JPH05339204A - Production of aromatic dicarboxylic acid - Google Patents

Production of aromatic dicarboxylic acid

Info

Publication number
JPH05339204A
JPH05339204A JP4171915A JP17191592A JPH05339204A JP H05339204 A JPH05339204 A JP H05339204A JP 4171915 A JP4171915 A JP 4171915A JP 17191592 A JP17191592 A JP 17191592A JP H05339204 A JPH05339204 A JP H05339204A
Authority
JP
Japan
Prior art keywords
oxygen
cobalt
bis
manganese
aromatic dicarboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4171915A
Other languages
Japanese (ja)
Inventor
Hiroshi Masami
博司 真見
Mikiro Nakazawa
幹郎 中澤
Shigeo Miki
茂男 三木
Akihiro Nishiuchi
昭浩 西内
Hitoshi Yagi
均 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP4171915A priority Critical patent/JPH05339204A/en
Publication of JPH05339204A publication Critical patent/JPH05339204A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain an aromatic dicarboxylic acid in high purity and yield by oxidizing an aromatic dialkyl compound with oxygen or an oxygen-contg. gas in the presence of a specific catalytic system. CONSTITUTION:The objective aromatic dicarboxylic acid of formula VII can be obtained by oxidizing (I) a compound of formula I [R<1> and R<2> are each alkyl; A is of formula II-VI (m and n are each 0-4); X, Y<1>, Y<2> and Z are each halogen, NO2 or CN] with (II) oxygen or an oxygen-contg. gas (industrially, air is optimal) in (III) a 2-10C aliphatic monocarboxylic acid (pref. acetic acid) in the presence of (IV) a catalyst composed of (A) cobalt, (B) bromine or bromine plus chlorine, and (C) at least one kind selected from manganese, cerium, zirconium and nickel (e.g. cobalt bromide-manganese acetate, cobalt naphthenate- manganese naphthenate-tetrabromoethane).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、芳香族ジアルキル化合
物を酸化して芳香族ジカルボン酸を製造する方法に関す
る。芳香族ジカルボン酸は、ポリアミド、ポリエステ
ル、ポリアミドイミド、ポリエステルイミド等各種樹脂
の原料、改質剤、液晶材料、エポキシ樹脂硬化剤及び農
薬、染料等の原料として広範な用途を有する。
FIELD OF THE INVENTION The present invention relates to a method for producing an aromatic dicarboxylic acid by oxidizing an aromatic dialkyl compound. Aromatic dicarboxylic acids have a wide range of applications as raw materials for various resins such as polyamide, polyester, polyamideimide, and polyesterimide, modifiers, liquid crystal materials, epoxy resin curing agents, and raw materials for agricultural chemicals and dyes.

【0002】[0002]

【従来の技術】従来、芳香族ジカルボン酸の製造方法と
しては、例えば、4',4"−ジメチル−1,4−ジベンジ
ルベンゼンを塩素化し、得られたω−デカクロロ−4',
4"−ジメチル−1,4−ジベンジルベンゼンを塩化亜鉛
の存在下に酢酸中で分解する方法(USSR21224
8)が公知である。
2. Description of the Related Art Conventionally, as a method for producing an aromatic dicarboxylic acid, for example, ω-decachloro-4 ', obtained by chlorinating 4', 4 "-dimethyl-1,4-dibenzylbenzene,
Method for decomposing 4 "-dimethyl-1,4-dibenzylbenzene in acetic acid in the presence of zinc chloride (USSR21224
8) is known.

【0003】[0003]

【発明が解決しようとする課題】しかし、この方法は、
毒性が極めて強く、加熱、直射日光、紫外線等により爆
発的に反応する危険な塩素を化学量論量使用し、大量の
廃棄物を発生させるため、工業的な製造方法としては問
題点が大きい。従って、芳香族ジカルボン酸を製造する
に当たり、安価で、工業的に実施可能な有利な方法の確
立が望まれていた。
However, this method is
Since it is extremely toxic and uses a stoichiometric amount of dangerous chlorine that explosively reacts with heating, direct sunlight, ultraviolet rays, etc., and produces a large amount of waste, it is a serious problem as an industrial manufacturing method. Therefore, in producing an aromatic dicarboxylic acid, it has been desired to establish an advantageous method which is inexpensive and can be industrially carried out.

【0004】[0004]

【問題点を解決するための手段】本発明者らは、公知の
方法に代わる安価で環境破壊を伴わない芳香族ジカルボ
ン酸の製造方法を開発すべく鋭意検討した結果、芳香族
ジアルキル化合物を酸素又は酸素含有ガスで酸化するに
際し、特定の重金属と臭素又は臭素と塩素を必須成分と
する触媒系を使用することにより、容易に且つ高収率で
酸化でき、所期の目的が達成されることを見出した。本
発明は、かかる知見に基づいて完成したものであり、安
価な酸化剤を使用して効率よく芳香族ジカルボン酸を製
造する工業的に有利な方法を提供することを目的とす
る。
[Means for Solving the Problems] As a result of intensive studies to develop a method for producing an aromatic dicarboxylic acid that is inexpensive and does not cause environmental damage, as an alternative to the known method, the present inventors have found that the aromatic dialkyl compound should be oxygenated. Alternatively, when oxidizing with an oxygen-containing gas, by using a catalyst system containing specific heavy metals and bromine or bromine and chlorine as essential components, it is possible to oxidize easily and in high yield, and achieve the intended purpose. Found. The present invention has been completed based on such findings, and an object thereof is to provide an industrially advantageous method for efficiently producing an aromatic dicarboxylic acid by using an inexpensive oxidizing agent.

