JPH0768247B2 - Method for producing diallyl dicarboxylic acid - Google Patents

Method for producing diallyl dicarboxylic acid

Info

Publication number
JPH0768247B2
JPH0768247B2 JP62146506A JP14650687A JPH0768247B2 JP H0768247 B2 JPH0768247 B2 JP H0768247B2 JP 62146506 A JP62146506 A JP 62146506A JP 14650687 A JP14650687 A JP 14650687A JP H0768247 B2 JPH0768247 B2 JP H0768247B2
Authority
JP
Japan
Prior art keywords
cobalt
reaction
bromine
acid
acetate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62146506A
Other languages
Japanese (ja)
Other versions
JPS63310846A (en
Inventor
博司 真見
幹郎 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP62146506A priority Critical patent/JPH0768247B2/en
Publication of JPS63310846A publication Critical patent/JPS63310846A/en
Publication of JPH0768247B2 publication Critical patent/JPH0768247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ジアルキル置換ジアリール化合物を酸化し
て、相当するジアリールカジルボン酸を製造する方法に
関する。
TECHNICAL FIELD The present invention relates to a method for producing a corresponding diarylcadylbonic acid by oxidizing a dialkyl-substituted diaryl compound.

本発明方法により得られるジアリールジカルボン酸は、
耐熱性、機械的特性に優れるポリエステル樹脂及びポリ
アミド樹脂の原料等として有用な化合物である。
The diaryldicarboxylic acid obtained by the method of the present invention is
It is a compound useful as a raw material for polyester resins and polyamide resins having excellent heat resistance and mechanical properties.

[従来技術及びその問題点] 従来、ジアルキル置換ジアリール化合物を有機溶媒中、
分子状酸素で酸化して、相当するジアリールジカルボン
酸を製造する方法としては、コバルトを触媒とし、メチ
ルエチルケトンを促進剤として用いる方法(米国特許3,
676,488号、米国特許3,641,135号等)、あるいはコバル
トと臭素とを触媒として使用する方法(特開昭61−6064
5号、特開昭61−63634号等)が知られている。しかし、
前者は反応時間が長く、高価な促進剤を多量に必要とす
る上に収率もあまり良くない等の欠点を有する。又、後
者は反応開始時に誘導期が生じたり、反応途中に速度が
著しく低下し、収率が低下する等の欠点を有している。
従って、これら公知の方法は、ジアリールジカルボン酸
を工業的に安価に製造する方法として満足できるもので
はない。
[Prior Art and its Problems] Conventionally, dialkyl-substituted diaryl compounds in organic solvents,
As a method for producing a corresponding diaryldicarboxylic acid by oxidation with molecular oxygen, a method using cobalt as a catalyst and methyl ethyl ketone as a promoter (US Pat.
676,488, U.S. Pat. No. 3,641,135, etc.) or a method of using cobalt and bromine as catalysts (JP-A-61-6064).
No. 5, JP-A-61-63634, etc.) are known. But,
The former has drawbacks such that the reaction time is long, a large amount of expensive promoter is required, and the yield is not so good. In addition, the latter has the drawbacks that an induction period occurs at the start of the reaction, the rate decreases remarkably during the reaction, and the yield decreases.
Therefore, these known methods are not satisfactory as methods for industrially inexpensively producing diaryldicarboxylic acids.

又、ジトリルエタンの酸化触媒として、コバルト−臭素
−銅系触媒、コバルト−マンガン−臭素−銅系触媒(特
開昭52−77022号)及び(バナジウム、ニオブ及び/又
はモリブデン)−コバルト−臭素系触媒、(バナジウ
ム、ニオブ及び/又はモリブデン)−コバルト−マンガ
ン−臭素系触媒(特開昭51−127034号)が知られてい
る。
Further, as an oxidation catalyst of ditolylethane, a cobalt-bromine-copper catalyst, a cobalt-manganese-bromine-copper catalyst (JP-A-52-77022) and (vanadium, niobium and / or molybdenum) -cobalt-bromine catalyst. , (Vanadium, niobium and / or molybdenum) -cobalt-manganese-bromine catalysts (JP-A-51-127034).

