tin oxide fine powder contained by substitution and the polyester binder resin (trade name TP-249 manufactured by Nippon Gohsei) became 5: 5. Stir for 1 hour at 10
Filter with μm Teflon membrane filter, then 5μ
The paint obtained by filtering with a m-Teflon membrane filter is applied by a spray method and dried to obtain a resistivity of 2 × 10.
A current limiting layer having a thickness of 5 Ωcm and a thickness of 15 μm was formed. The produced current limiting layer was a colorless and transparent layer having no voids and fixed by a resin binder and having a substantially uniform thickness.

【0016】次に、背面電極として、ITOをスパッタ
法で1μm程度成膜し、その後、前記の電流制限層とI
TO膜とを、ダイヤモンド針を用いて同時にスクライブ
することにより、図2に示すような紙面と垂直な方向に
並んだストライプ状の背面電極5を形成し、このストラ
イプ状にパターン形成されたITO背面透明電極上に有
機顔料を着色成分とする透明着色物質(カラーフイルタ
ー)を公知の電着法によって形成した。カラーフイルタ
ーは1本おきに交互に赤色(図2中でRで示される)、
緑色(図2中でGで示される)となるように設けた。得
られたEL素子を直流駆動回路に接続し、背面電極5に
1本おきに交互に電圧をかけて発光させたところ、赤色
と緑色が交互に均一に発光する多色EL素子が得られ
た。また、輝度むらは観測されなかった。ここで、上記
実施例1および2で作製したEL素子の電流制限層の、
温度による電気抵抗率の変化を測定した。36℃(10
00/絶対温度が3.24に相当)〜171℃(100
0/絶対温度が2.25に相当)の温度範囲での測定結
果を図3に示す。図3から明らかなように、実施例1お
よび実施例2の電流制限層の抵抗率は温度によらず、ほ
ぼ一定の値を示していた。
Next, as a back electrode, a film of ITO having a thickness of about 1 μm is formed by a sputtering method, and then the above current limiting layer and I are deposited.
The TO film and the TO film are simultaneously scribed using a diamond needle to form a stripe-shaped back electrode 5 arranged in a direction perpendicular to the paper surface as shown in FIG. 2, and the ITO back surface patterned in the stripe shape is formed. A transparent coloring substance (color filter) containing an organic pigment as a coloring component was formed on the transparent electrode by a known electrodeposition method. Every other color filter is red (shown as R in FIG. 2),
It was provided so as to be green (shown by G in FIG. 2). The obtained EL device was connected to a DC drive circuit, and every other voltage was alternately applied to the back electrode 5 to cause light emission. As a result, a multicolor EL device in which red and green were alternately and uniformly emitted was obtained. . In addition, uneven brightness was not observed. Here, in the current limiting layer of the EL device manufactured in the above-mentioned Examples 1 and 2,
The change in electrical resistivity with temperature was measured. 36 ° C (10
00 / absolute temperature corresponds to 3.24) to 171 ° C (100
The measurement result in the temperature range of 0 / absolute temperature corresponds to 2.25) is shown in FIG. As is clear from FIG. 3, the resistivity of the current limiting layers of Example 1 and Example 2 showed a substantially constant value regardless of temperature.

