JPH0625079A - Production of aromatic tetracarboxylic acid - Google Patents

Production of aromatic tetracarboxylic acid

Info

Publication number
JPH0625079A
JPH0625079A JP3061339A JP6133991A JPH0625079A JP H0625079 A JPH0625079 A JP H0625079A JP 3061339 A JP3061339 A JP 3061339A JP 6133991 A JP6133991 A JP 6133991A JP H0625079 A JPH0625079 A JP H0625079A
Authority
JP
Japan
Prior art keywords
cobalt
oxygen
catalyst
reaction
bromine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3061339A
Other languages
Japanese (ja)
Other versions
JP2927023B2 (en
Inventor
Hiroshi Masami
博司 真見
Mikiro Nakazawa
幹郎 中澤
Shigeo Miki
茂男 三木
Akihiro Nishiuchi
昭浩 西内
Hitoshi Yagi
均 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP3061339A priority Critical patent/JP2927023B2/en
Publication of JPH0625079A publication Critical patent/JPH0625079A/en
Application granted granted Critical
Publication of JP2927023B2 publication Critical patent/JP2927023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain a high-purity aromatic tetracarboxylic acid in high yield by using a specific catalyst in subjecting an aromatic tetra-alkyl compound to oxidation reaction with oxygen, etc., in an aliphatic monocarboxylic acid. CONSTITUTION:A compound of formula I (R<1> to R<4> are alkyl; X, Y and Z are each halogen, nitrile or nitro, and X and Z are 0-3; Y is 0-4), e.g. 1,3-bis(3,4- dimethylbenzoyl)benzene, etc., is made to react with oxygen or oxygen-containing gas in the presence of a catalyst composed of three components of (A) cobalt, (B) bromine or bromine and chlorine and (C) manganese, cesium, zirconium and/or nickel (e.g. cobalt bromide and manganese bromide). preferably at 150-200 deg.C to provide the objective compound of formula II. Furthermore, a catalyst having the weight ratio of the component C to the component A of 0.0001-100 is preferably used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、芳香族テトラカルボン
酸を製造する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing an aromatic tetracarboxylic acid.

【0002】本発明により製造される芳香族テトラカル
ボン酸は、ポリイミド、ポリアミド、ポリエステル、ポ
リアミドイミド、ポリエステルイミド等各種樹脂の原
料、改質剤、エポキシ樹脂硬化剤及び農薬、染料等の原
料として広範な用途を有する。
The aromatic tetracarboxylic acid produced according to the present invention is widely used as a raw material for various resins such as polyimide, polyamide, polyester, polyamideimide, and polyesterimide, a modifier, an epoxy resin curing agent, and a raw material for agricultural chemicals and dyes. Has various uses.

【0003】[0003]

【従来の技術】従来、芳香族テトラカルボン酸の製造方
法としては、o−キシレンとイソフタル酸クロライドと
のフリーデルクラフツ反応により得られる芳香族テトラ
メチル化合物を硝酸により酸化して製造する方法[J.R.
Pratt, D.A.Blackwell, T.L.St.Clair and N.L.Allphi
n, Polymer Preprints, 29(1), 128(1988).]が公知で
ある。
2. Description of the Related Art Conventionally, as a method of producing an aromatic tetracarboxylic acid, a method of producing an aromatic tetramethyl compound obtained by Friedel-Crafts reaction of o-xylene and isophthalic acid chloride with nitric acid [JR
Pratt, DABlackwell, TLSt.Clair and NLAllphi
n, Polymer Preprints, 29 (1), 128 (1988).] are known.

【0004】しかし、硝酸酸化による反応ではNOxガ
スと多量の排水が発生するため、公害対策上、高価な処
理設備を必要とする。更に、高温反応であるため芳香核
ニトロ化等の副反応が起こり、製品を汚染する等、工業
的な製造技術としては、尚、多くの問題点を有する。
However, in the reaction due to nitric acid oxidation, NOx gas and a large amount of waste water are generated, and therefore expensive treatment equipment is required as a measure against pollution. Furthermore, since it is a high-temperature reaction, side reactions such as nitration of aromatic nuclei occur and contaminate the product, which still has many problems as an industrial manufacturing technique.

【0005】従って、当該芳香族テトラアルキル化合物
を酸化して対応するテトラカルボン酸を製造するに当た
り、より安価な酸化剤を使用し、大気や水質汚染物質の
発生や製品汚染が無い工業的に有利な方法の確立が望ま
れている。
Therefore, in producing the corresponding tetracarboxylic acid by oxidizing the aromatic tetraalkyl compound, a cheaper oxidizing agent is used, which is industrially advantageous in that it does not generate air or water pollutants or product contamination. It is hoped that a new method will be established.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、公知の
硝酸酸化法に代わる安価で公害の発生を伴わない酸化方
法を確立すべく鋭意検討した結果、当該芳香族テトラア
ルキル化合物を脂肪族モノカルボン酸中、酸素又は酸素
含有ガスで酸化して対応する芳香族テトラカルボン酸を
製造するに際し、特定の重金属と臭素化合物又は臭素化
合物と塩素化合物とから構成される触媒を使用すること
により、容易に、且つ高収率で目的物が得られることを
見い出した。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention As a result of intensive studies to establish an inexpensive and pollution-free oxidation method as an alternative to the known nitric acid oxidation method, the present inventors have found that the aromatic tetraalkyl compound is aliphatic. In a monocarboxylic acid, in producing a corresponding aromatic tetracarboxylic acid by oxidizing with oxygen or an oxygen-containing gas, by using a catalyst composed of a specific heavy metal and a bromine compound or a bromine compound and a chlorine compound, It has been found that the target product can be obtained easily and in high yield.