[発明が解決しようとする問題点] ジアルキル置換ジアリール化合物を酸化してジアリール
ジカルボン酸を製造するに際し、経済的な速度で、安価
にかつ高収率で酸化し得る工業的に有利な方法の確立が
望まれている。
[Problems to be Solved by the Invention] In producing a diaryldicarboxylic acid by oxidizing a dialkyl-substituted diaryl compound, establishment of an industrially advantageous method that can be oxidized at a low cost and in a high yield at an economical rate Is desired.

本発明者らは、有機溶媒中において分子状酸素によりジ
アルキル置換ジアリール化合物を酸化する方法について
鋭意検討した結果、特定の化合物を酸化反応用触媒とし
て適用することにより、所期の目的を得ることを見い出
し、この知見に基づいて本発明を完成するに至った。
As a result of intensive studies on the method of oxidizing a dialkyl-substituted diaryl compound with molecular oxygen in an organic solvent, the present inventors have found that by applying a specific compound as a catalyst for an oxidation reaction, the intended purpose can be obtained. They have found the present invention and have completed the present invention based on this finding.

即ち、本発明は、酸化反応用触媒に特徴を有するジアリ
ールジカルボン酸の新規な製造方法を提供することを目
的とする。
That is, the object of the present invention is to provide a novel method for producing a diaryldicarboxylic acid, which is characterized by an oxidation reaction catalyst.

[問題点を解決するための手段] 本発明に係るジアリールジカルボン酸の製造方法は、一
般式(I) [式中、Aは、−O−、−SO2−、 を表す。] で表されるジメチル置換ジアリール化合物を有機溶媒
中、分子状酸素で酸化して、一般式(II) [式中、A′は−O−、−SO2−、 を表す。] で表されるジアリールカルボン酸を製造するに際し、少
なくとも、(A)コバルト、(B)臭素又は臭素と塩
素、(C)マンガン、セリウム及びニッケルよりなる郡
から選ばれる1種若しくは2種以上の重金属の3成分を
含有する触媒を使用することを特徴とする。但し、上記
一般式において、Aが−O−のときA′は−O−であ
り、Aが−SO2のときA′は−SO2であり、Aが である。
[Means for Solving Problems] The method for producing a diaryldicarboxylic acid according to the present invention comprises a compound represented by the general formula (I): [In the formula, A is —O—, —SO 2 —, Represents ] The dimethyl-substituted diaryl compound represented by the general formula (II) is oxidized with molecular oxygen in an organic solvent. [In the formula, A ′ is —O—, —SO 2 —, Represents ] In producing the diarylcarboxylic acid represented by, at least one kind or two or more kinds selected from the group consisting of (A) cobalt, (B) bromine or bromine and chlorine, (C) manganese, cerium and nickel It is characterized by using a catalyst containing three components of heavy metals. However, in the above general formula, when A is -O- A 'is -O-, and when A is -SO 2 A' is -SO 2, A is Is.

本発明に係る方法において、原料として用いる一般式
(I)で表されるジメチル置換アリール化合物として
は、 3,3′−ジメチルジフェニルエーテル、 3,4′−ジメチルジフェニルエーテル、 4,4′−ジメチルジフェニルエーテル、 3,3′−ジメチルジフェニルスルホン、 3,4′−ジメチルジフェニルスルホン、 4,4′−ジメチルジフェニルスルホン、 1,1−ビス(3−メチルフェニル)エタン、 1,1−ビス(4−メチルフェニル)エタン、 ビス(3−メチルフェニル)ジメチルシラン、 ビス(4−メチルフェニル)ジメチルシラン、 並びに上記ジアリール化合物夫々についての他のジメチ
ル置換体が例示される。
In the method according to the present invention, as the dimethyl-substituted aryl compound represented by the general formula (I) used as a raw material, 3,3′-dimethyldiphenyl ether, 3,4′-dimethyldiphenyl ether, 4,4′-dimethyldiphenyl ether, 3,3'-Dimethyldiphenyl sulfone, 3,4'-Dimethyldiphenyl sulfone, 4,4'-Dimethyldiphenyl sulfone, 1,1-Bis (3-methylphenyl) ethane, 1,1-Bis (4-methylphenyl) ) Ethane, bis (3-methylphenyl) dimethylsilane, bis (4-methylphenyl) dimethylsilane, and other dimethyl-substituted compounds of each of the above diaryl compounds.