【0017】実施例3 ガラス基板1上に、電極2として可視光線に対して不透
明なタンタル金属膜をスパッタ法を用いて約500nm
の厚さに成膜した後、フォトリソグラフィ法により所定
の形状にパターニングした。続いて、発光層3としてM
nを0.3重量%ドープしたZnSを約1μmスパッタ
法を用いて成膜した。次に、錫原子に対してアンチモン
を0.3原子%置換して含有する酸化錫微粉末をジメチ
ルアセトアミド中に分散させたゾルを微粉末とポリエス
テル系樹脂バインダー(日本合成製商品名TP−24
9)の固化後の体積比率が5対5になるようにシンナー
で薄めた混合液を作成し、この液をビーズミルで1時間
攪拌し、10μmテフロンメンブランフィルターで濾過
し、次に5μmテフロンメンブランフィルターで濾過し
て塗料とし、この塗料をスプレー法で発光層の上に塗布
し乾燥させて、抵抗率が1×105Ωcmで膜厚が15
μmの電流制限層を形成した。作製された電流制限層
は、空隙の見られない、樹脂によって固定化された、ほ
ぼ均一厚みの無色透明な層となっていた。
Example 3 A tantalum metal film which is opaque to visible light is used as an electrode 2 on a glass substrate 1 by a sputtering method to have a thickness of about 500 nm.
After being formed into a film having a thickness of 1, the film was patterned into a predetermined shape by a photolithography method. Then, as the light emitting layer 3, M
ZnS doped with 0.3% by weight of n was formed into a film by a sputtering method of about 1 μm. Next, a sol in which a tin oxide fine powder containing 0.3 atom% of antimony substituted for tin atoms is dispersed in dimethylacetamide is used as a fine powder and a polyester resin binder (trade name TP-24 manufactured by Nippon Synthetic Co., Ltd.).
Prepare a mixture solution diluted with thinner so that the volume ratio after solidification of 9) becomes 5: 5, stir this solution with a bead mill for 1 hour, filter with a 10 μm Teflon membrane filter, and then a 5 μm Teflon membrane filter. To obtain a paint, which is applied onto the light emitting layer by a spray method and dried, and the resistivity is 1 × 10 5 Ωcm and the film thickness is 15
A μm current limiting layer was formed. The produced current limiting layer was a colorless and transparent layer having almost no uniform thickness, which was fixed by the resin and had no voids.

【0018】次に、背面電極としてITOをスパッタ法
で1μm程度成膜し、その後前記の電流制限層とITO
膜を、ダイヤモンド針を用いて同時にスクライブするこ
とにより、実施例2と同じようにストライブ状の背面電
極パターンを形成した。このストライプ状にパターン形
成されたITO背面電極上に電着法によって1本おきに
交互に赤色と緑色のカラーフイルター(透明着色膜)を
設け、図2で示される積層構造を有する多色EL素子を
得た。このEL素子を直流駆動回路に接続し、背面電極
に1本おきに交互に電圧をかけて発光させたところ、赤
色と緑色が交互に均一に発光するEL素子が得られた。
また輝度むらは観測されなかった。
Next, an ITO film is formed as a back electrode by sputtering to a thickness of about 1 μm, and then the current limiting layer and the ITO film are formed.
The film was simultaneously scribed with a diamond needle to form a striped back electrode pattern as in Example 2. A multicolor EL device having a laminated structure shown in FIG. 2 in which red and green color filters (transparent colored films) are alternately provided on the ITO back electrode patterned in the stripe shape by alternate electrodeposition. Got When this EL element was connected to a DC drive circuit and a voltage was alternately applied to every other back electrode to cause light emission, an EL element in which red and green were alternately and uniformly emitted was obtained.
In addition, uneven brightness was not observed.