【0005】本発明に係る芳香族ジカルボン酸の製造方
法は、一般式(1)で示される芳香族ジアルキル化合物
を炭素数2〜10の脂肪族モノカルボン酸中で触媒の存
在下、酸素又は酸素含有ガスにより酸化して一般式
(2)で示される芳香族ジカルボン酸を製造する方法に
おいて、当該触媒が、その構成元素として(A)コバル
ト、(B)臭素又は臭素と塩素、(C)マンガン、セリ
ウム、ジルコニウム及びニッケルから選ばれる1種以上
の重金属の夫々の群から選ばれる少なくとも3種類の元
素を含む触媒であることを特徴とする。
The method for producing an aromatic dicarboxylic acid according to the present invention is a method in which an aromatic dialkyl compound represented by the general formula (1) is added to oxygen or oxygen in an aliphatic monocarboxylic acid having 2 to 10 carbon atoms in the presence of a catalyst. In the method for producing an aromatic dicarboxylic acid represented by the general formula (2) by oxidizing with a contained gas, the catalyst comprises (A) cobalt, (B) bromine or bromine and chlorine, (C) manganese as its constituent elements. , A catalyst containing at least three elements selected from the respective groups of one or more heavy metals selected from cerium, zirconium and nickel.

【化8】 [式中、R1、R2は同一又は異なってアルキル基を表
し、Aは
[Chemical 8] [In the formula, R 1 and R 2 are the same or different and each represents an alkyl group, and A is

【化9】 [Chemical 9] ,

【化10】 [Chemical 10] ,

【化11】 [Chemical 11] ,

【化12】 又は[Chemical formula 12] Or

【化13】 を表す。X、Y1、Y2及びZは同一又は異なってハロゲ
ン基、ニトロ基又はニトリル基を表す。m、nは夫々独
立して0〜4の整数を表す。]
[Chemical 13] Represents. X, Y 1 , Y 2 and Z are the same or different and each represents a halogen group, a nitro group or a nitrile group. m and n each independently represent an integer of 0-4. ]

【化14】 [式中、A、X、Y1、Y2、Z、m及びnは、一般式
(1)と同義である。]
[Chemical 14] [In the formula, A, X, Y 1 , Y 2 , Z, m and n have the same meanings as in formula (1). ]

【0006】本発明において原料として使用する芳香族
ジアルキル化合物は、例えば、トルエン類とフタル酸ジ
クロライド類又はアルキル置換ベンゾイルクロライドと
所定の芳香族化合物とのフリーデル・クラフツ反応によ
り合成できる。
The aromatic dialkyl compound used as a raw material in the present invention can be synthesized, for example, by the Friedel-Crafts reaction of toluene and phthalic acid dichloride or alkyl-substituted benzoyl chloride and a predetermined aromatic compound.

【0007】アルキル基の炭素数としては1〜5が例示
され、特にメチル基、エチル基、イソプロピル基が好ま
しい。
The carbon number of the alkyl group is, for example, 1 to 5, and a methyl group, an ethyl group and an isopropyl group are particularly preferable.

【0008】芳香族ジアルキル化合物の具体例として
は、1,3−ビス(3−メチルベンゾイル)ベンゼン、
1,3−ビス(4−メチルベンゾイル)ベンゼン、1,3
−ビス(3−エチルベンゾイル)ベンゼン、1,3−ビ
ス(4−エチルベンゾイル)ベンゼン、1,3−ビス
(3−イソプロピルベンゾイル)ベンゼン、1,3−ビ
ス(4−イソプロピルベンゾイル)ベンゼン、1,4−
ビス(3−メチルベンゾイル)ベンゼン、1,4−ビス
(4−メチルベンゾイル)ベンゼン、1,3−ビス(3
−エチルベンゾイル)ベンゼン、1,4−ビス(3−イ
ソプロピルベンゾイル)ベンゼン、1,4−ビス(4−
イソプロピルベンゾイル)ベンゼン、1,3−ビス(4
−メチル−2−フルオロベンゾイル)ベンゼン、1,3
−ビス(4−メチルベンゾイル)−5−フルオロベンゼ
ン等のベンゼン類、
Specific examples of the aromatic dialkyl compound include 1,3-bis (3-methylbenzoyl) benzene,
1,3-bis (4-methylbenzoyl) benzene, 1,3
-Bis (3-ethylbenzoyl) benzene, 1,3-bis (4-ethylbenzoyl) benzene, 1,3-bis (3-isopropylbenzoyl) benzene, 1,3-bis (4-isopropylbenzoyl) benzene, 1 , 4-
Bis (3-methylbenzoyl) benzene, 1,4-bis (4-methylbenzoyl) benzene, 1,3-bis (3
-Ethylbenzoyl) benzene, 1,4-bis (3-isopropylbenzoyl) benzene, 1,4-bis (4-
Isopropylbenzoyl) benzene, 1,3-bis (4
-Methyl-2-fluorobenzoyl) benzene, 1,3
Benzenes such as -bis (4-methylbenzoyl) -5-fluorobenzene,