【0007】本発明はかかる知見に基づいて完成したも
のであり、安価な酸化剤を使用して効率よく芳香族テト
ラカルボン酸を製造する工業的に有利な方法を提供する
ことを目的とする。
The present invention has been completed based on such findings, and an object thereof is to provide an industrially advantageous method for efficiently producing an aromatic tetracarboxylic acid by using an inexpensive oxidizing agent.

【0008】[0008]

【課題を解決するための手段】本発明に係る芳香族テト
ラカルボン酸の製造方法は、一般式(I)で示される芳
香族テトラアルキル化合物を脂肪族モノカルボン酸中、
酸素又は酸素含有ガスにより酸化して対応する一般式
(II)で示される芳香族テトラカルボン酸を製造する
に際し、少なくとも、(A)コバルト、(B)臭素又は
臭素と塩素、(C)マンガン、セリウム、ジルコニウ
ム、ニッケルから選ばれた1種以上の重金属の3成分か
ら構成される触媒を使用することを特徴とする。
The method for producing an aromatic tetracarboxylic acid according to the present invention comprises the step of adding an aromatic tetraalkyl compound represented by the general formula (I) to an aliphatic monocarboxylic acid,
In producing the corresponding aromatic tetracarboxylic acid represented by the general formula (II) by oxidizing with oxygen or an oxygen-containing gas, at least (A) cobalt, (B) bromine or bromine and chlorine, (C) manganese, It is characterized by using a catalyst composed of three components of one or more heavy metals selected from cerium, zirconium and nickel.

【化1】[式中、R1、R2、R3及びR4は、同一又は異
なって、アルキル基を表し、X、Y及びZは、同一又は
異なって、ハロゲン基、ニトロ基及びニトリル基を表
す。X及びZは0〜3を、Yは0〜4を表す。]
[Wherein R 1 , R 2 , R 3 and R 4 are the same or different and represent an alkyl group, and X, Y and Z are the same or different and are a halogen group, a nitro group and a nitrile. Represents a group. X and Z represent 0 to 3, and Y represents 0 to 4. ]

【化2】[式中、X、Y及びZは、同一又は異なって、
ハロゲン基、ニトロ基及びニトリル基を表す。X及びZ
は0〜3を、Yは0〜4を表す。]
[Wherein X, Y and Z are the same or different,
Represents a halogen group, a nitro group and a nitrile group. X and Z
Represents 0 to 3 and Y represents 0 to 4. ]

【0009】本発明において原料として使用する芳香族
テトラアルキル化合物は、一般に、上記の如くキシレン
類とフタル酸ジクロライド類とのフリーデルクラフツ反
応により合成できるが、かかる方法に限定されるもので
はない。
The aromatic tetraalkyl compound used as a raw material in the present invention can be generally synthesized by the Friedel-Crafts reaction of xylenes and phthalic acid dichlorides as described above, but is not limited to such a method.

【0010】芳香族テトラアルキル化合物のアルキル基
の炭素数としては1〜5が例示され、特にメチル基、エ
チル基、イソプロピル基が好ましく、具体的な化合物と
しては、1,3−ビス(3,4−ジメチルベンゾイル)
ベンゼン、1,3−ビス(2,3−ジメチルベンゾイ
ル)ベンゼン、1,3−ビス(3,4−ジエチルベンゾ
イル)ベンゼン、1,3−ビス(3,4−ジイソプロピ
ルベンゾイル)ベンゼン、1,4−ビス(3,4−ジメ
チルベンゾイル)ベンゼン、1,4−ビス(2,3−ジ
メチルベンゾイル)ベンゼン、1,4−ビス(3,4−
ジイソプロピルベンゾイル)ベンゼン、1,3−ビス
(3,4−ジメチル−2−フルオロベンゾイル)ベンゼ
ン、1,3−ビス(3,4−ジメチルベンゾイル)−5
−フルオロベンゼン、1,4−ビス(3,4−ジメチル
−2−フルオロベンゾイル)ベンゼン、1,4−ビス
(3,4−ジメチルベンゾイル)−2,3,5,6−テ
トラフルオロベンゼン、1,3−ビス(3,4−ジメチ
ル−2−ニトロベンゾイル)ベンゼン、1,3−ビス
(3,4−ジメチルベンゾイル)−2−ニトロベンゼ
ン、1,3−ビス(3,4−ジメチル−2−シアノベン
ゾイル)ベンゼン、1,3−ビス(3,4−ジメチルベ
ンゾイル)−5−シアノベンゼン、1,3−ビス(3,
4−ジメチルベンゾイル)−2−シアノベンゼン、等が
例示される。
The number of carbon atoms of the alkyl group of the aromatic tetraalkyl compound is, for example, 1 to 5, and a methyl group, an ethyl group and an isopropyl group are particularly preferable, and specific compounds include 1,3-bis (3,3). 4-dimethylbenzoyl)
Benzene, 1,3-bis (2,3-dimethylbenzoyl) benzene, 1,3-bis (3,4-diethylbenzoyl) benzene, 1,3-bis (3,4-diisopropylbenzoyl) benzene, 1,4 -Bis (3,4-dimethylbenzoyl) benzene, 1,4-bis (2,3-dimethylbenzoyl) benzene, 1,4-bis (3,4-)
Diisopropylbenzoyl) benzene, 1,3-bis (3,4-dimethyl-2-fluorobenzoyl) benzene, 1,3-bis (3,4-dimethylbenzoyl) -5
-Fluorobenzene, 1,4-bis (3,4-dimethyl-2-fluorobenzoyl) benzene, 1,4-bis (3,4-dimethylbenzoyl) -2,3,5,6-tetrafluorobenzene, 1 , 3-bis (3,4-dimethyl-2-nitrobenzoyl) benzene, 1,3-bis (3,4-dimethylbenzoyl) -2-nitrobenzene, 1,3-bis (3,4-dimethyl-2-) Cyanobenzoyl) benzene, 1,3-bis (3,4-dimethylbenzoyl) -5-cyanobenzene, 1,3-bis (3,3
4-dimethylbenzoyl) -2-cyanobenzene and the like are exemplified.