【0019】比較例 電解法により作製した二酸化マンガン(MnO2)粉末
をボールミルで粉砕して平均粒径0.3μmとし、これ
をMnO2粉末の体積と樹脂バインダー(日本ゼオン製
商品名MR−110)との体積の比率が3対7になるよ
うに混合したシンナーを溶媒とする液を作成し、実施例
1と同様に10μmテフロンメンブランフィルターで濾
過し、次に5μmテフロンメンブランフィルターで濾過
して塗料を作製した。この塗料を実施例1と同様に、ガ
ラス基板上に形成した透明電極2と発光層3を積層した
ものの上にスプレー法で塗装し、乾燥させ、抵抗率が5
×104Ωcmで膜厚が20μmの電流制限層を形成し
た。次に、実施例1と同様に背面電極を形成し、ダイヤ
モンド針を用いてスクライブすることにより、所定の背
面電極パターンを形成した。得られたEL素子を直流駆
動回路に接続して発光させたところ、輝度を上げるに従
いパネルの温度が上昇し、パネル内の最も明るい部分の
素子から順次ブレークダウンが生じた。このEL素子の
電流制限層の温度による抵抗率の変化を、実施例と同様
に測定した結果を図3中に示す。上記温度範囲で約1桁
の抵抗率の変化があった。
Comparative Example Manganese dioxide (MnO 2 ) powder produced by the electrolysis method was crushed with a ball mill to an average particle size of 0.3 μm, and the volume of the MnO 2 powder and a resin binder (manufactured by Nippon Zeon, trade name MR-110) were used. ) Was mixed with the solvent so that the volume ratio thereof was 3 to 7, and the resulting solution was prepared by using a thinner as a solvent, filtered through a 10 μm Teflon membrane filter in the same manner as in Example 1, and then filtered through a 5 μm Teflon membrane filter. A paint was made. Similar to Example 1, this coating material was applied by a spray method onto a laminate of the transparent electrode 2 and the light emitting layer 3 formed on a glass substrate and dried to obtain a resistivity of 5
A current limiting layer having a film thickness of 20 μm was formed at × 10 4 Ωcm. Next, a back electrode was formed in the same manner as in Example 1 and scribed with a diamond needle to form a predetermined back electrode pattern. When the obtained EL device was connected to a DC drive circuit to emit light, the temperature of the panel increased as the brightness was increased, and breakdowns occurred sequentially from the brightest device in the panel. FIG. 3 shows the results of measuring the change in resistivity with temperature of the current limiting layer of this EL element, as in the case of the example. There was a change in resistivity of about one digit in the above temperature range.

【0020】図3から、上記実施例の電流制限層の抵抗
率は、比較例の電流制限層のそれよりも温度依存性が小
さく、その特性がEL素子の輝度特性に影響を及ぼして
いることが判明した。
It can be seen from FIG. 3 that the resistivity of the current limiting layer of the above example has less temperature dependence than that of the current limiting layer of the comparative example, and that the characteristic affects the luminance characteristic of the EL element. There was found.

【0021】[0021]

【発明の効果】本発明によれば、電流制限層に電気抵抗
率の温度依存性が小さい酸化錫を樹脂バインダーにより
固定して形成し、かつ、酸化錫には錫原子の所定量がア
ンチモンに置換して含ませたことにより、電流制限層の
電気抵抗率を最適にしている。これにより、発光の輝度
むらが抑制されブレークダウンが生じないEL素子を得
ることができた。
According to the present invention, tin oxide having a low temperature dependence of electric resistivity is fixed to a current limiting layer by a resin binder, and a predetermined amount of tin atoms is converted to antimony in tin oxide. By including it by substituting it, the electric resistivity of the current limiting layer is optimized. As a result, it was possible to obtain an EL element in which unevenness in the luminance of light emission was suppressed and breakdown did not occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のEL素子の一実施例の積層構造を説明
するための断面図である。
FIG. 1 is a cross-sectional view for explaining a laminated structure of an example of an EL device of the present invention.

【図2】EL素子の他の実施例の積層構造を説明するた
めの断面図である。
FIG. 2 is a cross-sectional view for explaining a laminated structure of another embodiment of an EL element.

【図3】電流制限層の抵抗率の温度変化を示す図であ
る。
FIG. 3 is a diagram showing a change in resistivity of a current limiting layer with temperature.

【符号の説明】[Explanation of symbols]

1・・・ガラス基板、2・・・透明電極、2A・・・不
透明な電極、3・・・発光層、4・・・電流制限層、5
・・・背面電極、7・・・カラーフィルター
DESCRIPTION OF SYMBOLS 1 ... Glass substrate, 2 ... Transparent electrode, 2A ... Opaque electrode, 3 ... Light emitting layer, 4 ... Current limiting layer, 5
... Back electrode, 7 ... Color filter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和田 俊司 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shunji Wada 3-5-11 Doshomachi, Chuo-ku, Osaka-shi, Osaka Inside Nippon Sheet Glass Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】透明な電気絶縁性基板上に透明電極、発光
層、導電性微粉末を有機樹脂バインダーで固定した電流
制限層および背面電極をこの順序で積層したエレクトロ
ルミネッセンス素子において、前記電流制限層の導電性
微粉末として、錫原子の0.01〜1%をアンチモン原
子に置換させたアンチモン含有酸化錫微粉末を用いたこ
とを特徴とするエレクトロルミネッセンス素子。
1. An electroluminescent device comprising a transparent electrically insulating substrate, a transparent electrode, a light emitting layer, a current limiting layer in which conductive fine powder is fixed with an organic resin binder, and a back electrode, which are laminated in this order. An electroluminescent device, characterized in that, as the conductive fine powder of the layer, an antimony-containing tin oxide fine powder in which 0.01 to 1% of tin atoms are substituted with antimony atoms is used.
【請求項2】前記導電性微粉末は、前記電流制限層中の
占有体積比率で表して、導電性微粉末/有機樹脂バイン
ダー=0.4〜2.5の範囲内で固定されていることを
特徴とする請求項1に記載のエレクトロルミネッセンス
素子。
2. The conductive fine powder is fixed within a range of 0.4 to 2.5 of conductive fine powder / organic resin binder, expressed as a volume ratio in the current limiting layer. The electroluminescent element according to claim 1, wherein:
JP5031769A 1993-02-22 1993-02-22 Electroluminescent element Pending JPH06251875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5031769A JPH06251875A (en) 1993-02-22 1993-02-22 Electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5031769A JPH06251875A (en) 1993-02-22 1993-02-22 Electroluminescent element

Publications (1)

Publication Number Publication Date
JPH06251875A true JPH06251875A (en) 1994-09-09

Family

ID=12340259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5031769A Pending JPH06251875A (en) 1993-02-22 1993-02-22 Electroluminescent element

Country Status (1)

Country Link
JP (1) JPH06251875A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707649B2 (en) * 2001-03-22 2004-03-16 Alps Electric Co., Ltd. Magnetic sensing element permitting decrease in effective element size while maintaining large optical element size

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707649B2 (en) * 2001-03-22 2004-03-16 Alps Electric Co., Ltd. Magnetic sensing element permitting decrease in effective element size while maintaining large optical element size

Similar Documents

Publication Publication Date Title
JP5966526B2 (en) Method for manufacturing electrochromic display device
TWI402597B (en) Electrochromic display apparatus
JP6098143B2 (en) Electrochromic display device and method of manufacturing electrochromic display device
US5507404A (en) Color electroluminescence display element and the manufacturing method thereof
DE10035606C2 (en) Organic electroluminescent display element and filter therefor
KR19980063341A (en) Color Plasma Display Panel and Manufacturing Method Thereof
JP2014052510A (en) Electrochromic display apparatus and driving method of the same
US5115329A (en) Electroluminescent device having a liquid crystal layer adjacent to the electroluminescent layer without any electrode placed therebetween
US20030222576A1 (en) Full color organic light-emitting display device
KR20010012691A (en) Electroluminescent device and method for producing the same
WO2005099315A1 (en) Electro-luminescence element
JP5610144B2 (en) Driving method of electrochromic display device
JPH06251875A (en) Electroluminescent element
JP2012128218A (en) Electrochromic display device
US6137222A (en) Multi-color electroluminescent display panel
JP2766095B2 (en) Multi-color EL panel
JP5994241B2 (en) Electrochromic display device
CN111799388A (en) Display back plate, manufacturing method thereof and display device
JPH05326147A (en) Electroluminescent element capable of taking out light from both surfaces
JPH0521278Y2 (en)
JP2011227248A (en) Electrochromic display device and manufacturing method of electrochromic display device
JPH07333635A (en) Color liquid crystal display device
KR100207588B1 (en) Electroluminescence element and manufacturing method
KR100207587B1 (en) Electroluminescence element and manufacturing method
JPH0963766A (en) Thin film electroluminescent panel