本発明において使用する触媒は、少なくとも、(A)コ
バルト、(B)臭素又は臭素と塩素及び(C)マンガ
ン、セリウム及びニッケルよりなる郡から選ばれる1種
若しくは2種以上の重金属の3成分を含有する。
The catalyst used in the present invention contains at least three components of one or more heavy metals selected from the group consisting of (A) cobalt, (B) bromine or bromine and chlorine and (C) manganese, cerium and nickel. contains.

(A)コバルトは、単体、酸化物、水酸化物、有機酸
塩、無機酸塩、錯体等、いかなる形態で反応系に添加し
てもよいが、反応系で少なくとも部分的に溶解する塩、
例えば酢酸コバルト、ナフテン酸コバルト、臭化コバル
ト、水酸化コバルト等が好ましい。
(A) Cobalt may be added to the reaction system in any form such as a simple substance, an oxide, a hydroxide, an organic acid salt, an inorganic acid salt and a complex, but a salt which is at least partially dissolved in the reaction system,
For example, cobalt acetate, cobalt naphthenate, cobalt bromide, cobalt hydroxide and the like are preferable.

コバルトの使用量は、金属換算濃度で0.01〜10g/が適
当である。0.01g/以下では充分な反応速度が得られ
ず、10g/以上では触媒費の負担が増すと共に、副反応
が増加する傾向にある。
The appropriate amount of cobalt used is 0.01 to 10 g / in terms of metal concentration. If it is less than 0.01 g /, a sufficient reaction rate cannot be obtained, and if it is more than 10 g /, the burden of catalyst cost increases and side reactions tend to increase.

(B)臭素としては、臭素分子、その酸、塩、酸素酸
塩、又は有機臭素化合物等の何れでも使用可能で、特に
臭化水素、臭化アンモニウム、臭化ナトリウム、臭化コ
バルト、臭化マンガン、臭化セリウム、テトラブロモエ
タン、トリブロモエタン等が好ましい。塩素についても
同様である。
As (B) bromine, any of bromine molecule, its acid, salt, oxyacid salt, organic bromine compound and the like can be used, and in particular, hydrogen bromide, ammonium bromide, sodium bromide, cobalt bromide, bromide Manganese, cerium bromide, tetrabromoethane, tribromoethane and the like are preferable. The same applies to chlorine.

臭素の使用量は、コバルト(A)及び重金属(C)の原
子当りの臭素原子換算で0.1〜100当量が適当である。0.
1当量以下では充分な速度が得られず、100当量以上では
臭素による生成物汚染や触媒費の負担が大きく好ましく
ない。
The appropriate amount of bromine used is 0.1 to 100 equivalents in terms of bromine atom per atom of cobalt (A) and heavy metal (C). 0.
If it is less than 1 equivalent, a sufficient speed cannot be obtained, and if it is more than 100 equivalents, product contamination due to bromine and the burden of catalyst cost are large, which is not preferable.

臭素と塩素を併用する場合も、その合計が原子換算で0.
1〜100当量が適当で、臭素に対する塩素の比は0.7以下
であることが望ましい。
When using bromine and chlorine together, the total is 0 in atomic conversion.
A suitable amount is 1 to 100 equivalents, and the ratio of chlorine to bromine is preferably 0.7 or less.

(C)マンガン、セリウム及びニッケルよりなる郡から
選ばれる重金属は、単体、酸化物、水酸化物、有機酸
塩、無機酸塩、錯体等の何れの形態でも良い。
The heavy metal (C) selected from the group consisting of manganese, cerium and nickel may be in any form such as a simple substance, an oxide, a hydroxide, an organic acid salt, an inorganic acid salt or a complex.

当該重金属の使用量は、コバルト金属に対して重量比で
0.01〜100の割合が適当である。0.01以下の添加では反
応促進の大きな効果が認められず、100以上の添加では
触媒費の負担が増し経済的に不利である。
The amount of the heavy metal used is a weight ratio to the cobalt metal.
A ratio of 0.01 to 100 is suitable. If it is added in an amount of 0.01 or less, no significant effect of accelerating the reaction is observed, and if it is added in an amount of 100 or more, the burden of the catalyst cost increases and it is economically disadvantageous.