【0011】本発明において使用する触媒は、少なくと
も、(A)コバルト、(B)臭素又は臭素と塩素及び
(C)マンガン、セリウム、ジルコニウム、ニッケルか
ら選ばれた1種以上の重金属の3成分から構成される。
The catalyst used in the present invention comprises at least three components of (A) cobalt, (B) bromine or bromine and chlorine and (C) one or more heavy metals selected from manganese, cerium, zirconium and nickel. Composed.

【0012】(A)コバルトは、元素状、酸化物、塩、
錯体等の何れの形態でもよいが、反応系で少なくとも部
分的に溶解する塩、例えば酢酸コバルト、臭化コバル
ト、ナフテン酸コバルト、水酸化コバルト等が好まし
い。
(A) Cobalt is an elemental form, an oxide, a salt,
Although it may be in any form such as a complex, a salt which is at least partially dissolved in the reaction system, for example, cobalt acetate, cobalt bromide, cobalt naphthenate, cobalt hydroxide or the like is preferable.

【0013】コバルトの使用量は、金属換算濃度で0.
01〜10g/lが適当である。0.01g/l未満で
は充分な反応速度が得られず、10g/lを越えた場合
には触媒費の負担が増し、目的物の生成も困難になる。
The amount of cobalt used is 0.
01 to 10 g / l is suitable. If it is less than 0.01 g / l, a sufficient reaction rate cannot be obtained, and if it exceeds 10 g / l, the cost of the catalyst is increased and it becomes difficult to produce the desired product.

【0014】(B)臭素としては、臭素分子、酸、塩、
酸素酸塩又は有機臭素化合物の何れでも使用できる。特
に、臭化水素、臭化アンモニウム、臭化マンガン、臭化
セリウム、臭化コバルト、テトラブロモエタン、トリブ
ロモエタン等が好ましい。塩素についても同様である。
(B) As bromine, bromine molecules, acids, salts,
Either an oxyacid salt or an organic bromine compound can be used. Particularly, hydrogen bromide, ammonium bromide, manganese bromide, cerium bromide, cobalt bromide, tetrabromoethane, tribromoethane and the like are preferable. The same applies to chlorine.

【0015】臭素の使用量は、(A)コバルト及び
(C)重金属の原子当りの臭素原子換算で 0.1〜1
00当量が適当である。0.1当量未満では充分な反応
速度が得られず、100当量を越えた量を使用した場合
には臭素による目的物の汚染や触媒費の負担が大きくな
り、いずれも好ましくない。
The amount of bromine used is 0.1 to 1 in terms of bromine atom per atom of (A) cobalt and (C) heavy metal.
00 equivalents are suitable. If the amount is less than 0.1 equivalent, a sufficient reaction rate cannot be obtained, and if the amount is more than 100 equivalents, the contamination of the target substance with bromine and the burden of the catalyst cost increase, which is not preferable.

【0016】臭素と塩素を併用する場合も、その合計が
原子換算で0.1〜100当量が適当で、臭素に対する
塩素の比は0.7以下であることが望ましい。
When bromine and chlorine are used in combination, the total amount thereof is suitably 0.1 to 100 equivalents in terms of atoms, and the ratio of chlorine to bromine is preferably 0.7 or less.

【0017】(C)マンガン、セリウム、ジルコニウ
ム、ニッケルから選ばれた1種以上の重金属は、元素
状、酸化物、塩、錯体等の何れの形態でもよい。
The (C) one or more heavy metals selected from manganese, cerium, zirconium and nickel may be in any form such as elemental form, oxide, salt and complex.

