JPH04128252A - Production of carboxybiphenyls - Google Patents

Production of carboxybiphenyls

Info

Publication number
JPH04128252A
JPH04128252A JP2248282A JP24828290A JPH04128252A JP H04128252 A JPH04128252 A JP H04128252A JP 2248282 A JP2248282 A JP 2248282A JP 24828290 A JP24828290 A JP 24828290A JP H04128252 A JPH04128252 A JP H04128252A
Authority
JP
Japan
Prior art keywords
alkyl
reaction
carboxybiphenyls
bromide
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2248282A
Other languages
Japanese (ja)
Inventor
Mikiro Nakazawa
中澤 幹郎
Shigeo Miki
茂男 三木
Hiroshi Shinmi
博司 真見
Akihiro Nishiuchi
西内 昭浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP2248282A priority Critical patent/JPH04128252A/en
Publication of JPH04128252A publication Critical patent/JPH04128252A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To advantageously obtain the title substance by oxidizing an acylated biphenyl with molecular oxygen in the presence of a specific amount of an alkyl-substituted benzene in 2-10C aliphatic monocarboxylic acid as a solvent by using a mixed catalyst of a specific heavy metal/bromide. CONSTITUTION:In oxidizing a compound shown by formula I (R<1> is 1-10C alkyl; X and X<1> are F, Cl, Br, NO2, CN or SO3H; (l) is 0-3 integer) to give a corresponding carboxybiphenyl useful as a raw material for liquid crystal compound, 100 pts.wt. compound shown by formula I is oxidized with molecular oxygen in the presence of >=1 pt.wt. compound shown by formula II (R<2> is 1-2C alkyl; Y is each of groups in X and X'; (m) is 1 or 2; (n) is 0-3 integer) by using 2-10C aliphatic monocarboxylic acid as a solvent and a mixed catalyst containing one or more heavy metals selected from Co, Nm and Ce and a bromine compound to readily give the objective compound from an industrially easily obtainable raw material by using the inexpensive oxidizing agent in high yield.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、デイスプレィ等の各種表示素子に用いられる
液晶化合物の原料として有用なカルボキシビフェニル類
の製造方法に関する。更に詳しくは、アシル化ビフェニ
ル類を分子状酸素により駿化し対応するカルボキシビフ
ェニル類を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing carboxybiphenyls useful as raw materials for liquid crystal compounds used in various display elements such as displays. More specifically, the present invention relates to a method for producing the corresponding carboxybiphenyls by converting acylated biphenyls with molecular oxygen.

(従来の技術及びその間8点) 従来、カルボキシビフェニル類の製造方法として、以下
の諸法が知られている。即ち、(1)アルキルビフェニ
ルやホルミルビフェニルを重金属触媒と臭素化合物の存
在下、分子状酸素で酸化する方法〈欧州特許第3009
22号)。
(Prior art and 8 points) Conventionally, the following methods are known as methods for producing carboxybiphenyls. That is, (1) a method of oxidizing alkyl biphenyl or formyl biphenyl with molecular oxygen in the presence of a heavy metal catalyst and a bromine compound (European Patent No. 3009)
No. 22).

(2)アルキルビフェニルやアセチルビフェニルを過マ
ンガン酸やクロム酸により酸化する方法(特開昭64−
83046号)。
(2) A method of oxidizing alkylbiphenyl or acetylbiphenyl with permanganic acid or chromic acid (Unexamined Japanese Patent Publication No. 1983-
No. 83046).

(3)ハロゲン化ビフェニルと一酸化炭素とを貴金属触
媒の存在下で反応する方法(特開昭62−185055
号)。
(3) A method of reacting halogenated biphenyl and carbon monoxide in the presence of a noble metal catalyst (Japanese Patent Application Laid-Open No. 62-185055
issue).

しかしながら、(1)の方法は酸化剤に安価な空気が使
用できるものの、原料のアルキルビフェニルやホルミル
ビフェニルの製造は位置選択性が悪く、精製分離が困難
であり、更に極めて腐食性の強い触媒を用いるため、特
殊な装置材質が要求されると同時に取り扱いに危険も伴
う等の不利を件う2(2)の方法は酸化剤の費用が嵩む
だけでなく、マンガンやクロム等毒性の強い重金属を多
量に排出し、環境汚染防止の面からも好ましい方法では
ない。
However, although method (1) allows the use of inexpensive air as an oxidizing agent, the production of raw materials such as alkyl biphenyl and formyl biphenyl has poor regioselectivity, making purification and separation difficult, and furthermore requires the use of extremely corrosive catalysts. Method 2 (2) has disadvantages, such as requiring special equipment materials and being dangerous to handle.Method 2 (2) not only increases the cost of the oxidizing agent, but also uses highly toxic heavy metals such as manganese and chromium. This is not a preferable method from the viewpoint of preventing environmental pollution as a large amount is emitted.

(3)の方法は、高価な触媒を多量に用いることが必要
であって収率も低く、経済的に不利である。
Method (3) requires the use of a large amount of expensive catalyst and has a low yield, which is economically disadvantageous.

従って、これら公知のいずれの方法もカルボキシビフェ
ニル類を工業的に安価に製造する方法として必ずしも満
足できる方法ではない。
Therefore, none of these known methods is necessarily a satisfactory method for industrially producing carboxybiphenyls at low cost.