本発明に係る触媒系として、具体的には、次のような触
媒系が例示される。即ち、臭化コバルトと臭化マンガ
ン、酢酸コバルトと酢酸マンガン及び臭化アンモニウ
ム、臭化コバルトと酢酸マンガン、ナフテン酸コバルト
と酢酸マンガン及びテトラブロモエタン、臭化コバルト
と酢酸セリウム、酢酸コバルトと酢酸セリウム及び臭化
水素、酢酸コバルトと臭化ニッケル、酢酸コバルトと酢
酸マンガンと酢酸セリウム及び臭化水素、酢酸コバルト
と酢酸マンガンと臭化水素及び塩化水素等が揚げられ
る。尚、本発明は、この例示に限定されるものではな
い。
Specific examples of the catalyst system according to the present invention include the following catalyst systems. That is, cobalt bromide and manganese bromide, cobalt acetate and manganese acetate and ammonium bromide, cobalt bromide and manganese acetate, cobalt naphthenate and manganese acetate and tetrabromoethane, cobalt bromide and cerium acetate, cobalt acetate and cerium acetate. And, hydrogen bromide, cobalt acetate and nickel bromide, cobalt acetate and manganese acetate and cerium acetate and hydrogen bromide, cobalt acetate and manganese acetate and hydrogen bromide, and hydrogen chloride are fried. The present invention is not limited to this example.

酸化剤として用いる分子状酸素は、純酸素や工業用排ガ
スも使用できるが、工業的には空気が最適である。
As the molecular oxygen used as the oxidant, pure oxygen or industrial exhaust gas can be used, but industrially air is most suitable.

反応溶媒は、本発明に係る酸化反応条件下において不活
性若しくは比較的安定な媒体であれば足り、好ましくは
極性有機化合物が用いられる。例えば炭素数2〜10程度
の飽和モノカルボン酸が好ましく、特に酢酸が最適であ
る。
The reaction solvent may be any medium that is inert or relatively stable under the oxidation reaction conditions of the present invention, and preferably a polar organic compound is used. For example, a saturated monocarboxylic acid having about 2 to 10 carbon atoms is preferable, and acetic acid is particularly suitable.

反応圧力は、全反応圧が1〜100気圧、特に2〜50気圧
の範囲で、且つ酸素分圧が0.1〜10気圧であることが好
ましい。
The reaction pressure is preferably such that the total reaction pressure is in the range of 1 to 100 atm, particularly 2 to 50 atm, and the oxygen partial pressure is 0.1 to 10 atm.

更に、安全面から、反応器より排出するガス中の酸素濃
度が8容量%以下になるように操作することが望まし
い。
Further, from the viewpoint of safety, it is desirable to operate so that the oxygen concentration in the gas discharged from the reactor is 8% by volume or less.

反応温度は80〜250℃、好ましくは120〜200℃の範囲で
ある。80℃よりも低い温度では反応速度が遅く、250℃
を超える温度では溶媒や生成物の二酸化炭素への分解が
激しくなり、好ましくない。
The reaction temperature is in the range of 80 to 250 ° C, preferably 120 to 200 ° C. The reaction rate is slower at temperatures lower than 80 ℃, 250 ℃
If the temperature exceeds 1, the decomposition of the solvent or the product into carbon dioxide becomes severe, which is not preferable.

反応時間は、触媒量、ジアルキル置換ジアリール化合物
の種類及び反応諸条件に関係するが、通常は0.5〜50時
間である。
The reaction time depends on the amount of the catalyst, the kind of the dialkyl-substituted diaryl compound and various reaction conditions, but is usually 0.5 to 50 hours.

以上の条件で反応すると、目的物のジアリールジカルホ
ン酸は反応系外に析出する。従って、反応を充分に進行
させ、析出した固体を反応液から濾別し、洗浄するのみ
で容易に目的物を単離することが出来る。目的物を単離
後の反応液は、そのまま或いは必要に応じて水分量の調
整や新触媒の追加を行った後、ジアルキル置換ジアリー
ル化合物を添加し、繰返し酸化反応を実施することが出
来る。
When the reaction is carried out under the above conditions, the intended product, diaryldicarphonic acid, is precipitated outside the reaction system. Therefore, the desired product can be easily isolated only by allowing the reaction to proceed sufficiently, separating the precipitated solid from the reaction solution by filtration, and washing. The reaction solution after isolation of the desired product can be subjected to repeated oxidation reaction by adding a dialkyl-substituted diaryl compound as it is or after adjusting the water content or adding a new catalyst as necessary.