【0018】当該重金属の使用量は、コバルト金属に対
して重量比で0.0001〜100の割合が適当であ
り、好ましくは0.005〜0.5の割合である。0.
0001未満の添加では反応促進の大きな効果が認めら
れず、100を越える量の添加では触媒費の負担が増し
経済的に不利である。
The amount of the heavy metal used is appropriately 0.0001 to 100, preferably 0.005 to 0.5, by weight with respect to the cobalt metal. 0.
If the addition amount is less than 0001, a large effect of promoting the reaction is not recognized, and if the addition amount exceeds 100, the catalyst cost is increased and it is economically disadvantageous.

【0019】本発明に係る触媒系として、具体的には、
臭化コバルトと臭化マンガン、臭化コバルトと酢酸マン
ガン、酢酸コバルトと臭化マンガン、酢酸マンガンと酢
酸コバルト及び臭化アンモニウム、酢酸コバルトと酢酸
マンガン及び臭化水素、臭化コバルトと酢酸セリウム、
臭化マンガンと酢酸セリウム、酢酸コバルトと酢酸マン
ガンと酢酸セリウム及び臭化水素、臭化コバルトと酢酸
ジルコニウム、酢酸コバルトと臭化ニッケル、ナフテン
酸コバルトとナフテン酸マンガン及びテトラブロモエタ
ン、コバルトアセチルアセトナートとマンガンアセチル
アセトナート及び臭化水素、酢酸コバルトと酢酸マンガ
ンと酢酸セリウム及び臭化水素、酢酸コバルトと酢酸マ
ンガンと臭化水素及び塩化水素等が例示される。
As the catalyst system according to the present invention, specifically,
Cobalt bromide and manganese bromide, cobalt bromide and manganese acetate, cobalt acetate and manganese bromide, manganese acetate and cobalt acetate and ammonium bromide, cobalt acetate and manganese acetate and hydrogen bromide, cobalt bromide and cerium acetate,
Manganese bromide and cerium acetate, cobalt acetate and manganese acetate and cerium acetate and hydrogen bromide, cobalt bromide and zirconium acetate, cobalt acetate and nickel bromide, cobalt naphthenate and manganese naphthenate and tetrabromoethane, cobalt acetylacetonate And manganese acetylacetonate and hydrogen bromide, cobalt acetate and manganese acetate and cerium acetate and hydrogen bromide, and cobalt acetate and manganese acetate and hydrogen bromide and hydrogen chloride.

【0020】又、本反応方法は、反応溶媒として脂肪族
モノカルボン酸を使用する。酸化に対して比較的安定
で、反応物からの分離が容易なものとして炭素数2〜1
0の飽和モノカルボン酸が例示され、特に酢酸が好まし
い。その使用量は原料の種類や反応条件により異なる
が、50〜900g/lであることが好ましい。
In this reaction method, an aliphatic monocarboxylic acid is used as a reaction solvent. It is relatively stable against oxidation and has 2 to 1 carbon atoms, which can be easily separated from the reaction product.
The saturated monocarboxylic acid of 0 is exemplified, and acetic acid is particularly preferable. The amount used varies depending on the type of raw material and reaction conditions, but is preferably 50 to 900 g / l.

【0021】酸化剤として用いる酸素又は酸素含有ガス
としては、純酸素や工業用排ガスも使用できるが、これ
らに限らず酸素を含有するガスであればよく、工業的に
は通常の空気が最適である。
The oxygen or oxygen-containing gas used as the oxidizing agent may be pure oxygen or industrial exhaust gas, but is not limited to these, and any gas containing oxygen may be used. Industrially, normal air is most suitable. is there.

【0022】反応温度は100〜250℃、好ましくは
150〜220℃の範囲である。100℃未満では反応
速度が遅く、一方、250℃を越える温度では溶媒や生
成物の分解が起こり、いずれも好ましくない。
The reaction temperature is in the range of 100 to 250 ° C, preferably 150 to 220 ° C. If the temperature is lower than 100 ° C, the reaction rate is slow, while if the temperature exceeds 250 ° C, the solvent or the product is decomposed, which is not preferable.

【0023】反応圧力は、全反応圧力が1〜30kg/cm2
・G 、特に3〜20kg/cm2・G で、且つ酸素分圧 0.0
1〜2.4atmが好ましい。更に、安全性の面から排
出ガス中の酸素濃度が8容量%以下になるように操作す
るのが望ましい。
The reaction pressure is such that the total reaction pressure is 1 to 30 kg / cm 2
・ G, especially 3 to 20 kg / cm 2 · G, and oxygen partial pressure 0.0
1 to 2.4 atm is preferable. Further, from the viewpoint of safety, it is desirable to operate so that the oxygen concentration in the exhaust gas is 8% by volume or less.