【0009】4,4'−ビス(4−メチルベンゾイル)ビ
フェニル、4,4'−ビス(3−メチルベンゾイル)ビフ
ェニル、3,3'−ビス(4−メチルベンゾイル)ビフェ
ニル、3,3'−ビス(4−メチルベンゾイル)ビフェニ
ル、2−クロロ−4,4'−ビス(4−メチルベンゾイ
ル)ビフェニル、2−フルオロ−4,4'−ビス(4−メ
チルベンゾイル)ビフェニル、2,2',6,6'−テトラ
フルオロ−4,4'−ビス(4−メチルベンゾイル)ビフ
ェニル等のビフェニル類、
4,4'-bis (4-methylbenzoyl) biphenyl, 4,4'-bis (3-methylbenzoyl) biphenyl, 3,3'-bis (4-methylbenzoyl) biphenyl, 3,3'- Bis (4-methylbenzoyl) biphenyl, 2-chloro-4,4'-bis (4-methylbenzoyl) biphenyl, 2-fluoro-4,4'-bis (4-methylbenzoyl) biphenyl, 2,2 ', Biphenyls such as 6,6′-tetrafluoro-4,4′-bis (4-methylbenzoyl) biphenyl,

【0010】4,4'−ビス(4−メチルベンゾイル)ジ
フェニルエ−テル、4,4'−ビス(3−メチルベンゾイ
ル)ジフェニルエ−テル、3,3'−ビス(4−メチルベ
ンゾイル)ジフェニルエ−テル、3,3'−ビス(4−メ
チルベンゾイル)ジフェニルエ−テル等のジフェニルエ
ーテル類、
4,4'-bis (4-methylbenzoyl) diphenylether, 4,4'-bis (3-methylbenzoyl) diphenylether, 3,3'-bis (4-methylbenzoyl) diphenyl Diphenyl ethers such as ether, 3,3′-bis (4-methylbenzoyl) diphenyl ether,

【0011】4,4'−ビス(4−メチルベンゾイル)ジ
フェニルスルホン、4,4'−ビス(3−メチルベンゾイ
ル)ジフェニルスルホン、3,3'−ビス(4−メチルベ
ンゾイル)ジフェニルスルホン、3,3'−ビス(4−メ
チルベンゾイル)ジフェニルスルホン等のジフェニルス
ルホン類、
4,4'-bis (4-methylbenzoyl) diphenyl sulfone, 4,4'-bis (3-methylbenzoyl) diphenyl sulfone, 3,3'-bis (4-methylbenzoyl) diphenyl sulfone, 3,3 ' Diphenyl sulfones such as 3′-bis (4-methylbenzoyl) diphenyl sulfone,

【0012】4,4'−ビス(4−メチルベンゾイル)ベ
ンゾフェノン、4,4'−ビス(3−メチルベンゾイル)
ベンゾフェノン、3,3'−ビス(4−メチルベンゾイ
ル)ベンゾフェノン、3,3'−ビス(4−メチルベンゾ
イル)ベンゾフェノン等のベンゾフェノン類が挙げられ
る。
4,4'-bis (4-methylbenzoyl) benzophenone, 4,4'-bis (3-methylbenzoyl)
Benzophenones such as benzophenone, 3,3′-bis (4-methylbenzoyl) benzophenone and 3,3′-bis (4-methylbenzoyl) benzophenone can be mentioned.

【0013】本発明において使用する触媒は、その構成
元素として、以下の(A)〜(C)の夫々の群から選ば
れる少なくとも3種類の元素を含む。 (A)コバルト (B)臭素又は臭素と塩素 (C)マンガン、セリウム、ジルコニウム、ニッケルか
ら選ばれた1種以上の重金属
The catalyst used in the present invention contains, as its constituent elements, at least three kinds of elements selected from the following groups (A) to (C). (A) Cobalt (B) Bromine or bromine and chlorine (C) One or more heavy metals selected from manganese, cerium, zirconium and nickel

【0014】コバルトは、元素状、酸化物、塩、錯体等
の何れの形態でもよいが、特に反応系で少なくとも部分
的に溶解する塩、例えば酢酸コバルト、臭化コバルト、
ナフテン酸コバルト、水酸化コバルト等が好ましい。
Cobalt may be in any form such as elemental form, oxide, salt, complex and the like, but especially a salt which is at least partially dissolved in the reaction system, for example, cobalt acetate, cobalt bromide,
Cobalt naphthenate and cobalt hydroxide are preferred.

【0015】コバルトの使用量は、金属換算濃度で0.
01〜10g/lが適当である。0.01g/l以下で
は充分な反応速度が得られず、10g/l以上では触媒
費の負担が増し、目的物の生成も困難になる。
The amount of cobalt used is 0.1 in terms of metal conversion.
01 to 10 g / l is suitable. If it is less than 0.01 g / l, a sufficient reaction rate cannot be obtained, and if it is more than 10 g / l, the burden of the catalyst cost increases and it becomes difficult to produce the desired product.

【0016】臭素としては、臭素分子、酸、塩、酸素酸
塩又は有機臭素化合物の何れでも使用できる。特に臭化
水素、臭化アンモニウム、臭化マンガン、臭化セリウ
ム、臭化コバルト、テトラブロモエタン、トリブロモエ
タン等が好ましい。塩素についても同様である。
As bromine, any of bromine molecules, acids, salts, oxygenates or organic bromine compounds can be used. Particularly, hydrogen bromide, ammonium bromide, manganese bromide, cerium bromide, cobalt bromide, tetrabromoethane, tribromoethane and the like are preferable. The same applies to chlorine.