[実施例] 以下、実施例を掲げて本発明をより詳細に説明する。[Examples] Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例1 4,4′−ジメチルジフェニルスルホン246g(1.0モル)、
臭化コバルト[CoBr2・6H2O]16g(49ミリモル)、酢酸
マンガン[Mn(OAc)・4H2O]3g(12ミリモル)を酢
酸に溶解して2.5とし、オートクレーブに仕込み、撹
拌しながら150℃に昇温した。空気で20Kg/cm2・Gに加
圧し、5.0〜0.5ml/分で空気を連続的に吸込み、1.5時間
酸化した。その後、反応混合物を抜き出し、室温まで冷
却して析出した固体を濾別した。その固体を酢酸、次い
で冷水で充分に洗浄後、減圧下に乾燥し無色粉末294g
(収率96%)を得た。
Example 1 246 g (1.0 mol) of 4,4'-dimethyldiphenyl sulfone,
Cobalt bromide [CoBr 2 · 6H 2 O] 16g (49 mmol), manganese acetate [Mn (OAc) 2 · 4H 2 O] a 3 g (12 mmol) and 2.5 was dissolved in acetic acid were charged into an autoclave, stirred While raising the temperature to 150 ° C. The pressure was increased to 20 kg / cm 2 · G with air, the air was continuously sucked at 5.0 to 0.5 ml / min, and oxidation was performed for 1.5 hours. Then, the reaction mixture was extracted, cooled to room temperature, and the precipitated solid was filtered off. The solid was thoroughly washed with acetic acid and then with cold water, and dried under reduced pressure to give 294 g of colorless powder.
(Yield 96%) was obtained.

このものは、NMR及びIRスペクトルよりジフェニルスル
ホン−4,4′ジカルボン酸と同定され、その中和価は361
(純度98.4%)であった。
This product was identified as diphenylsulfone-4,4'dicarboxylic acid by NMR and IR spectra, and its neutralization number was 361.
(Purity 98.4%).

比較例1 酢酸マンガンを使用せずに実施例1と同様に酸化した。
反応初期に約0.25時間の誘導期が生じ、反応後に得られ
た固体267g(収率87%)は微黄色であった。
Comparative Example 1 Oxidation was performed in the same manner as in Example 1 without using manganese acetate.
An induction period of about 0.25 hours occurred in the early stage of the reaction, and 267 g (yield 87%) of the solid obtained after the reaction was slightly yellow.

実施例2 4,4′−ジメチルジフェニルエーテル198g(1.0モル)、 酢酸コバルト[Co(OAc)・4H2O]7g(28ミリモ
ル)、酢酸マンガン7g(28ミリモル)及び臭化アンモニ
ウム11g(112ミリモル)を酢酸に溶解して2.5とし、
実施例1と同様にしてジフェニルエーテル−4,4′−ジ
カルボン酸の無色粉末240g(収率93%)を得た。このも
のの中和価は426(純度98.2%)であった。
Example 2 4,4'-dimethyl ether 198 g (1.0 mol), cobalt acetate [Co (OAc) 2 · 4H 2 O] 7g (28 mmol), manganese acetate 7 g (28 mmol) and ammonium bromide 11g (112 mmol ) In acetic acid to 2.5,
In the same manner as in Example 1, 240 g (yield 93%) of colorless powder of diphenyl ether-4,4'-dicarboxylic acid was obtained. The neutralization value of this product was 426 (purity 98.2%).

実施例3 1,1−ビス(4−メチルフェニル)エタン210g(1.0モ
ル)、臭化コバルト9g(28ミリモル)及び酢酸ニッケル
[Ni(OAc)・4H2O]3g(12ミリモル)を酢酸に溶解
して2.5とし、実施例2と同様に酸化した。反応混合
物より析出した固体を濾別し、洗浄後乾燥して無色粉末
259g(収率96%)を得た。
Example 3 1,1-bis (4-methylphenyl) ethane 210g (1.0 mole), cobalt bromide 9 g (28 mmol) and nickel acetate [Ni (OAc) 2 · 4H 2 O] 3g (12 mmol) acetic acid It was dissolved in the solution to give 2.5 and was oxidized in the same manner as in Example 2. The solid precipitated from the reaction mixture is filtered off, washed and dried to give a colorless powder.
259 g (yield 96%) was obtained.

このものは、NMR及びIRスペクトルよりベンゾフェノン
−4,4′−ジカルボン酸と同定され、その中和価は412
(純度99.3%)であった。
This product was identified as benzophenone-4,4'-dicarboxylic acid by NMR and IR spectra, and its neutralization value was 412.
(Purity 99.3%).