(発明が解決しようとする間8点) アシル化ビフェニル類は、ビフェニル類にi11!無水
物や酸クロライド等のアシル化削を作用させることによ
り容易に得られる化合物である。しかし、このものの空
気等の分子状酸素による酸化は、アルキルビフェニルや
ホルミルビフェニルに比べて困難であり、公知の方法(
例えば、欧州特許第300922号)では全く反応が進
行しなかったり、極めて厳しい条件を必要とするため副
反応が併発し、収率や品質が悪く実用的な方法ではなか
った。
(8 points while the invention is being solved) Acylated biphenyls are i11! It is a compound that can be easily obtained by applying acylation such as anhydride or acid chloride. However, oxidation of this substance with molecular oxygen such as air is difficult compared to alkylbiphenyl and formyl biphenyl, and the known method (
For example, in European Patent No. 300,922), the reaction did not proceed at all, or side reactions occurred due to the extremely severe conditions required, resulting in poor yield and quality and was not a practical method.

本発明者らは、製造が容易で、安価なアシル化ビフェニ
ル類を原料とし、且つ安価な空気を酸化剤とする方法が
有利であると考え、鋭意検討してきた。その結果、特定
の溶媒系と混合触媒系を使用し、特定のアルキル置換ベ
ンゼン類の存在下で反応せしめることにより、従来は困
難とされてきたアシル化ビフェニル類も極めて容易に空
気酸化され、目的とするカルボキシビフェニル類が、選
択性良く、高収率で得られることを見い出し、かかる知
見に基づいて本発明を完成するに至った。
The present inventors have thought that a method using acylated biphenyls, which are easy to produce and inexpensive, as a raw material, and inexpensive air as an oxidizing agent is advantageous, and has been conducting intensive studies. As a result, by using a specific solvent system and mixed catalyst system and reacting in the presence of a specific alkyl-substituted benzene, acylated biphenyls, which were previously considered difficult, can be air-oxidized extremely easily, and the desired purpose can be achieved. The inventors have discovered that carboxybiphenyls can be obtained with good selectivity and in high yields, and have completed the present invention based on this knowledge.

即ち、本発明は、酸化反応方法に特徴を有するカルボキ
シビフェニル類の新規で有用な製造方法を提供すること
を目的とする。
That is, an object of the present invention is to provide a new and useful method for producing carboxybiphenyls, which is characterized by an oxidation reaction method.

(問題点を解決するための手段) 本発明にかかるカルボキシビフェニル類の製造方法は、
一般式1で示されるアシル化ビフェニル類を酸化し対応
するカルボキシビフェニル類を製造するに当たり、炭素
数2〜10の脂肪族モノカルボン酸を溶媒とし、コバル
ト マンガン及びセリウムから選ばれる1種若しくは2
種辺上の重金属と臭素化合物とを含む混合触媒を使用し
、アシル化ビフェニル類100重量部当たり1重量部り
上の一鍜式2で示されるアルキル置換ベンゼン類の存在
下、分子状酸素で酸化することを特徴とする。
(Means for solving the problems) The method for producing carboxybiphenyls according to the present invention includes:
When oxidizing the acylated biphenyls represented by the general formula 1 to produce the corresponding carboxybiphenyls, an aliphatic monocarboxylic acid having 2 to 10 carbon atoms is used as a solvent, and one or two selected from cobalt, manganese, and cerium are used.
Using a mixed catalyst containing a heavy metal and a bromine compound, in the presence of 1 part by weight of alkyl-substituted benzenes represented by Formula 2 per 100 parts by weight of acylated biphenyls, the reaction is carried out with molecular oxygen. Characterized by oxidation.

[式中 R1は炭素数1〜10のアルキル基を、x、x
’は同−又は異なってF、CI、Br、N O2、CN
又は5OsH基を表わす、!は0〜3の整数を示す、コ [式中、R2は炭素数1〜20の直鎖状又は分岐鎖状の
アルキル基を、YはF、CI、Br、N Ox、CN又
はS○、H基を、mはl又は2の整数を、nは0〜3の
整数をそれぞれ表わす、]本発明において原料とするア
シル化ビフェニル類は、前記−最大lで示される構造を
有する。当該ビフェニル骨格は、F、CI、Br、NO
2、CN又はS Os H基等の酸化に対し安定な置換
基に1換されたものをも含み、その置換値1は問わない
、これらのうち、4−アセチルビフェニルや4−アセチ
ル−4°−シアノビフェニル、4−アセチル−4°−ク
ロロビフェニル及びエチル−4−ビフェニルケトン等は
、製造が容易で、しかも本発明方法において酸化され易
いために原料として好ましい。
[In the formula, R1 represents an alkyl group having 1 to 10 carbon atoms, x, x
' are the same or different, F, CI, Br, N O2, CN
Or represents a 5OsH group,! represents an integer of 0 to 3, [wherein R2 is a linear or branched alkyl group having 1 to 20 carbon atoms, Y is F, CI, Br, NOx, CN or S○, H group, m represents an integer of 1 or 2, and n represents an integer of 0 to 3.] The acylated biphenyls used as raw materials in the present invention have a structure represented by -maximum 1 above. The biphenyl skeleton is F, CI, Br, NO
2, including those substituted with a substituent that is stable against oxidation such as CN or SOs H group, and the substitution value 1 does not matter; among these, 4-acetylbiphenyl and 4-acetyl-4° -Cyanobiphenyl, 4-acetyl-4°-chlorobiphenyl, ethyl-4-biphenylketone, and the like are preferred as raw materials because they are easy to produce and are easily oxidized in the method of the present invention.

本発明方法にかかる触媒は、コバルト、マンガン及びセ
リウムから選ばれる1種若しくは2種以上の重金属と臭
素化合物とを含む混合触媒である。
The catalyst according to the method of the present invention is a mixed catalyst containing one or more heavy metals selected from cobalt, manganese, and cerium and a bromine compound.