【0017】臭素の使用量は、(A)コバルト及び
(C)重金属の原子当りの臭素原子換算で 0.1〜10
0当量が適当である。0.1当量以下では充分な反応速
度が得られず、100当量以上では臭素による目的物の
汚染や触媒費の負担が大きくなり好ましくない。
The amount of bromine used is 0.1 to 10 in terms of bromine atom per atom of (A) cobalt and (C) heavy metal.
0 equivalent is suitable. If the amount is less than 0.1 equivalent, a sufficient reaction rate cannot be obtained. If the amount is more than 100 equivalents, the contamination of the target substance with bromine and the burden of the catalyst cost increase, which is not preferable.

【0018】臭素と塩素を併用する場合も、その合計が
原子換算で0.1〜100当量が適当で、臭素に対する
塩素の比は0.7以下であることが望ましい。
When bromine and chlorine are used in combination, the total amount thereof is suitably 0.1 to 100 equivalents in terms of atoms, and the ratio of chlorine to bromine is preferably 0.7 or less.

【0019】マンガン、セリウム、ジルコニウム、ニッ
ケルから選ばれた1種以上の重金属は、元素状、酸化
物、塩、錯体等の何れの形態でもよい。
The one or more heavy metals selected from manganese, cerium, zirconium and nickel may be in any form such as elemental form, oxide, salt and complex.

【0020】当該重金属の使用量は、コバルト金属に対
して重量比で0.0001〜100の割合が適当であ
り、好ましくは0.005〜0.5の割合である。0.0
001以下の添加では反応促進の大きな効果が認められ
ず、100以上の添加では触媒費の負担が増し経済的に
不利である。
The amount of the heavy metal used is appropriately 0.0001 to 100 by weight, preferably 0.005 to 0.5, relative to the cobalt metal. 0.0
If it is added in an amount of 001 or less, a large effect of promoting the reaction is not recognized, and if it is added in an amount of 100 or more, the catalyst cost is increased and it is economically disadvantageous.

【0021】本発明に係る触媒系として、具体的には、
臭化コバルトと臭化マンガン、臭化コバルトと酢酸マン
ガン、酢酸コバルトと臭化マンガン、酢酸マンガンと酢
酸コバルト及び臭化アンモニウム、酢酸コバルトと酢酸
マンガン及び臭化水素、臭化コバルトと酢酸セリウム、
臭化マンガンと酢酸セリウム、酢酸コバルトと酢酸マン
ガンと酢酸セリウム及び臭化水素、臭化コバルトと酢酸
ジルコニウム、酢酸コバルトと臭化ニッケル、ナフテン
酸コバルトとナフテン酸マンガン及びテトラブロモエタ
ン、コバルトアセチルアセトナートとマンガンアセチル
アセトナート及び臭化水素、酢酸コバルトと酢酸マンガ
ンと酢酸セリウム及び臭化水素、酢酸コバルトと酢酸マ
ンガンと臭化水素及び塩化水素等が例示される。
As the catalyst system according to the present invention, specifically,
Cobalt bromide and manganese bromide, cobalt bromide and manganese acetate, cobalt acetate and manganese bromide, manganese acetate and cobalt acetate and ammonium bromide, cobalt acetate and manganese acetate and hydrogen bromide, cobalt bromide and cerium acetate,
Manganese bromide and cerium acetate, cobalt acetate and manganese acetate and cerium acetate and hydrogen bromide, cobalt bromide and zirconium acetate, cobalt acetate and nickel bromide, cobalt naphthenate and manganese naphthenate and tetrabromoethane, cobalt acetylacetonate And manganese acetylacetonate and hydrogen bromide, cobalt acetate and manganese acetate and cerium acetate and hydrogen bromide, and cobalt acetate and manganese acetate and hydrogen bromide and hydrogen chloride.

【0022】本反応方法に係る反応溶媒として用いられ
る炭素数2〜10の脂肪族モノカルボン酸は、酸化に対
して比較的安定で、反応物からの分離が容易であるとい
う利点を有しており、特に酢酸が好ましい。
The aliphatic monocarboxylic acid having 2 to 10 carbon atoms used as the reaction solvent in the present reaction method has the advantage that it is relatively stable against oxidation and can be easily separated from the reaction product. However, acetic acid is particularly preferable.

【0023】反応溶媒の使用量は、原料の種類や反応条
件により異なるものの、通常、50〜900g/lであ
ることが好ましい。
Although the amount of the reaction solvent used varies depending on the type of raw material and the reaction conditions, it is usually preferably 50 to 900 g / l.

【0024】酸化剤として用いる酸素又は酸素含有ガス
としては、純酸素や工業用排ガスも使用できるが、これ
らに限らず酸素を含有するガスであればよく、工業的に
は通常の空気が最適である。
The oxygen or oxygen-containing gas used as the oxidant may be pure oxygen or industrial exhaust gas, but is not limited to these and any gas containing oxygen may be used. Industrially, normal air is most suitable. is there.

【0025】反応温度は、通常、100〜250℃程
度、好ましくは150〜220℃の範囲である。100
℃以下では反応速度が遅く、一方、250℃以上では溶
媒や生成物の分解が起こり好ましくない。
The reaction temperature is usually about 100 to 250 ° C., preferably 150 to 220 ° C. 100
If the temperature is lower than 0 ° C, the reaction rate is slow, while if the temperature is higher than 250 ° C, decomposition of the solvent or the product occurs, which is not preferable.

【0026】反応圧力は、全反応圧力が1〜30kg/cm2
G 、特に3〜20kg/cm2Gで、且つ酸素分圧0.01〜
2.4kg/cm2が好ましい。更に、安全性の面から排出ガ
ス中の酸素濃度が8容量%以下になるように操作するの
が望ましい。
The reaction pressure is such that the total reaction pressure is 1 to 30 kg / cm 2
G, especially 3 to 20 kg / cm 2 G, and oxygen partial pressure of 0.01 to
2.4 kg / cm 2 is preferred. Further, from the viewpoint of safety, it is desirable to operate so that the oxygen concentration in the exhaust gas is 8% by volume or less.

【0027】本発明の方法は、一般に以下のようにして
実施される。即ち、ガス導入口及びガス抜出口を備えた
攪拌機付き反応器に原料、触媒及び溶媒を仕込み、窒素
又は酸素含有ガスで置換又は加圧し、所定温度に加熱す
る。この昇温過程においては攪拌やガス吹き込みを必ず
しも必要としない。酸素の吸収は、触媒の種類にもよる
が一般的には100〜150℃から始まる。酸素の吸収
が始まると、酸素又は酸素含有ガスを導入し、所定範囲
の酸素分圧及び温度を保ちつつ反応する。排出ガスは冷
却し、凝縮物を反応器に戻す。所定時間の反応後、冷却
し、反応物を取り出して、そのまま又は溶媒の一部を蒸
留除去する。次いで、溶媒の留去、再結晶等の工程を経
て、高純度の芳香族ジカルボン酸を得る。
The method of the present invention is generally carried out as follows. That is, a raw material, a catalyst and a solvent are charged into a reactor equipped with a stirrer equipped with a gas inlet and a gas outlet, replaced with or pressurized with a gas containing nitrogen or oxygen, and heated to a predetermined temperature. Stirring and gas blowing are not always necessary in this temperature rising process. The absorption of oxygen generally starts at 100 to 150 ° C, though it depends on the type of catalyst. When the absorption of oxygen starts, oxygen or an oxygen-containing gas is introduced, and the reaction is performed while maintaining the oxygen partial pressure and temperature in a predetermined range. The exhaust gas is cooled and the condensate is returned to the reactor. After the reaction for a predetermined time, it is cooled, the reaction product is taken out, and the solvent is distilled off as it is or a part of the solvent. Then, a high-purity aromatic dicarboxylic acid is obtained through steps such as evaporation of the solvent and recrystallization.

【0028】反応器には前記の攪拌機付きのもの以外に
気泡塔式も採用できる。又、反応方法も回分反応に限ら
ず、連続や半連続方式も可能である。具体的には、反応
器に原料、触媒及び溶媒を連続的に供給し、酸素又は酸
素含有ガスを吹き込みつつ反応を行い、反応生成物を連
続的に抜き出したり、又は反応器に触媒及び溶媒を仕込
んでおき、次いで原料のみ又は原料と溶媒を仕込みつつ
一定時間反応後、仕込みを停止して反応を継続して、完
結させる等の方法が例示される。
A bubble column type reactor can be used in addition to the above-mentioned one equipped with a stirrer. Further, the reaction method is not limited to the batch reaction, and a continuous or semi-continuous method is also possible. Specifically, the raw material, the catalyst and the solvent are continuously supplied to the reactor, the reaction is performed while blowing oxygen or an oxygen-containing gas, and the reaction product is continuously extracted, or the catalyst and the solvent are supplied to the reactor. An example is a method in which the materials are charged, and then, only the raw materials or the raw materials and the solvent are reacted for a certain period of time, and then the charging is stopped to continue the reaction to complete the reaction.

【0029】[0029]

【実施例】以下、実施例により本発明を詳しく説明す
る。 実施例1 ガス導入口及び還流冷却器付きガス抜出口を備えた50
0mlの電磁攪拌機付オートクレーブに、1,3−ビス
(4−メチルベンゾイル)ベンゼン31.5g、臭化コ
バルト[CoBr2・6H2O、以下同様]5.80g、
酢酸マンガン[Mn(OAc)2・4H2O、以下同様]
0.65g及び酢酸300gを仕込み、窒素で10kg/cm
2Gまで加圧し、加熱攪拌した。150℃から空気を導
入し始め、酢酸を還流させ、排出ガスを放出しつつ、1
55〜165℃、圧力20kg/cm2Gで排出ガス中の酸素
濃度を1〜6%の範囲となるように導入空気量を調節し
た(酸素分圧0.1〜0.8kg/cm2)。この条件で約1時
間反応すると酸素の吸収が認められなくなり、この時点
で空気の導入を停止し、更に30分間反応を続けた。そ
の後、反応器を冷却して内容物を取り出し、析出物を濾
別後水洗、乾燥して、無色の固体33.5gを得た。こ
のものの中和価は298で、IR、NMR及びGLC分
析の結果、目的とする4,4'−イソフタロイルジ安息香
酸(IDBA)の純度は99.3%であり、その収率は
89.6%であった。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 50 equipped with gas inlet and gas outlet with reflux condenser
Electromagnetic equipped with a stirrer autoclave 0 ml, 1,3-bis (4-methylbenzoyl) benzene 31.5 g, cobalt bromide [CoBr 2 · 6H 2 O, the same applies hereinafter] 5.80 g,
Manganese acetate [Mn (OAc) 2 · 4H 2 O, forth]
Charge 0.65g and 300g acetic acid, nitrogen 10kg / cm
The pressure was increased to 2 G, and the mixture was heated and stirred. Starting to introduce air from 150 ° C, reflux acetic acid and release exhaust gas,
The amount of introduced air was adjusted so that the oxygen concentration in the exhaust gas was in the range of 1 to 6% at 55 to 165 ° C and a pressure of 20 kg / cm 2 G (oxygen partial pressure was 0.1 to 0.8 kg / cm 2 ). .. When the reaction was carried out under these conditions for about 1 hour, no oxygen absorption was observed, at which point the introduction of air was stopped and the reaction was continued for another 30 minutes. Then, the reactor was cooled and the contents were taken out, and the precipitate was separated by filtration, washed with water and dried to obtain 33.5 g of a colorless solid. Its neutralization number was 298, and as a result of IR, NMR and GLC analysis, the purity of the desired 4,4′-isophthaloyldibenzoic acid (IDBA) was 99.3%, and its yield was 89.6%. Met.