【0024】本発明の方法は、一般に以下のようにして
実施される。即ち、ガス導入口及びガス抜出口を備えた
攪拌機付き反応器に所定の原料、触媒及び溶媒を仕込
み、窒素又は酸素含有ガスで置換又は加圧し、所定温度
に加熱する。この昇温過程においては攪拌やガス吹き込
みを必ずしも必要としない。酸素の吸収は、触媒の種類
にもよるが一般的には100〜150℃から始まる。酸
素の吸収が始まると、酸素又は酸素含有ガスを導入し、
所定範囲の酸素分圧及び温度を保ちつつ反応する。排出
ガスは冷却し、凝縮物を反応器に戻す。
The method of the present invention is generally carried out as follows. That is, a reactor equipped with a stirrer equipped with a gas inlet and a gas outlet is charged with predetermined raw materials, a catalyst and a solvent, substituted or pressurized with a gas containing nitrogen or oxygen, and heated to a predetermined temperature. Stirring and gas blowing are not always necessary in this temperature rising process. The absorption of oxygen generally starts at 100 to 150 ° C, though it depends on the type of catalyst. When the absorption of oxygen begins, oxygen or oxygen-containing gas is introduced,
The reaction is performed while maintaining the oxygen partial pressure and temperature within a predetermined range. The exhaust gas is cooled and the condensate is returned to the reactor.

【0025】所定時間の反応後、冷却し、反応物を取り
出して、そのまま又は溶媒の一部を蒸留除去して目的と
する芳香族テトラカルボン酸を晶析させたり、溶媒を蒸
留除去後、別の溶媒で再結晶して取り出す。
After the reaction for a predetermined time, the reaction product is cooled, the reaction product is taken out, and the target aromatic tetracarboxylic acid is crystallized as it is or by removing a part of the solvent by distillation, or after removing the solvent by distillation, another reaction is carried out. It is recrystallized from the above solvent and taken out.

【0026】反応器には前記の攪拌機付きのもの以外に
気泡塔式も採用できる。
A bubble column type reactor can be adopted in addition to the above-mentioned one equipped with a stirrer.

【0027】又、反応方法も回分反応に限らず、連続や
半連続方式も可能である。具体的には、反応器に原料、
触媒及び溶媒を連続的に供給し、酸素又は酸素含有ガス
を吹き込みつつ反応を行い、反応生成物を連続的に抜き
出したり、又は、反応器に触媒及び溶媒を仕込んでお
き、次いで、原料のみ、又は原料と溶媒を仕込みつつ一
定時間反応後、仕込を停止して反応を続け完結させる等
の方法が例示される。
The reaction method is not limited to the batch reaction, and a continuous or semi-continuous method is also possible. Specifically, the raw material in the reactor,
The catalyst and the solvent are continuously supplied, the reaction is carried out while blowing oxygen or an oxygen-containing gas, or the reaction product is continuously withdrawn, or the catalyst and the solvent are charged in the reactor, and then only the raw materials, Alternatively, a method of charging the raw materials and the solvent and reacting for a certain period of time, then stopping the charging and continuing the reaction to complete the reaction is exemplified.

【0028】[0028]

【実施例】以下、実施例により本発明を詳しく説明す
る。尚、目的とする芳香族テトラカルボン酸の純度はG
LCにより、収率はHPLCにより分析した。
The present invention will be described in detail below with reference to examples. The purity of the target aromatic tetracarboxylic acid is G
The yield was analyzed by LC and by HPLC.

【0029】実施例1 ガス導入口及び還流冷却器付きガス抜出口を備えた内容
積500mlの電磁攪拌機付きチタン製オートクレーブ
に、1,3−ビス(3,4−ジメチルベンゾイル)ベン
ゼン85.5g、臭化コバルト[CoBr2・6H2O、
以下同様]2.80g、酢酸マンガン[Mn(OCOC
32・4H2O、以下同様]2.45g及び酢酸20
0gを仕込み、窒素で10kg/cm2・Gまで加圧し、加熱攪
拌した。系内の温度が150℃から空気を導入し始め、
ガス抜出口の冷却器により蒸発する酢酸を還流させて排
出ガスを放出しつつ、170〜180℃、圧力20kg/c
m2・Gで排出ガス中の酸素濃度を1〜6%の範囲となるよ
うに導入空気量を調節した(酸素分圧0.1〜0.8a
tm)。この条件で約2時間反応すると酸素の吸収が認
められなくなった。この時点で空気の導入を停止し、更
に30分間反応を続けた。反応器を冷却して内容物を取
り出し、減圧下に酢酸及び生成水を留去して、反応粗物
115g(中和価:452)を得た。測定の結果、目的
とする4,4’−イソフタロイルジフタル酸(以下「I
PDA」と略称する。)の純度は91.6%であり、そ
の収率は93.7%であった。
Example 1 In a titanium autoclave equipped with a magnetic stirrer and having an internal volume of 500 ml equipped with a gas inlet and a gas outlet with a reflux condenser, 85.5 g of 1,3-bis (3,4-dimethylbenzoyl) benzene was added. cobalt bromide [CoBr 2 · 6H 2 O,
The same applies hereinafter] 2.80 g, manganese acetate [Mn (OCOC
H 3) 2 · 4H 2 O , Similarly] 2.45 g and acetic acid 20
0 g was charged, the pressure was increased to 10 kg / cm 2 · G with nitrogen, and the mixture was heated and stirred. When the temperature in the system started to introduce air at 150 ° C,
Refrigerating acetic acid vaporized by the cooler at the gas outlet and releasing exhaust gas, 170-180 ℃, pressure 20kg / c
The amount of introduced air was adjusted so that the oxygen concentration in the exhaust gas was in the range of 1 to 6% with m 2 · G (oxygen partial pressure 0.1 to 0.8 a
tm). When the reaction was carried out for about 2 hours under these conditions, no absorption of oxygen was observed. At this point, the introduction of air was stopped and the reaction was continued for another 30 minutes. The reactor was cooled, the contents were taken out, and acetic acid and generated water were distilled off under reduced pressure to obtain 115 g of a reaction crude product (neutralization value: 452). As a result of the measurement, the target 4,4′-isophthaloyldiphthalic acid (hereinafter “I
It is abbreviated as "PDA". The purity of 9) was 91.6%, and the yield thereof was 93.7%.

【0030】実施例2 実施例1と同一の反応器に、1,3−ビス(3,4−ジ
メチルベンゾイル)ベンゼン85.5g、臭化コバルト
2.80g及び酢酸マンガン0.02g及び酢酸200
gを仕込み、窒素で10kg/cm2・Gまで加圧し、加熱攪拌
した。系内の温度が160℃から空気を導入し始め、ガ
ス抜出口の冷却器により蒸発する酢酸を還流させて排出
ガスを放出しつつ、175〜185℃、圧力20kg/cm2
・G で排出ガス中の酸素濃度を1〜6%の範囲となるよ
うに導入空気量を調節した(酸素分圧0.1〜0.8a
tm)。この条件で約2.5時間反応すると酸素の吸収
が認められなくなった。この時点で空気の導入を停止
し、更に30分間反応を続けた。反応器を冷却して内容
物を取り出し、減圧下に酢酸及び生成水を留去して反応
粗物115g(中和価471)を得た。測定の結果、I
PDAの純度は96.7%であり、その収率は98.6
%であった。
Example 2 In the same reactor as in Example 1, 85.5 g of 1,3-bis (3,4-dimethylbenzoyl) benzene, 2.80 g of cobalt bromide, 0.02 g of manganese acetate and 200 ml of acetic acid.
g, charged with nitrogen to 10 kg / cm 2 · G, and stirred with heating. Air begins to be introduced at a temperature in the system of 160 ° C, acetic acid evaporated by the cooler at the gas outlet is refluxed to discharge exhaust gas, and 175-185 ° C, pressure 20 kg / cm 2
・ The amount of introduced air was adjusted by G so that the oxygen concentration in the exhaust gas was in the range of 1 to 6% (oxygen partial pressure 0.1 to 0.8a
tm). When the reaction was performed for about 2.5 hours under these conditions, oxygen absorption was not observed. At this point, the introduction of air was stopped and the reaction was continued for another 30 minutes. The reactor was cooled, the contents were taken out, and acetic acid and generated water were distilled off under reduced pressure to obtain 115 g of a reaction crude product (neutralization value 471). Measurement result, I
The purity of PDA is 96.7%, and the yield is 98.6.
%Met.

【0031】実施例3 実施例1と同一の反応器に1,3−ビス(3,4−ジメ
チルベンゾイル)ベンゼン85.5g、酢酸コバルト
[Co(OCOCH32・4H2O]2.45g、酢酸
マンガン0.015g及び臭化アンモニウム2.50g
からなる触媒及び酢酸200gを仕込み、反応温度17
0〜180℃、圧力15kg/cm2・G(酸素分圧は0.01
〜0.6atm)の条件下で3時間反応させてIPDA
を製造した。測定の結果、目的物の純度は96.2%で
あり、その収率は97.9%であった。
The same reactor of 1,3-bis Example 3 Example 1 (3,4-dimethylbenzoyl) benzene 85.5 g, cobalt acetate [Co (OCOCH 3) 2 · 4H 2 O] 2.45g , Manganese acetate 0.015 g and ammonium bromide 2.50 g
And a reaction temperature of 17 g.
0-180 ℃, pressure 15kg / cm 2 · G (oxygen partial pressure is 0.01
~ 0.6 atm) and react with IPDA for 3 hours.
Was manufactured. As a result of the measurement, the purity of the target product was 96.2%, and the yield thereof was 97.9%.

【0032】実施例4 触媒として臭化コバルト3.26g、酢酸マンガン0.
24g、酢酸セリウム[Ce(OCOCH32・H
2O、以下同様]0.33g及び47%臭化水素水1.
7gからなる触媒を適用した他は、実施例3と同様にし
てIPDAを製造した。測定の結果、目的物の純度は9
6.6%、その収率は98.1%であった。
Example 4 As a catalyst, 3.26 g of cobalt bromide, manganese acetate of 0.
24 g, cerium acetate [Ce (OCOCH 3 ) 2 · H
2 O, the same as below] 0.33 g and 47% hydrobromide water 1.
IPDA was prepared in the same manner as in Example 3 except that the catalyst consisting of 7 g was applied. As a result of the measurement, the purity of the target product is 9
The yield was 6.6% and the yield was 98.1%.