実施例4 1,1−ビス(3−メチルフェニル)エタン210g(1.0モ
ル)、酢酸コバルト6g(24ミリモル)、酢酸マンガン3g
(12ミリモル)、酢酸セリウム3g(10ミリモル)及び臭
化水素酸(d=1.48)16g(93ミリモル)を酢酸に溶解
して2.5とし、実施例2と同様に酸化した。反応混合
物より析出した固体を濾別し、洗浄後乾燥して無色粉末
265g(収率98%)を得た。
Example 4 210 g (1.0 mol) of 1,1-bis (3-methylphenyl) ethane, 6 g (24 mmol) of cobalt acetate, 3 g of manganese acetate
(12 mmol), 3 g (10 mmol) of cerium acetate and 16 g (93 mmol) of hydrobromic acid (d = 1.48) were dissolved in acetic acid to 2.5 and oxidized in the same manner as in Example 2. The solid precipitated from the reaction mixture is filtered off, washed and dried to give a colorless powder.
265 g (yield 98%) was obtained.

このものは、NMR及びIRスペクトルよりベンゾフェノン
−3,3′−ジカルボン酸と同定され、その中和価は410
(純度98.8%)であった。
This product was identified as benzophenone-3,3'-dicarboxylic acid by NMR and IR spectra, and its neutralization value was 410
(Purity 98.8%).

実施例5 ビス(4−メチルフェニル)ジメチルシラン240g(1.0
モル)、酢酸コバルト12g(48ミリモル)、酢酸マンガ
ン1g(4ミリモル)、臭化水素酸8g(46ミリモル)及び
濃塩酸5g(48ミリモル)を酢酸に溶解して2.5とし、
実施例1と同様に酸化した。反応混合物より析出した固
体を濾別し、洗浄後乾燥して無色粉末284g(収率95%)
を得た。
Example 5 240 g of bis (4-methylphenyl) dimethylsilane (1.0
Mol), cobalt acetate 12 g (48 mmol), manganese acetate 1 g (4 mmol), hydrobromic acid 8 g (46 mmol) and concentrated hydrochloric acid 5 g (48 mmol) in acetic acid to 2.5.
It was oxidized in the same manner as in Example 1. The solid precipitated from the reaction mixture was filtered off, washed and dried to give 284 g of colorless powder (yield 95%).
Got

このものは、NMR及びIRスペクトルよりビス(4−カル
ボキシフェニル)ジメチルシランと固定され、その中和
価は370(純度99.0%)であった。
This product was fixed to bis (4-carboxyphenyl) dimethylsilane by NMR and IR spectra, and its neutralization number was 370 (purity 99.0%).

[発明の効果] 本発明の方法によれば、種々のジアルキル置換ジアリー
ル化合物を有機溶媒中、分子状酸素により酸化するに際
し、従来より反応時間が短縮され高収率、高純度で工業
的に有利にジアリールジカルボン酸類を製造出来る。
[Effects of the Invention] According to the method of the present invention, when various dialkyl-substituted diaryl compounds are oxidized by molecular oxygen in an organic solvent, the reaction time is shortened as compared with the conventional method, and high yield and high purity are industrially advantageous. Further, diaryldicarboxylic acids can be produced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 65/34 315/04 317/44 // C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C07C 65/34 315/04 317/44 // C07B 61/00 300

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一般式(I) [式中、Aは、−O−、−SO2−、 を表す。] で表されるジメチル置換ジアリール化合物を有機溶媒
中、分子状酸素で酸化して、一般式(II) [式中、A′は、−O−、−SO2−、 を表す。] で表されるジアリールカルボン酸を製造するに際し、少
なくとも、(A)コバルト、(B)臭素又は臭素と塩
素、(C)マンガン、セリウム及びニッケルよりなる郡
から選ばれる1種若しくは2種以上の重金属の3成分を
含有する触媒を使用することを特徴とするジアリールカ
ルボン酸の製造方法。但し、上記一般式において、Aが
−O−のときA′は−O−であり、Aが−SO2のとき
A′は−SO2であり、Aが である。]
1. A general formula (I) [In the formula, A is —O—, —SO 2 —, Represents ] The dimethyl-substituted diaryl compound represented by the general formula (II) is oxidized with molecular oxygen in an organic solvent. [In the formula, A ′ represents —O—, —SO 2 —, Represents ] In producing the diarylcarboxylic acid represented by, at least one kind or two or more kinds selected from the group consisting of (A) cobalt, (B) bromine or bromine and chlorine, (C) manganese, cerium and nickel A method for producing a diarylcarboxylic acid, which comprises using a catalyst containing three components of a heavy metal. However, in the above general formula, when A is -O- A 'is -O-, and when A is -SO 2 A' is -SO 2, A is Is. ]
JP62146506A 1987-06-11 1987-06-11 Method for producing diallyl dicarboxylic acid Expired - Fee Related JPH0768247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62146506A JPH0768247B2 (en) 1987-06-11 1987-06-11 Method for producing diallyl dicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62146506A JPH0768247B2 (en) 1987-06-11 1987-06-11 Method for producing diallyl dicarboxylic acid