このとき、臭素化合物の一部を塩素化合物で置き換えて
も良い。
At this time, a part of the bromine compound may be replaced with a chlorine compound.

コバルト、マンガン及びセリウム等の重金属は、単体、
酸化物、水酸化物、有機塩、無機塩、錯体等いかなる形
態で反応系に添加しても良いが、反応系で少なくとも部
分的に溶解することが必要である。これらのうち、特に
炭素数2〜20の有機酸塩及び臭素や塩素の塩が好まし
く、具体的には、酢酸コバルト、プロピオン酸コバルト
、オクチル酸コバルト、ナフテン酸コバルト 臭化コバ
ルト、塩化コバルト;酢酸マンガン、ナフテン酸マンガ
ン、臭化マンガン、塩化マンガン:酢酸セリウム、ナフ
テン酸セリウム、臭化セリウム、塩化セリウム;コバル
トアセチルアセトネート、マンガンアセチルアセトネー
ト等が例示される。
Heavy metals such as cobalt, manganese, and cerium are
It may be added to the reaction system in any form such as oxide, hydroxide, organic salt, inorganic salt, complex, etc., but it is necessary that it be at least partially dissolved in the reaction system. Among these, organic acid salts having 2 to 20 carbon atoms and salts of bromine and chlorine are particularly preferred, and specifically, cobalt acetate, cobalt propionate, cobalt octylate, cobalt naphthenate, cobalt bromide, cobalt chloride; acetic acid Manganese, manganese naphthenate, manganese bromide, manganese chloride: cerium acetate, cerium naphthenate, cerium bromide, cerium chloride; cobalt acetylacetonate, manganese acetylacetonate, etc. are exemplified.

臭素化合物は、臭素分子、その酸、塩、酸素酸塩または
有機臭化物等の何れでも使用でき、特に臭化水素、臭化
アンモニウム、臭化ナトリウム、臭化カリウム、臭化カ
ルシウム、臭化マグネシウム、臭化コバルト、臭化マン
ガン、臭化セリウム、テトラブロモエタン、トリブロモ
エタン等が好ましい、塩素化合物についても同様である
The bromine compound can be any bromine molecule, its acid, salt, oxyacid or organic bromide, and in particular, hydrogen bromide, ammonium bromide, sodium bromide, potassium bromide, calcium bromide, magnesium bromide, The same applies to chlorine compounds, preferably cobalt bromide, manganese bromide, cerium bromide, tetrabromoethane, tribromoethane, and the like.

本発明にかかる混合触媒としては、例えば次のような触
媒系が有利に使用できる。即ち、臭化コバルト、酢酸コ
バルトと臭化アンモニウム、酢酸コバルトと臭化ナトリ
ウム、酢酸コバルトと臭化水素、酢酸コバルトとテトラ
ブロモエタン、臭化マンガン、酢酸マンガンと臭化水素
、酢酸マンガンと臭化アンモニウム、酢酸マンガンと臭
化ナトリウム、酢酸マンガンとテトラブロモエタン等で
ある。更に当該重金属の2種以上と臭素化合物の組み合
わせが、誘導期を無くし、反応速度が大である点から有
利である。このような組み合わせとしては、例えば臭化
コバルトと臭化マンガン、臭化コバルトと酢酸マンガン
、酢酸コバルトと臭化マンガン、酢酸コバルトと酢酸マ
ンガン及び臭化アンモニウム、酢酸コバルトと酢酸マン
ガン及び臭化水素、臭化コバルトと酢酸セリウム、酢酸
コバルトと臭化セリウム、臭化マンガンと酢酸セリウム
、酢酸コバルトと酢酸マンガン及び酢酸セリウム及び臭
化アンモニウム、ナフテン酸コバルトとナフテン酸マン
ガンとテトラブロモエタン、コバルトアセチルアセトネ
ートとマンガンアセチルアセトネート及び臭化水素等が
挙げられる。
As the mixed catalyst according to the present invention, for example, the following catalyst systems can be advantageously used. namely, cobalt bromide, cobalt acetate and ammonium bromide, cobalt acetate and sodium bromide, cobalt acetate and hydrogen bromide, cobalt acetate and tetrabromoethane, manganese bromide, manganese acetate and hydrogen bromide, manganese acetate and bromide. These include ammonium, manganese acetate and sodium bromide, manganese acetate and tetrabromoethane, etc. Furthermore, the combination of two or more of the heavy metals and a bromine compound is advantageous because it eliminates the induction period and has a high reaction rate. Such combinations include, for example, cobalt bromide and manganese bromide, cobalt bromide and manganese acetate, cobalt acetate and manganese bromide, cobalt acetate and manganese acetate and ammonium bromide, cobalt acetate and manganese acetate and hydrogen bromide, Cobalt bromide and cerium acetate, cobalt acetate and cerium bromide, manganese bromide and cerium acetate, cobalt acetate and manganese acetate and cerium acetate and ammonium bromide, cobalt naphthenate and manganese naphthenate and tetrabromoethane, cobalt acetylacetonate and manganese acetylacetonate and hydrogen bromide.

当該重金属の使用量は、反応系における金属換算濃度で
0.05〜10g/ノ程度が適当である。
The appropriate amount of the heavy metal to be used is about 0.05 to 10 g/no in terms of metal concentration in the reaction system.