【0030】実施例2 実施例1と同様の反応器に1,3−ビス(4−メチルベ
ンゾイル)ベンゼン31.4g、臭化コバルト2.80
g、酢酸マンガン0.02g及び酢酸300gを仕込
み、窒素で10kg/cm2Gまで加圧し、加熱攪拌した。1
60℃から空気を導入し始め、酢酸を還流させ、排出ガ
スを放出しつつ、175〜185℃、圧力20kg/cm2
で排出ガス中の酸素濃度を1〜6%の範囲となるよう
に導入空気量を調節した(酸素分圧0.1〜0.8kg/c
m2)。この条件で約2時間反応すると酸素の吸収が認め
られなくなり、この時点で空気の導入を停止し、更に3
0分間反応を続けた。その後、反応器を冷却して内容物
を取り出し、減圧下に酢酸及び生成水を留去して、酸化
反応粗物39.8gを得た。このものの中和価は279
で、IR、NMR及びGLC分析の結果、目的とするI
DBAは93.0%であり、その収率は99.0%であっ
た。
Example 2 In the same reactor as in Example 1, 31.4 g of 1,3-bis (4-methylbenzoyl) benzene and 2.80 of cobalt bromide were added.
g, 0.02 g of manganese acetate and 300 g of acetic acid were charged, the pressure was increased to 10 kg / cm 2 G with nitrogen, and the mixture was heated and stirred. 1
Starting to introduce air from 60 ° C, reflux acetic acid and releasing exhaust gas, 175 to 185 ° C, pressure 20 kg / cm 2 G
The amount of introduced air was adjusted so that the oxygen concentration in the exhaust gas was in the range of 1 to 6% (oxygen partial pressure of 0.1 to 0.8 kg / c).
m 2 ). After reacting for about 2 hours under these conditions, absorption of oxygen is no longer observed, at which point the introduction of air is stopped
The reaction was continued for 0 minutes. Then, the reactor was cooled, the contents were taken out, and acetic acid and generated water were distilled off under reduced pressure to obtain 39.8 g of crude oxidation reaction product. The neutralization value of this product is 279
As a result of IR, NMR and GLC analysis,
DBA was 93.0% and the yield was 99.0%.

【0031】実施例3 実施例1と同一の反応器に1,3−ビス(4−メチルベ
ンゾイル)ベンゼン31.5g、酢酸300g及び酢酸
コバルト[Co(OAc)2・4H2O]−酢酸マンガン
−臭化アンモニウム系触媒を所定量仕込み、155〜1
65℃、15kg/cm2G(酸素分圧0.01〜0.6kg/c
m2)の条件下でIDBAを製造した。得られた結果を第
1表に示す。
[0031] Example 3 Example 1 and the same reactor 1,3-bis (4-methylbenzoyl) benzene 31.5 g, acetate 300g and cobalt acetate [Co (OAc) 2 · 4H 2 O] - manganese acetate -Preparing a predetermined amount of ammonium bromide-based catalyst, 155 to 1
65 ℃, 15kg / cm 2 G (Oxygen partial pressure 0.01-0.6kg / c
IDBA was produced under the conditions of m 2 ). The results obtained are shown in Table 1.

【0032】実施例4 触媒として、臭化コバルト−酢酸マンガン−酢酸セリウ
ム[Co(OAc)3・H2O]−47%臭化水素酸系触
媒を用いた他は実施例3と同様にしてIDBAを調製し
た。得られた結果を第1表に示す。
Example 4 The same as Example 3 except that a cobalt bromide-manganese acetate-cerium acetate [Co (OAc) 3 .H 2 O] -47% hydrobromic acid catalyst was used as the catalyst. IDBA was prepared. The results obtained are shown in Table 1.

【0033】実施例5 触媒として、臭化コバルト−酢酸セリウム−臭化ナトリ
ウム系触媒を用いた他は実施例3と同様にしてIDBA
を調製した。得られた結果を第1表に示す。
Example 5 IDBA was carried out in the same manner as in Example 3 except that a cobalt bromide-cerium acetate-sodium bromide catalyst was used as the catalyst.
Was prepared. The results obtained are shown in Table 1.