【0033】実施例5 触媒として臭化コバルト1.10g、酢酸セリウム0.
03g及び臭化ナトリウム1.0gからなる触媒を適用
した他は、実施例3と同様にしてIPDAを製造した。
測定の結果、目的物の純度は95.9%、その収率は9
7.3%であった。
Example 5 1.10 g of cobalt bromide and cerium acetate of 0.
IPDA was prepared in the same manner as in Example 3, except that the catalyst consisting of 03 g and 1.0 g of sodium bromide was applied.
As a result of the measurement, the target product had a purity of 95.9% and a yield of 9
It was 7.3%.

【0034】実施例6 触媒としてナフテン酸コバルト(Co:6%)7.50
g、ナフテン酸マンガン(Mn:9%)0.15g及び
テトラブロモエタン9.70gからなる触媒を適用した
他は、実施例3と同様にしてIPDAを製造した。測定
の結果、目的物の純度は95.1%、その収率は96.
8%であった。
Example 6 Cobalt naphthenate (Co: 6%) 7.50 as a catalyst
g, manganese naphthenate (Mn: 9%) 0.15 g and tetrabromoethane 9.70 g except that a catalyst was applied, IPDA was produced in the same manner as in Example 3. As a result of the measurement, the purity of the target product was 95.1%, and the yield was 96.
It was 8%.

【0035】実施例7 実施例1と同一の反応器に1,4−ビス(3,4−ジメ
チルベンゾイル)ベンゼン85.5g、臭化コバルト
2.80g及び酢酸マンガン2.45gからなる触媒及
び酢酸200gを仕込み、175〜185℃、10kg/c
m2・G の条件下に3時間反応して、目的とする4,4’
−テレフタロイルジフタル酸を92.8%の収率で得
た。
Example 7 A catalyst consisting of 85.5 g of 1,4-bis (3,4-dimethylbenzoyl) benzene, 2.80 g of cobalt bromide and 2.45 g of manganese acetate and acetic acid was placed in the same reactor as in Example 1. Charge 200g, 175-185 ℃, 10kg / c
React for 3 hours under m 2 · G conditions to obtain the desired 4,4 '
-Terephthaloyldiphthalic acid was obtained with a yield of 92.8%.

【0036】実施例8 実施例1と同一の反応器に1,4−ビス(3,4−ジメ
チルベンゾイル)ベンゼン85.5g、酢酸コバルト
2.40g、酢酸マンガン0.24g、47%臭化水素
酸6.00gからなる触媒及び酢酸200gを仕込み、
170〜180℃、20kg/cm2・G の条件下に3時間反
応して、目的とする4,4’−テレフタロイルジフタル
酸を96.2%の収率で得た。
Example 8 In the same reactor as in Example 1, 85.5 g of 1,4-bis (3,4-dimethylbenzoyl) benzene, 2.40 g of cobalt acetate, 0.24 g of manganese acetate and 47% hydrogen bromide. Charge a catalyst consisting of 6.00 g of acid and 200 g of acetic acid,
The reaction was carried out under the conditions of 170 to 180 ° C. and 20 kg / cm 2 · G for 3 hours to obtain the desired 4,4′-terephthaloyldiphthalic acid in a yield of 96.2%.

【0037】[0037]

【発明の効果】本発明に係る触媒系を適用することによ
り、工業的に有利な条件下で目的とする芳香族テトラカ
ルボン酸を高純度、高収率で得ることができる。
By applying the catalyst system according to the present invention, the target aromatic tetracarboxylic acid can be obtained in high purity and high yield under industrially advantageous conditions.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西内 昭浩 京都府京都市伏見区葭島矢倉町13番地 新 日本理化株式会社内 (72)発明者 八木 均 京都府京都市伏見区葭島矢倉町13番地 新 日本理化株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihiro Nishiuchi 13 No. 13 Yakura-cho, Fukumi-ku, Kyoto City, Kyoto Prefecture New Japan Rika Co., Ltd. (72) Inventor Hitoshi Yagi 13 No. 13 Yakura-cho, Fukumi-ku, Kyoto City, Kyoto Japan Rika Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式(I)で示される芳香族テトラア
ルキル化合物を、脂肪族モノカルボン酸中で酸素又は酸
素含有ガスにより酸化して対応する一般式(II)で示
される芳香族テトラカルボン酸を製造するに際し、少な
くとも、(A)コバルト、(B)臭素又は臭素と塩素、
(C)マンガン、セリウム、ジルコニウム、ニッケルか
ら選ばれた1種以上の重金属の3成分から構成される触
媒を使用することを特徴とする芳香族テトラカルボン酸
の製造方法。 【化1】 [式中、R1、R2、R3及びR4は、同一又は異なって、
アルキル基を表し、X、Y及びZは、同一又は異なっ
て、ハロゲン基、ニトロ基及びニトリル基を表す。X及
びZは0〜3を、Yは0〜4を表す。] 【化2】 [式中、X、Y及びZは、同一又は異なって、ハロゲン
基、ニトロ基及びニトリル基を表す。X及びZは0〜3
を、Yは0〜4を表す。]
1. An aromatic tetracarboxylic compound represented by the general formula (II) obtained by oxidizing an aromatic tetraalkyl compound represented by the general formula (I) with oxygen or an oxygen-containing gas in an aliphatic monocarboxylic acid. In producing the acid, at least (A) cobalt, (B) bromine or bromine and chlorine,
(C) A method for producing an aromatic tetracarboxylic acid, which comprises using a catalyst composed of three components of one or more heavy metals selected from manganese, cerium, zirconium and nickel. [Chemical 1] [Wherein R 1 , R 2 , R 3 and R 4 are the same or different,
It represents an alkyl group, and X, Y and Z are the same or different and represent a halogen group, a nitro group and a nitrile group. X and Z represent 0 to 3, and Y represents 0 to 4. ] [Chemical 2] [In the formula, X, Y and Z are the same or different and each represents a halogen group, a nitro group or a nitrile group. X and Z are 0-3
And Y represents 0 to 4. ]
【請求項2】 (A)コバルトに対する(C)重金属の
重量比が、0.0001〜100である触媒を用いるこ
とを特徴とする請求項1記載の芳香族テトラカルボン酸
の製造方法。
2. The method for producing an aromatic tetracarboxylic acid according to claim 1, wherein a catalyst having a weight ratio of (C) heavy metal to (A) cobalt of 0.0001 to 100 is used.
JP3061339A 1991-03-01 1991-03-01 Method for producing aromatic tetracarboxylic acid Expired - Fee Related JP2927023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3061339A JP2927023B2 (en) 1991-03-01 1991-03-01 Method for producing aromatic tetracarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3061339A JP2927023B2 (en) 1991-03-01 1991-03-01 Method for producing aromatic tetracarboxylic acid

Publications (2)

Publication Number Publication Date
JPH0625079A true JPH0625079A (en) 1994-02-01
JP2927023B2 JP2927023B2 (en) 1999-07-28

Family

ID=13168279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3061339A Expired - Fee Related JP2927023B2 (en) 1991-03-01 1991-03-01 Method for producing aromatic tetracarboxylic acid

Country Status (1)

Country Link
JP (1) JP2927023B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000041505A (en) * 1998-12-22 2000-07-15 유현식 Method for the preparation of aromatic polycarbonic acid
JP2007311563A (en) * 2006-05-18 2007-11-29 Sharp Corp Solid-state imaging apparatus, and electronic information equipment
JP2007311413A (en) * 2006-05-16 2007-11-29 Sharp Corp Solid-state imaging device and its manufacturing method, and electronic information device
CN108863736A (en) * 2018-07-27 2018-11-23 福州大学 A kind of preparation method of the aromatic carboxylic acids of carbonyl functionalization

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000041505A (en) * 1998-12-22 2000-07-15 유현식 Method for the preparation of aromatic polycarbonic acid
JP2007311413A (en) * 2006-05-16 2007-11-29 Sharp Corp Solid-state imaging device and its manufacturing method, and electronic information device
JP2007311563A (en) * 2006-05-18 2007-11-29 Sharp Corp Solid-state imaging apparatus, and electronic information equipment
CN108863736A (en) * 2018-07-27 2018-11-23 福州大学 A kind of preparation method of the aromatic carboxylic acids of carbonyl functionalization

Also Published As

Publication number Publication date
JP2927023B2 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
JP2927023B2 (en) Method for producing aromatic tetracarboxylic acid
US4853479A (en) Process for the manufacture of aromatic dicarboxylic acids and derivatives thereof
US5144066A (en) Method of producing naphthalenedicarboxylic acids and diaryldicarboxylic acids
JP2008534577A (en) Method for producing p-toluic acid by liquid phase oxidation of p-xylene in water
JP4913962B2 (en) Process for producing phenylethynylphthalic anhydride derivative
US4906771A (en) Process for catalytic oxidation of ortho-nitroaromatic compounds to ortho-nitroaromatic acids
US4214100A (en) Process for preventing blackening of phthalic acid
US5523473A (en) Method of producing naphthalenedicarboxylic acids and diaryldicarboxylic acids
JPH05339204A (en) Production of aromatic dicarboxylic acid
CN100439315C (en) Process for producing 1,3-naphthalenedicarboxylic acid
JP2002097185A (en) Method for producing aromatic tetracarboxylic dianhydride
JPH0613468B2 (en) Method for producing diphenyl sulfone tetracarboxylic acid
RU2314301C2 (en) Method of producing and cleaning pyromellitic anhydrite
JPH04221341A (en) Production of carboxybiphenyl compound
JPH07107022B2 (en) Method for producing aromatic polycarboxylic acid
JP3360867B2 (en) Method for producing biphenyl-4-carboxylic acid derivative
JPH06172260A (en) Production of naphthalenecarboxylic acid
JPH04159247A (en) Production of carboxybiphenyls
JP2536555B2 (en) Process for producing polyvalent alkyl-substituted benzoic acid
US5382700A (en) Oxidative coupling of alpha, beta unsaturated aldehydes
JPH0768247B2 (en) Method for producing diallyl dicarboxylic acid
JPH0639444B2 (en) 2.3-Method for producing naphthalenedicarboxylic acid
JPH05294893A (en) Production of carboxyphenylcarboxyindane
JPH0541624B2 (en)
CN107652184A (en) The method that nitrogen dioxide nitrification vanillic aldehyde prepares 5 nitro vanillins

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees