JPH05326147A - Electroluminescent element capable of taking out light from both surfaces - Google Patents

Electroluminescent element capable of taking out light from both surfaces

Info

Publication number
JPH05326147A
JPH05326147A JP4122257A JP12225792A JPH05326147A JP H05326147 A JPH05326147 A JP H05326147A JP 4122257 A JP4122257 A JP 4122257A JP 12225792 A JP12225792 A JP 12225792A JP H05326147 A JPH05326147 A JP H05326147A
Authority
JP
Japan
Prior art keywords
transparent
limiting layer
current limiting
fine powder
conductive fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4122257A
Other languages
Japanese (ja)
Inventor
Tetsuro Yoshii
哲朗 吉井
Yuichi Aoki
裕一 青木
Toshiaki Anzaki
利明 安崎
Shunji Wada
俊司 和田
Katsuhisa Enjoji
勝久 円城寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP4122257A priority Critical patent/JPH05326147A/en
Publication of JPH05326147A publication Critical patent/JPH05326147A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an EL element capable of taking out light from both surfaces by dispersing and fixing a conductive fine powder which has specified particle size and volume resistivity and is transparent to visual lights onto a current limiting layer with a transparent binder. CONSTITUTION:Onto a transparent elliptic base 1, a transparent electrode 2, a light emitting layer 3, a current limiting layer 4 onto which a conductive fine powder is dispersed and fixed with a transparent binder, and a transparent back plate 5 are successively laminated to provide an EL element. In this constitution, the conductive fine powder has a particle size less than 100nm, and is transparent to visual lights, and its volume resistivity is set less than 10<5>OMEGAcm. When the thickness of the current limiting layer 5 is 500nm, the visual light transmittance of the limiting layer 5 is preferably 50% or more, and indium oxides are used. The ratio of the conductive fine powder to the transparent binder resin preferably ranges from 50/50 to 60/60 by weight.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エレクトロルミネッセ
ンス素子(EL素子)に関し、とりわけ両面から光が取
り出せる直流駆動が可能な混成型EL素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroluminescence element (EL element), and more particularly, to a hybrid EL element capable of direct current driving capable of extracting light from both sides.

【0002】[0002]

【従来の技術】EL素子を応用したELディスプレイ
は、近年ポータブルタイプのコンピュータの端末などに
急速に普及しつつある有望なフラットパネルディスプレ
イの1つである。EL素子には、薄膜型EL素子と粉末
型EL素子の2つのタイプが知られているが、最近では
薄膜型と粉末型とを組み合わせた混成型EL素子(ハイ
ブリッドEL素子あるいはコンポジットEL素子とも呼
ばれる)が、有力なデイスプレイ用の素子として注目さ
れるようになってきた(例えば英国公開特許公報217
6340A、同2176341A)。
2. Description of the Related Art An EL display to which an EL element is applied is one of the promising flat panel displays which has been rapidly prevailing in terminals of portable type computers in recent years. Two types of EL elements are known, a thin film type EL element and a powder type EL element. Recently, a hybrid EL element (also called a hybrid EL element or a composite EL element) in which a thin film type and a powder type are combined. ) Has become the focus of attention as a powerful display element (for example, British Patent Publication 217).
6340A and 2176341A).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の混成型EL素子においては、導電性粉末として、M
nO2、TiO2、Fe34、カーボンブラックなどの黒
色微粉末が用いられていたので、EL素子の1方向から
しか光を外部へ取り出すことができなかった。
However, in the above-mentioned conventional hybrid molding EL element, M is used as the conductive powder.
Since black fine powder such as nO 2 , TiO 2 , Fe 3 O 4 , and carbon black was used, light could only be extracted from one direction of the EL element to the outside.

【0004】[0004]

【課題を解決するための手段】本発明は、透明な絶縁性
基板上に、透明電極、発光層、導電性微粉末が透明なバ
インダーで分散固定されてなる電流制限層および透明背
面電極が順次積層されたエレクトロルミネッセンス素子
であって、前記導電性微粉末は、100nm以下の粒径
を有し、可視光線に対して透明であり、かつ、その体積
抵抗率が105Ωcm以下である、両面から光が取り出
せるエレクトロルミネッセンス素子である。
According to the present invention, a transparent electrode, a light emitting layer, a current limiting layer comprising conductive fine powder dispersed and fixed with a transparent binder and a transparent back electrode are sequentially provided on a transparent insulating substrate. A laminated electroluminescent device, wherein the conductive fine powder has a particle size of 100 nm or less, is transparent to visible light, and has a volume resistivity of 10 5 Ωcm or less. It is an electroluminescent element that can extract light from the.