【0034】実施例6 触媒として、ナフテン酸コバルト−ナフテン酸マンガン
−テトラブロモエタン系触媒を用いた他は実施例3と同
様にしてIDBAを調製した。得られた結果を第1表に
示す。
Example 6 An IDBA was prepared in the same manner as in Example 3 except that a cobalt naphthenate-manganese naphthenate-tetrabromoethane catalyst was used as the catalyst. The results obtained are shown in Table 1.

【表1】 [Table 1]

【0035】実施例7 実施例1と同一の反応器に1,4−ビス(4−メチルベ
ンゾイル)ベンゼン31.7g、臭化コバルト5.16
g、酢酸マンガン0.45g及び酢酸300gを仕込
み、175〜185℃、10kg/cm2Gの条件下に1時間
反応して4,4'−テレフタロイルジ安息香酸(純度9
7.2%)を94.8%の収率で得た。
Example 7 In the same reactor as in Example 1, 31.7 g of 1,4-bis (4-methylbenzoyl) benzene and 5.16 of cobalt bromide were added.
g, manganese acetate 0.45 g and acetic acid 300 g were charged and reacted for 1 hour at 175 to 185 ° C. and 10 kg / cm 2 G to obtain 4,4′-terephthaloyldibenzoic acid (purity 9
7.2%) was obtained in a yield of 94.8%.

【0036】実施例8 実施例1と同一の反応器に1,4−ビス(4−メチルベ
ンゾイル)ベンゼン31.5g、酢酸コバルト2.40
g、酢酸マンガン0.24g、臭化水素酸6.00g及び
酢酸300gを仕込み、185〜195℃、20kg/cm2
Gの条件下に1時間反応して4,4'−テレフタロイルジ
安息香酸(純度98.8%)を95.3%の収率で得た。
Example 8 In the same reactor as in Example 1, 31.5 g of 1,4-bis (4-methylbenzoyl) benzene and 2.40 of cobalt acetate were added.
g, manganese acetate 0.24 g, hydrobromic acid 6.00 g and acetic acid 300 g were charged, and the temperature was 185 to 195 ° C. and 20 kg / cm 2.
The reaction was carried out for 1 hour under the condition of G to obtain 4,4′-terephthaloyldibenzoic acid (purity 98.8%) in a yield of 95.3%.

【0037】実施例9 実施例1と同様に4,4'−ビス(4−メチルベンゾイ
ル)ジフェニルエ−テル40.6g、臭化コバルト5.1
6g、酢酸マンガン0.45g及び酢酸300gを仕込
み、175〜185℃、20kg/cm2Gの条件下に1時間
反応して4,4'−ビス(4−ヒドロキシカルボニルベン
ゾイル)ジフェニルエ−テル(純度98.5%)を92.
7%の収率で得た。
Example 9 As in Example 1, 4,4'-bis (4-methylbenzoyl) diphenyl ether 40.6 g, cobalt bromide 5.1
6 g, 0.45 g of manganese acetate and 300 g of acetic acid were charged and reacted for 1 hour under the conditions of 175 to 185 ° C. and 20 kg / cm 2 G to obtain 4,4′-bis (4-hydroxycarbonylbenzoyl) diphenyl ether ( Purity 98.5%) 92.
Obtained in a yield of 7%.

【0038】実施例10 実施例1と同様に4,4'−ビス(4−メチルベンゾイ
ル)ジフェニルスルホン45.4g、臭化コバルト5.8
0g、酢酸マンガン0.65g及び酢酸300gを仕込
み、185〜195℃、20kg/cm2Gの条件下に1時間
反応して4,4'−ビス(4−ヒドロキシカルボニルベン
ゾイル)ジフェニルスルホン(純度97.9%)を92.
1%の収率で得た。
Example 10 As in Example 1, 4,4'-bis (4-methylbenzoyl) diphenyl sulfone 45.4 g, cobalt bromide 5.8
0 g, manganese acetate 0.65 g and acetic acid 300 g were charged and reacted for 1 hour under the conditions of 185 to 195 ° C. and 20 kg / cm 2 G to obtain 4,4′-bis (4-hydroxycarbonylbenzoyl) diphenyl sulfone (purity 97 2.9%) to 92.
Obtained in a yield of 1%.

【0039】[0039]

【発明の効果】本発明の方法を適用することにより、工
業的に有利な条件下で目的とする芳香族ジカルボン酸を
高純度、高収率で製造することができる。
By applying the method of the present invention, the desired aromatic dicarboxylic acid can be produced in high purity and high yield under industrially advantageous conditions.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07C 65/40 8930−4H 201/12 205/61 6917−4H 253/30 255/57 6917−4H 315/04 317/44 7419−4H // C07B 61/00 300 (72)発明者 西内 昭浩 京都府京都市伏見区葭島矢倉町13番地 新 日本理化株式会社内 (72)発明者 八木 均 京都府京都市伏見区葭島矢倉町13番地 新 日本理化株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication C07C 65/40 8930-4H 201/12 205/61 6917-4H 253/30 255/57 6917-4H 315/04 317/44 7419-4H // C07B 61/00 300 (72) Inventor Akihiro Nishiuchi, 13 Yakura-cho, Yashimajima Fushimi-ku, Kyoto City, Kyoto Prefecture Nihon Rika Co., Ltd. (72) Inventor Hitoshi Yagi Kyoto Prefecture, Kyoto Prefecture Shinya Rika Co., Ltd. 13 Yagura-cho, Hyoshima, Fushimi-ku

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一般式(1)で示される芳香族ジアルキ
ル化合物を炭素数2〜10の脂肪族モノカルボン酸中で
触媒の存在下、酸素又は酸素含有ガスにより酸化して一
般式(2)で示される芳香族ジカルボン酸を製造する方
法において、当該触媒が、その構成元素として(A)コ
バルト、(B)臭素又は臭素と塩素、(C)マンガン、
セリウム、ジルコニウム及びニッケルから選ばれる1種
以上の重金属の夫々の群から選ばれる少なくとも3種類
の元素を含む触媒であることを特徴とする芳香族ジカル
ボン酸の製造方法。 【化1】 [式中、R1、R2は同一又は異なってアルキル基を表
し、Aは 【化2】 、 【化3】 、 【化4】 、 【化5】 又は 【化6】 を表す。X、Y1、Y2及びZは同一又は異なって、ハロ
ゲン基、ニトロ基又はニトリル基を表す。m、nは夫々
独立して0〜4の整数を表す。] 【化7】 [式中、A、X、Y1、Y2、Z、m及びnは、一般式
(1)と同義である。]
1. An aromatic dialkyl compound represented by the general formula (1) is oxidized with oxygen or an oxygen-containing gas in an aliphatic monocarboxylic acid having 2 to 10 carbon atoms in the presence of a catalyst to obtain the general formula (2). In the method for producing an aromatic dicarboxylic acid represented by, the catalyst comprises (A) cobalt, (B) bromine or bromine and chlorine, (C) manganese, as its constituent elements.
A process for producing an aromatic dicarboxylic acid, which is a catalyst containing at least three elements selected from the group consisting of one or more heavy metals selected from cerium, zirconium and nickel. [Chemical 1] [Wherein R 1 and R 2 are the same or different and each represents an alkyl group, and A is , , , Or Represents. X, Y 1 , Y 2 and Z are the same or different and each represents a halogen group, a nitro group or a nitrile group. m and n each independently represent an integer of 0-4. ] [Chemical 7] [In the formula, A, X, Y 1 , Y 2 , Z, m and n have the same meanings as in formula (1). ]
JP4171915A 1992-06-05 1992-06-05 Production of aromatic dicarboxylic acid Pending JPH05339204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4171915A JPH05339204A (en) 1992-06-05 1992-06-05 Production of aromatic dicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4171915A JPH05339204A (en) 1992-06-05 1992-06-05 Production of aromatic dicarboxylic acid

Publications (1)

Publication Number Publication Date
JPH05339204A true JPH05339204A (en) 1993-12-21

Family

ID=15932200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4171915A Pending JPH05339204A (en) 1992-06-05 1992-06-05 Production of aromatic dicarboxylic acid

Country Status (1)

Country Link
JP (1) JPH05339204A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530157A (en) * 1995-02-16 1996-06-25 Scios Nova Inc. Anti-inflammatory benzoic acid derivatives
CN108863736A (en) * 2018-07-27 2018-11-23 福州大学 A kind of preparation method of the aromatic carboxylic acids of carbonyl functionalization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530157A (en) * 1995-02-16 1996-06-25 Scios Nova Inc. Anti-inflammatory benzoic acid derivatives
CN108863736A (en) * 2018-07-27 2018-11-23 福州大学 A kind of preparation method of the aromatic carboxylic acids of carbonyl functionalization

Similar Documents

Publication Publication Date Title
CN113372204B (en) Method for preparing aromatic aldehyde
KR100965633B1 (en) A process for the preparation of p-toluic acid by liquid phase oxidation of p-xylene in water
JPS582222B2 (en) Production method of aromatic polycarboxylic acid
US5144066A (en) Method of producing naphthalenedicarboxylic acids and diaryldicarboxylic acids
JPH05339204A (en) Production of aromatic dicarboxylic acid
JP2927023B2 (en) Method for producing aromatic tetracarboxylic acid
US4214100A (en) Process for preventing blackening of phthalic acid
US7598415B2 (en) Process for the preparation of p-toluic acid by liquid phase oxidation of p-xylene in water
JPH06234691A (en) Continuous preparation of aromatic aldehyde
JPH0768247B2 (en) Method for producing diallyl dicarboxylic acid
JPH04159247A (en) Production of carboxybiphenyls
JPH07107022B2 (en) Method for producing aromatic polycarboxylic acid
US5382700A (en) Oxidative coupling of alpha, beta unsaturated aldehydes
JP2002097185A (en) Method for producing aromatic tetracarboxylic dianhydride
JPH03255049A (en) Preparation of biphenylcarboxylic acid
JPH04221341A (en) Production of carboxybiphenyl compound
JP2729294B2 (en) Method for producing 4&#39;-isopropylbiphenyl-4-carboxylic acid
JPH10182519A (en) Production of aromatic carboxylic acid, aromatic aldehyde or aromatic alcohol
JPH0613468B2 (en) Method for producing diphenyl sulfone tetracarboxylic acid
JPH0639444B2 (en) 2.3-Method for producing naphthalenedicarboxylic acid
JPS61148139A (en) Production of pyromellitic acid
JPS61221151A (en) Production of 2,3-naphthalenedicarboxyclic acid
JPH04128252A (en) Production of carboxybiphenyls
JPH02160742A (en) Production of dihalogenophthalophenone
SE182805C1 (en)