0.05g/!未溝の濃度では十分な反応速度が得られ
ず、10g/Jを越えて使用する場合には触媒費の負担
が増すとともに、副反応物が増加する傾向が認められる
等の不利が生じる。
0.05g/! A sufficient reaction rate cannot be obtained at an unresolved concentration, and if it is used in excess of 10 g/J, there are disadvantages such as increased catalyst costs and a tendency for side reactants to increase.

臭素の使用量は、重金属原子当なりの臭素原子換算で0
.1〜10当量が適当である。0.1当量未満では十分
な反応速度が得られず、10当量を越えて使用した場合
には臭素による生成物汚染や触媒費の負担が大きく、好
ましくない、臭素化合物と塩素化合物とを併用する場合
における臭素に対する塩素の比は、原子換算で0. 7
以下が適当て゛ある。
The amount of bromine used is 0 in terms of bromine atom per heavy metal atom.
.. 1 to 10 equivalents are suitable. If the amount is less than 0.1 equivalent, a sufficient reaction rate cannot be obtained, and if more than 10 equivalents are used, the product will be contaminated by bromine and the catalyst cost will be high, which is undesirable. Using a bromine compound and a chlorine compound together In this case, the ratio of chlorine to bromine is 0. 7
The following are appropriate.

一般式2で表されるアルキル置換ベンゼン類のうち好ま
しい化合物としては、トルエン、エチルベンゼン、n−
プロピルベンゼン、イソプロピルベンゼン、クロルトル
エン、クロルエチルベンゼン、クロルイソプロピルベン
ゼン、キシレン、メチルエチルベンゼン等が例示される
が、なかでも、トルエン、エチルベンゼン、n−プロピ
ルベンゼン、イン10ピルベンゼン、クロルトルエンを
適用した場合には、少ない添加量で酸化を円滑に進行さ
せることができて好ましい。
Among the alkyl-substituted benzenes represented by general formula 2, toluene, ethylbenzene, n-
Examples include propylbenzene, isopropylbenzene, chlorotoluene, chloroethylbenzene, chloroisopropylbenzene, xylene, methylethylbenzene, etc. Among them, when toluene, ethylbenzene, n-propylbenzene, chlorotoluene, and chlorotoluene are used, is preferable because oxidation can proceed smoothly with a small amount added.

アルキル置換ベンゼンの使用量は、原料のアシル化ビフ
ェニル類100重量部に対し1重量部以上でなければな
らず、通常、1〜100重量部程重量上程好ましくは1
0〜50重量部程度である。
The amount of alkyl-substituted benzene used must be 1 part by weight or more per 100 parts by weight of the acylated biphenyls as raw materials, and is usually about 1 to 100 parts by weight, preferably 1 part by weight.
It is about 0 to 50 parts by weight.

アルキル置換ベンゼン類の添加量が1重量部未満では反
応がほとんど進行せず、逆に100重量部を越える量を
用いても何ら反応上の利点がなく、経済的に不利となる
のみである。
If the amount of the alkyl-substituted benzene added is less than 1 part by weight, the reaction will hardly proceed, whereas if the amount exceeds 100 parts by weight, there will be no reaction advantage and it will only be economically disadvantageous.

この添加方法は、反応開始時に原料、触媒及び溶媒と共
に全量を添加しても楕わないが、好ましくは反応開始時
に共存させるのみでなく反応中においても連続的に又は
断続的に供給することにより、より少量の使用量で所定
の効果を得ることができる。この場合のアルキル置換ベ
ンゼン類の供給速度は、原料のアシル化ビフェニル類1
00重量部に対し0.5〜50重量部/hの範囲が採用
でき、より好ましくは1〜20重量部/hの範囲である
This method of addition can be carried out even if the entire amount is added together with the raw materials, catalyst and solvent at the start of the reaction, but it is preferable not only to make them coexist at the start of the reaction but also to feed them continuously or intermittently during the reaction. , it is possible to obtain the desired effect with a smaller amount of use. In this case, the feed rate of the alkyl-substituted benzenes is as follows:
A range of 0.5 to 50 parts by weight/h can be employed, more preferably a range of 1 to 20 parts by weight/h.

反応溶媒は、炭素数2〜10の脂肪族モノカルボン酸が
用いられ、特に酢酸が好ましい、この溶媒は、通常、原
料のアシル化ビフェニル類100重量部に対し100〜
2000重量部程度の範囲で用いるのが好ましい。
As the reaction solvent, an aliphatic monocarboxylic acid having 2 to 10 carbon atoms is used, and acetic acid is particularly preferred.
It is preferable to use it in a range of about 2000 parts by weight.

酸化剤として用いる分子状酸素は、純酸素や工業用排ガ
スも使用できるが、工業的には空気が最適である。
As the molecular oxygen used as the oxidizing agent, pure oxygen or industrial exhaust gas can be used, but from an industrial perspective, air is most suitable.

反応温度は、100〜250℃程度、より好ましくは1
50〜220℃程度である。100℃未満では反応速度
が遅く、250℃を越える温度では溶媒の二酸化炭素へ
の酸化や生成物の分解が顕著となり好ましくない。
The reaction temperature is about 100 to 250°C, more preferably 1
The temperature is about 50 to 220°C. If the temperature is lower than 100°C, the reaction rate is slow, and if the temperature exceeds 250°C, the oxidation of the solvent to carbon dioxide and the decomposition of the product become significant, which is not preferable.

反応圧力は、全圧力が1〜50kQ/c4G程度、特に
3〜30kO/cjG程度の範囲で、かつ酸素分圧が8
にΩ/cl#程度以下であることが好腋しい。
The reaction pressure is such that the total pressure is about 1 to 50 kQ/c4G, especially about 3 to 30 kO/cjG, and the oxygen partial pressure is about 8
It is preferable that the value be about Ω/cl# or less.

反応時間は、原料、アルキル置換ベンゼン類及び触媒の
種類やその量、反応温度及び酸素分圧等により異なるが
、一般には10分間乃至10時間程度の範囲内で適宜!
!択される。
The reaction time varies depending on the type and amount of raw materials, alkyl-substituted benzenes and catalysts, reaction temperature, oxygen partial pressure, etc., but is generally within the range of 10 minutes to 10 hours.
! selected.

本発明は一般に以下のようにして実施される。The invention is generally practiced as follows.

即ち、ガス導入口とガス抜き出し口を備えた撹拌機付き
耐圧反応8に所定量の原料、触媒、アルキル置換ベンゼ
ン類及び反応溶媒を仕込み、窒素又は酸素含有ガスで系
内を置換又は加圧し、所定温度に加熱する。この昇温過
程において温度を均一に上昇させる目的から何らかのか
き混ぜを実施するのが好ましいが、ガスの吹き込みは必
ずしも必要としない。
That is, a predetermined amount of raw materials, a catalyst, alkyl-substituted benzenes, and a reaction solvent are charged into a pressure-resistant reaction 8 equipped with a stirrer and equipped with a gas inlet and a gas outlet, and the inside of the system is replaced or pressurized with nitrogen or oxygen-containing gas. Heat to the specified temperature. In this temperature raising process, it is preferable to perform some kind of stirring for the purpose of raising the temperature uniformly, but blowing gas is not necessarily required.

酸素の吸収は、−船釣に100℃付近がら始まる。吸収
開始後、酸素又は酸素含有ガスを導入して、所定範囲の
反応圧力と酸素分圧とに保ちつつ反応を行なう、排出ガ
スは冷却し、凝縮物を反応器に戻す。
Oxygen absorption begins at around 100°C during boat fishing. After the absorption starts, oxygen or an oxygen-containing gas is introduced and the reaction is carried out while maintaining the reaction pressure and oxygen partial pressure within a predetermined range. The exhaust gas is cooled and the condensate is returned to the reactor.

所定時間の反応後、反応器を冷却し、反応物を取り出し
、その!tま又は溶媒の一部を蒸留除去したり、水等他
の溶剤を添加して目的とするカルボキシビフェニル類を
晶析させたり、溶媒を蒸留除去した後、再結晶する。
After a predetermined reaction time, the reactor is cooled, the reactants are taken out, and the! A part of the solvent or solvent is removed by distillation, or another solvent such as water is added to crystallize the desired carboxybiphenyls, or after the solvent is removed by distillation, recrystallization is performed.

上記の反応操作において、アルキル置換ベンゼン類を供
給しつつ反応を行なう場合は、加圧用仕込みポンプを反
応基に連結し、所定量のアルキル置換ベンゼン類を連続
的に仕込むのが好ましいが、一定量を一時に仕込み、そ
の後仕込みを再開するような間欠的な仕込み方法でも差
し支えない。
In the above reaction operation, when the reaction is carried out while supplying alkyl-substituted benzenes, it is preferable to connect a pressurizing feed pump to the reaction group and continuously feed a predetermined amount of alkyl-substituted benzenes. It is also possible to use an intermittent preparation method, such as preparing the ingredients at once and then restarting the preparation.

反応器は、前記の撹拌機付きの装置に限らず、例えば気
泡塔式のものも採用できる。
The reactor is not limited to the above-mentioned device equipped with a stirrer, but may also be of a bubble column type, for example.

反応方式としては、回分反応に限らず、連続や半連続方
式も可能である。具体的には、反応器に原料、触媒、ア
ルキル置換ベンゼン類及び溶媒を連続的に供給し、反応
生成物を連続的に抜き出したり、反応器に触媒、溶媒及
び場合によっては原料やアルキル置換ベンゼン類の一部
を仕込んでおき、次いで原料のみを仕込む方法や、原料
とアルキル置換ベンゼン類及び/または溶媒を仕込みつ
つ反応させる方法等が例示される。
The reaction method is not limited to batch reaction, but continuous and semi-continuous methods are also possible. Specifically, raw materials, catalysts, alkyl-substituted benzenes, and solvents are continuously supplied to the reactor, and reaction products are continuously extracted. For example, a method in which a part of the compound is charged and then only the raw material is charged, and a method in which the raw material and the alkyl-substituted benzene and/or the solvent are charged and reacted together are exemplified.

(実施例) 以下に実施例を掲げて本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to Examples.

実施例1 ガス導入口、環流冷却機付きガス抜き出し口、温度計及
び電磁式撹拌機を備えた内容量1.5ノのチタン製オー
トクレーブに4−アセチルビフェニル200g、臭化コ
バルト・6水和物6.70gと酢酸マンガン・4水和物
0.55gからなる触媒、トルエン45g及び酢酸80
0gを仕込み。
Example 1 200 g of 4-acetylbiphenyl and cobalt bromide hexahydrate were placed in a titanium autoclave with a capacity of 1.5 mm equipped with a gas inlet, a gas outlet with a reflux condenser, a thermometer, and an electromagnetic stirrer. a catalyst consisting of 6.70 g and 0.55 g of manganese acetate tetrahydrate, 45 g of toluene and 80 g of acetic acid.
Prepare 0g.

窒素で18ko/cjGまで加圧し、撹拌しながら加熱
した。120℃から空気を導入し始め、蒸発するW#酸
を冷却環流させ、排出ガスを抜き出しつつ系を170℃
〜180℃、圧力20kQ/dGに保った。約1時間反
応すると酸素の吸収が殆ど認められなくなった。ここで
、空気の導入を停止し反応器を冷却した。内容物を取り
出して結晶をr別し、得られた固体を水及び熱水で洗浄
後、乾燥した0分析の結果、純度99.1%(ガスクロ
マトグラフィーによる。)の4−カルボキシジフェニル
の結晶を175.2g得た(収率86.0%)。
The pressure was increased to 18 ko/cjG with nitrogen, and the mixture was heated with stirring. Start introducing air at 120°C, cool and reflux the evaporating W# acid, and raise the system to 170°C while extracting exhaust gas.
It was maintained at ~180°C and a pressure of 20 kQ/dG. After about 1 hour of reaction, almost no oxygen absorption was observed. At this point, the introduction of air was stopped and the reactor was cooled. The contents were taken out and the crystals were separated, and the obtained solid was washed with water and hot water, and then dried. As a result of analysis, 4-carboxydiphenyl crystals with a purity of 99.1% (by gas chromatography) were obtained. 175.2g of was obtained (yield 86.0%).

又、r液中には25.2gの4−カルボキシビフェニル
が含まれていた。このものは、原料4・−アセチルビフ
ェニルに対し12.5%に相当した。
Moreover, 25.2 g of 4-carboxybiphenyl was contained in the r liquid. This amount corresponded to 12.5% based on the starting material 4·-acetylbiphenyl.

以上の結果、目的物の全収率は98.5%であっ実施N
2 実施例1と同−反応器に4−アセチルビフェニル200
 g、臭化コバルト・6水和*6.70gと酢酸マンガ
ン・4水和物0.55gからなる触媒、トルエン15g
及び酢111800 gを仕込み、窒素で18ko/c
jGまで加圧し、撹拌しながら加熱した。120℃から
空気を導入し始め、150℃に達した時点からトルエン
を15g/hで仕込み始めた。蒸発する酢酸を冷却環流
させ、排出ガスを抜き出しつつ更に昇温し、反応温度1
70℃〜180℃、圧力20Jl/ajGに保った。ト
ルエンの仕込み開始して約1時間後、トルエン及び空気
の導入を停止し、反応器を冷却した1以上の反応におい
て使用したトルエンは合計30gであった0次いで内容
物を取り出して実施例1と同様の分析を行なった結果、
固体から純度99.3%の4−カルボキシビフェニルを
収率86,2%で得た。同様にしてr液に含まれる4−
カルボキシビフェニルを加えた全収率は98.7%であ
った。
As a result, the total yield of the target product was 98.5%.
2 In the same reactor as in Example 1, add 200 4-acetylbiphenyl
g, catalyst consisting of cobalt bromide hexahydrate*6.70g and manganese acetate tetrahydrate 0.55g, toluene 15g
and 111,800 g of vinegar and 18 ko/c with nitrogen.
The mixture was pressurized to JG and heated while stirring. Air was introduced from 120°C, and when the temperature reached 150°C, toluene was started to be introduced at a rate of 15 g/h. The evaporating acetic acid is cooled and refluxed, and the temperature is further raised while extracting the exhaust gas until the reaction temperature reaches 1.
The temperature was maintained at 70°C to 180°C and the pressure was 20 Jl/ajG. About 1 hour after the start of toluene charging, the introduction of toluene and air was stopped, and the reactor was cooled.The toluene used in one or more reactions was 30 g in total. As a result of similar analysis,
4-Carboxybiphenyl with a purity of 99.3% was obtained from the solid in a yield of 86.2%. Similarly, 4- contained in r liquid
The overall yield with addition of carboxybiphenyl was 98.7%.

実施例3 アルキル置換ベンゼン類としてエチルベンゼンを、触媒
として酢酸コバルト・4水和物5,1g、酢酸マンガン
・4水和物0.55g及び臭素水素酸(臭化水素47%
>13.0gを用いたほかは実施例1に準じて4−カル
ボキシビフェニルを調製した、その結果5 目的物を9
7.5%の収率で得た。
Example 3 Ethylbenzene was used as the alkyl-substituted benzene, 5.1 g of cobalt acetate tetrahydrate, 0.55 g of manganese acetate tetrahydrate and hydrobromic acid (47% hydrogen bromide) were used as catalysts.
4-carboxybiphenyl was prepared according to Example 1 except that >13.0g was used, and the result was 5.
Obtained with a yield of 7.5%.

実施例4 アルキル置換ベンゼン類としてイン10ピルベンゼンを
、触媒としてナフテン酸コバルト(C。
Example 4 In-10-pyrubenzene was used as the alkyl-substituted benzene, and cobalt naphthenate (C) was used as the catalyst.

ミロ%>21.0g、ナフテン酸マンガン(Mnミ10
%)10.0g及び臭素ナトリウム8.3gを用いたほ
かは実施Mlに準じて4−カルボキシビフェニルをl1
41+シた。その結果、目的物を95.3%の収率で得
た。
Milo%>21.0g, manganese naphthenate (MnMi10
%) and 8.3 g of sodium bromine were used.
41+shita. As a result, the target product was obtained with a yield of 95.3%.

実施例5 アルキル置換ベンゼン類としてm−クロルトルエンを、
触媒として酢酸コバルト・4水和物5゜5g、酢酸マン
ガン・4水和物0.6g及び臭化アンモニリム12.5
gを用いたほかは実施例1に準じて4−カルボキシビフ
ェニルを調製した。
Example 5 m-chlorotoluene as alkyl-substituted benzenes,
As a catalyst, 5.5 g of cobalt acetate tetrahydrate, 0.6 g of manganese acetate tetrahydrate, and 12.5 g of ammonium bromide.
4-carboxybiphenyl was prepared according to Example 1 except that g was used.

その結果、目的物を98.3%の収率で得た。As a result, the target product was obtained with a yield of 98.3%.

実施例6 アルキル置換ベンゼン類としてp−エチルトルエンを、
触媒として酢酸コバルト・4水和物10゜2g、酢酸マ
ンガン・4水和物6.0g及びテトラブロモエタン8.
6gを用いたほかは実施例1に準じて4−カルボキシビ
フェニルを調製した。
Example 6 p-ethyltoluene as alkyl-substituted benzenes,
As a catalyst, 10.2 g of cobalt acetate tetrahydrate, 6.0 g of manganese acetate tetrahydrate, and tetrabromoethane 8.
4-carboxybiphenyl was prepared according to Example 1 except that 6 g was used.

その結果、目的物を95.5%の収率で得た。As a result, the target product was obtained with a yield of 95.5%.

実施例7 アシル化ビフェニル類として4−アセチル−4゛−クロ
ロビフェニルを用いたほかは実施例1と同一の条件下で
反応を行なった結果、目的とする4−カルボキシ−4゛
−クロロビフェニルを98.1%の収率で得た。
Example 7 The reaction was carried out under the same conditions as in Example 1 except that 4-acetyl-4'-chlorobiphenyl was used as the acylated biphenyls. As a result, the desired 4-carboxy-4'-chlorobiphenyl was obtained. Obtained with a yield of 98.1%.

実施例8 アシル化ビフェニル類として4−ア七チルー4″−シア
ノビフェニルを用いたほかは実施例1と同一の条件下で
反応を行なった結果、目的とする4−カルボキシ−4′
−シアノビフェニルを98.1%の収率で得た。
Example 8 The reaction was carried out under the same conditions as in Example 1 except that 4-acylated biphenyls were used as 4-acylated biphenyls. As a result, the desired 4-carboxy-4'
-Cyanobiphenyl was obtained with a yield of 98.1%.

実施例9 アシル化ビフェニル類としてエチル−4−アセチル−ビ
フェニルケトンを用いたほがは実施例1と同一の条件下
で反応を行なった結果、目的とする4−カルボキシ−ビ
フェニルを981%の収率で得た。
Example 9 A reaction using ethyl-4-acetyl-biphenyl ketone as the acylated biphenyls was carried out under the same conditions as in Example 1. As a result, the desired 4-carboxy-biphenyl was obtained with a yield of 981%. obtained at a rate.

実施例10 トルエンの添加量を7.5gに代えたほかは実施例1と
同一の反応条件下で反応した。その結果、目的とする4
−カルボキシビフェニルが86.2%の収率で得られた
Example 10 A reaction was carried out under the same reaction conditions as in Example 1 except that the amount of toluene added was changed to 7.5 g. As a result, the objective 4
-Carboxybiphenyl was obtained with a yield of 86.2%.

実施例11 トルエンの添加量を75gに代えたほかは実施例1と同
一の反応条件下で反応した。その結果、目的とする4−
カルボキシビフェニルが97.8%の収率で得られた。
Example 11 A reaction was carried out under the same reaction conditions as in Example 1 except that the amount of toluene added was changed to 75 g. As a result, the objective 4-
Carboxybiphenyl was obtained with a yield of 97.8%.

比較例1 実施例1においてトルエンを全く添加せずに反応した。Comparative example 1 In Example 1, the reaction was carried out without adding any toluene.

即ち、実施例1と同一反応Hに4−アセチルビフェニル
150g、臭化コバルト 6水和物6.70gと酢酸マ
ンガン・4水和物0.55gからなる触媒及び酢酸80
0gを仕込み、窒素で18kg/cdGまで加圧し、攪
拌しながら加熱した。120℃から空気を導入し始めた
0反応温度180℃で3特間加熱したが酸素の吸収はJ
2められず、更に温度を250℃まで上げたがやはり酸
素の吸収を認められなかった0反応器を冷却し、内容物
を取り出して実施例1と同様の分析を行なったところ、
目的とする4−カルボキシビフェニルは検出されなかっ
た。
That is, in the same reaction H as in Example 1, 150 g of 4-acetylbiphenyl, a catalyst consisting of 6.70 g of cobalt bromide hexahydrate and 0.55 g of manganese acetate tetrahydrate, and 80 g of acetic acid were added.
0 g was charged, pressurized to 18 kg/cdG with nitrogen, and heated while stirring. Air was introduced from 120°C and heated for 3 hours at a reaction temperature of 180°C, but the absorption of oxygen was J
2.The temperature was further raised to 250°C, but no oxygen absorption was observed.The reactor was cooled, the contents were taken out, and the same analysis as in Example 1 was performed.
The target 4-carboxybiphenyl was not detected.

比較例2 トルエンの添加量をIgに代えたほかは実施例1と同一
の反応条件下で反応したところ、目的とする4−カルボ
キシビフェニルは5.3%の収率でしか得られなかった
Comparative Example 2 When the reaction was carried out under the same reaction conditions as in Example 1 except that the amount of toluene added was changed to Ig, the desired 4-carboxybiphenyl was obtained in a yield of only 5.3%.

(発明の効果) 本発明にかかる方法を適用することにより、工業的に入
手が容易なアシル化ビフェニル類を空気等の安価な酸化
剤により容易に酸化することができ、対応するカルボキ
シビフェニル類を極めて高収率で得ることができる。
(Effects of the Invention) By applying the method of the present invention, acylated biphenyls, which are industrially easily available, can be easily oxidized with an inexpensive oxidizing agent such as air, and the corresponding carboxybiphenyls can be oxidized. It can be obtained in extremely high yields.

特許出願人 新日本理化株式会社Patent applicant: Shin Nippon Rika Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)一般式1で示されるアシル化ビフェニル類を酸化
し対応するカルボキシビフェニル類を製造するに当たり
、炭素数2〜10の脂肪族モノカルボン酸を溶媒とし、
コバルト、マンガン及びセリウムから選ばれる1種若し
くは2種以上の重金属と臭素化合物とを含む混合触媒を
使用し、アシル化ビフェニル類100重量部当たり1重
量部以上の一般式2で示されるアルキル置換ベンゼン類
の存在下、分子状酸素で酸化することを特徴とするカル
ボキシビフェニル類の製造方法。 ▲数式、化学式、表等があります▼(1) [式中、R^1は炭素数1〜10のアルキル基を、X、
X′は同一又は異なってF、Cl、Br、NO_2、C
N又はSO_3H基を表わす。lは0〜3の整数を示す
。] ▲数式、化学式、表等があります▼(2) [式中、R^2は炭素数1〜20の直鎖状又は分岐鎖状
のアルキル基を、YはF、Cl、Br、NO_2、CN
又はSO_3H基を、mは1又は2の整数を、nは0〜
3の整数をそれぞれ表わす。](2)アルキル置換ベン
ゼン類をアシル化ビフェニル100重量部当たり0.5
〜50重量部/hの速度で連続的または間欠的に供給し
つつ反応することを特徴とする請求項1記載のカルボキ
シビフェニル類の製造方法。
(1) When oxidizing the acylated biphenyls represented by general formula 1 to produce the corresponding carboxybiphenyls, using an aliphatic monocarboxylic acid having 2 to 10 carbon atoms as a solvent,
Using a mixed catalyst containing one or more heavy metals selected from cobalt, manganese, and cerium and a bromine compound, 1 part by weight or more of alkyl-substituted benzene represented by general formula 2 per 100 parts by weight of acylated biphenyls. A method for producing carboxybiphenyls, which comprises oxidizing them with molecular oxygen in the presence of carboxybiphenyls. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(1) [In the formula, R^1 is an alkyl group having 1 to 10 carbon atoms,
X' is the same or different and is F, Cl, Br, NO_2, C
Represents N or SO_3H group. l represents an integer of 0 to 3. ] ▲There are mathematical formulas, chemical formulas, tables, etc.▼(2) [In the formula, R^2 is a linear or branched alkyl group having 1 to 20 carbon atoms, and Y is F, Cl, Br, NO_2, C.N.
or SO_3H group, m is an integer of 1 or 2, and n is 0 to
Each represents an integer of 3. ](2) 0.5 parts by weight of alkyl-substituted benzenes per 100 parts by weight of acylated biphenyl
2. The method for producing carboxybiphenyls according to claim 1, wherein the reaction is carried out while being continuously or intermittently supplied at a rate of ~50 parts by weight/h.
JP2248282A 1990-09-17 1990-09-17 Production of carboxybiphenyls Pending JPH04128252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2248282A JPH04128252A (en) 1990-09-17 1990-09-17 Production of carboxybiphenyls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2248282A JPH04128252A (en) 1990-09-17 1990-09-17 Production of carboxybiphenyls

Publications (1)

Publication Number Publication Date
JPH04128252A true JPH04128252A (en) 1992-04-28

Family

ID=17175785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2248282A Pending JPH04128252A (en) 1990-09-17 1990-09-17 Production of carboxybiphenyls

Country Status (1)

Country Link
JP (1) JPH04128252A (en)

Similar Documents

Publication Publication Date Title
US2723994A (en) Oxidation of xylene and toluic acid mixtures to phthalic acids
AU2161099A (en) Method to produce aromatic carboxylic acids
EP0041785A1 (en) Oxidation of substituted aromatic compounds to aromatic carboxylic acids
JPS582222B2 (en) Production method of aromatic polycarboxylic acid
US4853479A (en) Process for the manufacture of aromatic dicarboxylic acids and derivatives thereof
JPH04128252A (en) Production of carboxybiphenyls
US4214100A (en) Process for preventing blackening of phthalic acid
JP4913962B2 (en) Process for producing phenylethynylphthalic anhydride derivative
EP0041784A1 (en) Oxidation of substituted aromatic compounds to aromatic carboxylic acids
JPH04159247A (en) Production of carboxybiphenyls
JP2927023B2 (en) Method for producing aromatic tetracarboxylic acid
JP4380164B2 (en) Method for producing biphenyls
US3030414A (en) Process of preparing meta- and para-nitrobenzoic acids
JP2002533310A (en) Method for producing diaryl carbonate
JPH04221341A (en) Production of carboxybiphenyl compound
EP0034413A1 (en) Process for the preparation of diphenylether carboxylic acids
JPH01287054A (en) Production of benzoic acid derivative
JPH01197455A (en) Production of chloranile
US3030415A (en) Separation of ortho-nitrotoluene from nitrotoluene mixtures
KR820002063B1 (en) Process for preparation of chloro benzoic acid
JPS63310846A (en) Production of diaryldicarboxylic acid
GB1511181A (en) Preparation of terephthalic acid by oxidation of p-xylene
JPH08176065A (en) Production of 4-carboxybiphenyl
JPH05339204A (en) Production of aromatic dicarboxylic acid
JPH07107022B2 (en) Method for producing aromatic polycarboxylic acid