【0005】本発明の電流制限層の膜厚は、5μmから
30μmとするのが好ましい。前記電流制限層は、発光
の際、発光層の抵抗率が低下し、EL素子に過剰な電流
が流れて素子を破壊するのを防ぐ役割を果たす。電流制
限層の抵抗は、大きければ大きいほど破壊に対しては安
定になるが、あまり大きくすると電流制限層での電圧降
下が大きくなり、それがEL素子の駆動電圧の上昇につ
ながるので、上記5μmから30μmの膜厚の範囲にお
いて、膜厚方向に対し、単位面積(1cm2)当り50
Ωから200Ωの抵抗値、つまり、1×104Ωcmか
ら5×105Ωcmの抵抗率となるようにするのが好ま
しい。
The thickness of the current limiting layer of the present invention is preferably 5 μm to 30 μm. The current limiting layer serves to prevent the resistivity of the light emitting layer from decreasing during light emission, and prevent an excessive current from flowing through the EL device to destroy the device. The larger the resistance of the current limiting layer is, the more stable it will be against breakdown, but if it is too large, the voltage drop in the current limiting layer becomes large, which leads to an increase in the drive voltage of the EL element. 50 to 50 μm per unit area (1 cm 2 ) in the film thickness direction in the range of 30 to 30 μm.
It is preferable to have a resistance value of Ω to 200 Ω, that is, a resistivity of 1 × 10 4 Ωcm to 5 × 10 5 Ωcm.

【0006】本発明の電流制限層を構成する導電性微粒
子は、粒子の体積抵抗率が105Ωcm以下であり、粒
径が100nm以下であり、かつ、可視光線に対して透
明であることが必要である。そして、導電性微粒子を有
機バインダー中に分散させた電流制限層の厚みを500
nmとしたとき、電流制限層の可視光線透過率を50%
以上となるようにするのが好ましい。そのような微粒子
としては、インジウム錫酸化物,インジウム酸化物,ア
ンチモンまたはフッ素をドープした錫酸化物,インジウ
ム、アルミニウム、珪素をドープした酸化亜鉛,酸化カ
ドミウムインジウム、酸化カドミウム錫,およびこれら
の混合酸化物が例示できる。
The conductive fine particles constituting the current limiting layer of the present invention have a volume resistivity of 10 5 Ωcm or less, a particle diameter of 100 nm or less, and are transparent to visible light. is necessary. Then, the thickness of the current limiting layer in which the conductive fine particles are dispersed in the organic binder is 500
nm, the visible light transmittance of the current limiting layer is 50%
It is preferable to make it above. Examples of such fine particles include indium tin oxide, indium oxide, tin oxide doped with antimony or fluorine, indium, aluminum, zinc oxide doped with silicon, cadmium indium oxide, cadmium tin oxide, and a mixed oxide thereof. The thing can be illustrated.

【0007】また、導電性微粒子と透明バインダー樹脂
の比率は、重量比で20/80〜90/10程度がよ
く、さらに、好ましくは50/50〜60/60の範囲
が好ましい。微粒子のバインダー中への分散方法として
は、適当な粘度になるように溶媒で希釈したバインダー
樹脂中に直接微粒子を分散させる方法と、あらかじめ微
粒子のゾルを作っておいて、バインダー樹脂中に分散さ
せる方法を用いることができる。
The weight ratio of the conductive fine particles to the transparent binder resin is preferably about 20/80 to 90/10, more preferably 50/50 to 60/60. As a method for dispersing the fine particles in the binder, a method in which the fine particles are directly dispersed in a binder resin diluted with a solvent to have an appropriate viscosity, or a sol of fine particles is prepared in advance and dispersed in the binder resin Any method can be used.

【0008】本発明において使用可能なバインダー樹脂
の例としては、ビニル系樹脂、ポリエステル系樹脂、ポ
リアミド系樹脂、セルロース系樹脂、ポリウレタン系樹
脂、尿素系樹脂、エポキシ系樹脂、メラミン系樹脂、シ
リコーン系樹脂等が挙げられるが、特に、水酸基、カル
ボキシル基、スルホニル基、ニトロ基等の極性基や、エ
ポキシ基、イソシアヌル基、シラノール基等の反応性基
を有した高分子樹脂が好適に用いられている。
Examples of binder resins that can be used in the present invention include vinyl resins, polyester resins, polyamide resins, cellulose resins, polyurethane resins, urea resins, epoxy resins, melamine resins, and silicone resins. Examples of the resin include a hydroxyl group, a carboxyl group, a sulfonyl group, a polar group such as a nitro group, and an epoxy group, an isocyanuric group, a polymer resin having a reactive group such as a silanol group is preferably used. There is.

【0009】[0009]

【作用】本発明のEL素子を構成する基板、透明電極、
電流制限層および透明背面電極は、いずれも可視光線に
対して透明であるため、発光層で生じた発光はEL素子
の両方向に取り出すことができる。
The function of the substrate, the transparent electrode, and the
Since the current limiting layer and the transparent back electrode are both transparent to visible light, the light emitted from the light emitting layer can be extracted in both directions of the EL device.

【0010】[0010]

【実施例】以下に、本発明を実施例により説明する。図
1は、本発明の混成型EL素子の層構成を示した図であ
る。図2は、本発明のEL素子のガラス基板側と電流制
限層側で観察された発光の輝度の電流密度依存性を示す
図である。
EXAMPLES The present invention will be described below with reference to examples. FIG. 1 is a diagram showing the layer structure of the hybrid EL device of the present invention. FIG. 2 is a diagram showing the current density dependence of the luminance of the light emission observed on the glass substrate side and the current limiting layer side of the EL device of the present invention.

【0011】ガラス基板1上に、透明電極2としてイン
ジウム錫酸化物(ITO)などの透明電極膜をスパッ
タ、真空蒸着法などにより成膜した後に、フォトリソグ
ラフィーなどの方法を用いて所定の形状にパターニング
する。その上に発光層3を真空蒸着法、スパッタ法、M
OCVD法などの方法を用いて形成する。発光層の材質
としては、ZnS、ZnSe、CdSなどの2−6属化
合物に、Mn、Cuなどの遷移金属やTb、Sm、Dy
などの希土類あるいはそれらのフッ化物、塩化物などを
発光中心としてドープしたものがよく用いられる。その
上に、電流制限層4として可視光線に対して透明で、1
00nm以下の粒径を有する導電性の微粉末を透明な有
機バインダーで固めた十数μm程度の微粉末層をスプレ
ー法などの方法によって成膜する。最後に、透明背面電
極5を真空蒸着あるいはスパッタ法で成膜することによ
り本発明の混成型EL素子が完成する。
A transparent electrode film such as indium tin oxide (ITO) is formed as a transparent electrode 2 on the glass substrate 1 by sputtering, vacuum deposition or the like, and then formed into a predetermined shape by a method such as photolithography. Pattern. The light emitting layer 3 is formed thereon by vacuum deposition method, sputtering method, M
It is formed using a method such as the OCVD method. Examples of the material of the light emitting layer include ZnS, ZnSe, CdS, and other 2-6 group compounds, transition metals such as Mn and Cu, and Tb, Sm, and Dy.
A rare earth element such as the above or a fluoride or chloride thereof doped with an emission center is often used. On top of that, the current limiting layer 4 is transparent to visible light and
A conductive fine powder having a particle size of 00 nm or less is hardened with a transparent organic binder to form a fine powder layer of about ten and several μm by a method such as a spray method. Finally, the transparent back electrode 5 is formed by vacuum evaporation or sputtering to complete the hybrid EL device of the present invention.

【0012】ドットマトリックス型のディスプレイパネ
ルを製造する場合は、その後、ダイアモンド針等を用い
て透明背面電極と電流制限層を同時に引き掻いて、所定
形状の電極パターニングをする。EL素子の駆動は透明
電極2と透明背面電極5の間に直流電圧を印加して発光
させる。 実施例 透明なガラス基板上に、透明電極としてITOを反応性
スパッタ法を用いて約500nmの厚さに成膜した。続
いて、発光層としてMnを0.3重量%ドープしたZn
Sを約1μm電子ビーム蒸着法を用いて成膜した。次
に、アンチモンを10wt%含むアンチモン錫酸化物を
バインダー樹脂とシンナーとの混合液に分散させた塗料
をアプリケータ塗装法で塗装、乾燥させ、抵抗率が6.
2×104Ωcmで、膜厚が8.5μmの電流制限層を
形成した。次に、透明背面電極として、ITOを反応性
スパッタ法を用いて約500nmの厚さに成膜した。こ
のように作製したEL素子を直流駆動回路に接続して発
光させたところ、両面から発光が得られた。基板側と電
流制限層側で観察された発光の輝度の電流密度依存性を
図2に示す。電流制限層側からはガラス側の約65%の
光が得られた。 従来例 電解法にて作製したMnO2粉末をボールミルで粉砕し
て平均粒径0.3μmとし、これをMnO2粉末の体積
とバインダー樹脂の体積の比率が3対7になるようにバ
インダー樹脂とシンナーとの混合液を加えて分散させて
塗料を作製した。この塗料を、実施例と同様に作製した
発光層と透明電極を形成したガラス基板の発光層の上に
スプレー法で塗装し、乾燥させて、抵抗率が1.3×1
5Ωcmで、膜厚が13μmの電流制限層を形成し
た。次に、背面電極として、アルミニウムを蒸着法を用
いて約600nmの厚さに成膜した。このようにして作
製した素子は、ガラス基板の一方向からしか光を得るこ
とができなかった。
In the case of manufacturing a dot matrix type display panel, thereafter, the transparent back electrode and the current limiting layer are simultaneously scratched by using a diamond needle or the like to perform electrode patterning in a predetermined shape. The EL element is driven by applying a DC voltage between the transparent electrode 2 and the transparent back electrode 5 to cause light emission. Example ITO was deposited as a transparent electrode on a transparent glass substrate to a thickness of about 500 nm by a reactive sputtering method. Subsequently, Zn doped with 0.3% by weight of Mn as a light emitting layer
S was formed into a film by using an electron beam evaporation method of about 1 μm. Next, a paint in which antimony tin oxide containing 10 wt% of antimony is dispersed in a mixed liquid of a binder resin and a thinner is applied by an applicator coating method and dried to have a resistivity of 6.
A current limiting layer having a thickness of 2 × 10 4 Ωcm and a thickness of 8.5 μm was formed. Next, as a transparent back electrode, ITO was formed into a film with a thickness of about 500 nm by the reactive sputtering method. When the EL device thus produced was connected to a DC drive circuit to emit light, light emission was obtained from both sides. FIG. 2 shows the current density dependence of the luminance of light emission observed on the substrate side and the current limiting layer side. About 65% of light on the glass side was obtained from the current limiting layer side. Conventional Example MnO 2 powder produced by the electrolysis method was crushed with a ball mill to an average particle size of 0.3 μm, and this was mixed with a binder resin so that the volume ratio of MnO 2 powder to the binder resin was 3: 7. A mixed liquid with a thinner was added and dispersed to prepare a paint. This paint was applied by a spray method onto the light emitting layer of the glass substrate on which the light emitting layer and the transparent electrode were formed in the same manner as in the example, and dried to have a resistivity of 1.3 × 1.
A current limiting layer having a thickness of 0 5 Ωcm and a thickness of 13 μm was formed. Next, as a back electrode, aluminum was formed into a film with a thickness of about 600 nm by using a vapor deposition method. The device thus manufactured was able to obtain light only from one direction of the glass substrate.

【0013】[0013]

【発明の効果】本発明のEL素子によれば、三原色のモ
ノクロ発光層を有したパネルを順次重ねることにより、
マルチカラーパネルの作製が可能となる。また、カラー
フィルターを透明背面電極の上に印刷することにより容
易にカラーフィルターの形成ができる。さらに、透明背
面電極形成工程以降は高温焼成の操作がないので、有機
フィルターを使用することができ、ガラス基板上に絵や
文字を表示できる表示体の作製が可能となる。
According to the EL element of the present invention, by sequentially stacking panels having monochrome light emitting layers of three primary colors,
It is possible to manufacture a multi-color panel. Further, the color filter can be easily formed by printing the color filter on the transparent back electrode. Further, since there is no high temperature firing operation after the step of forming the transparent back electrode, an organic filter can be used, and a display body capable of displaying pictures and characters on a glass substrate can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の混成型EL素子の層構成を示した図で
ある。
FIG. 1 is a diagram showing a layer structure of a hybrid EL device of the present invention.

【図2】本発明の混成型EL素子の基板側と電流制限層
側で観察された発光の輝度の電流密度依存性を示す図で
ある。
FIG. 2 is a diagram showing the current density dependence of the luminance of the light emission observed on the substrate side and the current limiting layer side of the hybrid EL device of the present invention.

【符号の説明】[Explanation of symbols]

1・・・ガラス基板、2・・・透明電極、3・・・発光
層、4・・・電流制限層、5・・・透明背面電極
1 ... Glass substrate, 2 ... Transparent electrode, 3 ... Light emitting layer, 4 ... Current limiting layer, 5 ... Transparent back electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和田 俊司 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 (72)発明者 円城寺 勝久 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shunji Wada 3-5-11 Doshumachi, Chuo-ku, Osaka-shi, Osaka Within Nippon Sheet Glass Co., Ltd. (72) Inventor Katsuhisa Enjoji 3-chome, Dosho-machi, Chuo-ku, Osaka 5th-11th Nippon Sheet Glass Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】透明な絶縁性基板上に、透明電極、発光
層、導電性微粉末が透明なバインダーで分散固定されて
なる電流制限層および透明背面電極が順次積層されたエ
レクトロルミネッセンス素子であって、前記導電性微粉
末は、100nm以下の粒径を有し、可視光線に対して
透明であり、かつ、その体積抵抗率が105Ωcm以下
である、両面から光が取り出せるエレクトロルミネッセ
ンス素子。
1. An electroluminescent device comprising a transparent insulating substrate, a transparent electrode, a light emitting layer, a current limiting layer in which conductive fine powder is dispersed and fixed by a transparent binder, and a transparent back electrode, which are sequentially laminated. The electroconductive fine powder has a particle size of 100 nm or less, is transparent to visible light, and has a volume resistivity of 10 5 Ωcm or less, and an electroluminescent element capable of extracting light from both sides.
JP4122257A 1992-05-14 1992-05-14 Electroluminescent element capable of taking out light from both surfaces Pending JPH05326147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4122257A JPH05326147A (en) 1992-05-14 1992-05-14 Electroluminescent element capable of taking out light from both surfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4122257A JPH05326147A (en) 1992-05-14 1992-05-14 Electroluminescent element capable of taking out light from both surfaces

Publications (1)

Publication Number Publication Date
JPH05326147A true JPH05326147A (en) 1993-12-10

Family

ID=14831476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4122257A Pending JPH05326147A (en) 1992-05-14 1992-05-14 Electroluminescent element capable of taking out light from both surfaces

Country Status (1)

Country Link
JP (1) JPH05326147A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1071313A1 (en) * 1999-07-21 2001-01-24 Matsushita Electric Industrial Co., Ltd. Electroluminescence element and lighting unit having the same
WO2006104020A1 (en) * 2005-03-25 2006-10-05 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device and electric appliance using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1071313A1 (en) * 1999-07-21 2001-01-24 Matsushita Electric Industrial Co., Ltd. Electroluminescence element and lighting unit having the same
US6611097B1 (en) 1999-07-21 2003-08-26 Matsushita Electric Industrial Co., Ltd. Electroluminescent element comprising reduced number of parts and lighting unit having the same
WO2006104020A1 (en) * 2005-03-25 2006-10-05 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device and electric appliance using the same
US8058794B2 (en) 2005-03-25 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device and electric appliance using the same
US8476827B2 (en) 2005-03-25 2013-07-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device and electric appliance using the same

Similar Documents

Publication Publication Date Title
JP4410135B2 (en) Electronically addressable microencapsulated ink and display thereof
US6617784B1 (en) Electroluminescent device and method for producing the same
US6613455B1 (en) Electroluminescent device and method for producing same
US6406803B1 (en) Electroluminescent device and method for producing the same
WO2005099315A1 (en) Electro-luminescence element
JPH10335064A (en) Electroluminescent element and its manufacture
US6479941B1 (en) Electroluminescent device and method for the production of the same
US20070278943A1 (en) Multicolor Electroluminescent Element
EP0998836A1 (en) Electroluminescent device and apparatus
JPH05326147A (en) Electroluminescent element capable of taking out light from both surfaces
EP1135973B1 (en) Electroluminescent device and method for the production of the same
EP1147688B1 (en) Electroluminescent device and method for producing same
JP4631316B2 (en) Electroluminescence element
JPH06251875A (en) Electroluminescent element
JPH0562779A (en) Electroluminescence element
JPH05211093A (en) Direct current electroluminescence element
JPH0737687A (en) Resistance type ac thin film el element
KR100207587B1 (en) Electroluminescence element and manufacturing method
JPH05159880A (en) Electroluminescence element
JPH0256898A (en) Electroluminescence element
JPH0745369A (en) El element
JPH0778683A (en) Electroluminescence element and manufacture of phosphor
JPH0240892A (en) Manufacture of electroluminescent element
JPS5991697A (en) Thin film el element
JP2004342366A (en) El element