Publications (2)

Publication Number Publication Date
JPS63310846A JPS63310846A (en) 1988-12-19
JPH0768247B2 true JPH0768247B2 (en) 1995-07-26

Family

ID=15409170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62146506A Expired - Fee Related JPH0768247B2 (en) 1987-06-11 1987-06-11 Method for producing diallyl dicarboxylic acid

Country Status (1)

Country Link
JP (1) JPH0768247B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177049A (en) * 1990-01-31 1993-01-05 Monsanto Company Oxidation of tertiary-alkyl substituted aromatics
US5068407A (en) * 1990-01-31 1991-11-26 Monsanto Company Oxidation of tertiary-alkyl substituted aromatics
US5523473A (en) * 1992-12-30 1996-06-04 Nippon Shokubai Co., Ltd. Method of producing naphthalenedicarboxylic acids and diaryldicarboxylic acids

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51127034A (en) * 1975-04-28 1976-11-05 Mitsui Petrochem Ind Ltd Process for preparation of aromatic carboxylic acids
JPS5277022A (en) * 1975-12-22 1977-06-29 Mitsui Petrochem Ind Ltd Preparation of aromatic carboxylic acids
JPS63122645A (en) * 1986-11-11 1988-05-26 Kureha Chem Ind Co Ltd Production of biphenyl-4,4'-dicarboxylic acid

Also Published As

Publication number Publication date
JPS63310846A (en) 1988-12-19

Similar Documents

Publication Publication Date Title
US4346232A (en) Process for producing aromatic polycarboxylic acid
JPS6051150A (en) Production of biphenyltetracarboxylic acid ester
KR100965633B1 (en) A process for the preparation of p-toluic acid by liquid phase oxidation of p-xylene in water
JPH0768247B2 (en) Method for producing diallyl dicarboxylic acid
EP0024286B1 (en) Process for the preparation of aromatic dicarboxylic acid dichlorides and their use in the preparation of polycondensates
JP4788022B2 (en) Process for producing aromatic polycarboxylic acid
JP3027162B2 (en) Method for producing biphenylcarboxylic acid
JP2927023B2 (en) Method for producing aromatic tetracarboxylic acid
JPH01160943A (en) Production of naphthalenedicarboxylic acid
JPH06172260A (en) Production of naphthalenecarboxylic acid
JP2548590B2 (en) Method for selective oxidative carbonylation of conjugated dienes
JPS5913495B2 (en) Method for producing 2,6-naphthalene dicarboxylic acid
US7598415B2 (en) Process for the preparation of p-toluic acid by liquid phase oxidation of p-xylene in water
JP2509983B2 (en) Method for producing anisic acid
JPS62255448A (en) Production of naphthalenedicarboxylic acid
JPH05339204A (en) Production of aromatic dicarboxylic acid
JP2711517B2 (en) Method for producing 6-alkyl-2-naphthalenecarboxylic acid and 6-isopropyl-2-naphthalenecarboxylic acid
JPS61172851A (en) Method of dimerization of orthophthalic ester through oxidation and dehydrogenation
JP3093814B2 (en) Method for producing naphthalenedicarboxylic acid
JPH07107022B2 (en) Method for producing aromatic polycarboxylic acid
JPH06211733A (en) Production of 2,6-naphthalene dicarboxylic acid
JPS6056694B2 (en) Method for producing aromatic dicarboxylic acid
JPS6217989B2 (en)
KR820002063B1 (en) Process for preparation of chloro benzoic acid
JP3232796B2 (en) Method for producing p-acetoxybenzoic acid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees