JPS6056694B2 - Method for producing aromatic dicarboxylic acid - Google Patents

Method for producing aromatic dicarboxylic acid

Info

Publication number
JPS6056694B2
JPS6056694B2 JP56122061A JP12206181A JPS6056694B2 JP S6056694 B2 JPS6056694 B2 JP S6056694B2 JP 56122061 A JP56122061 A JP 56122061A JP 12206181 A JP12206181 A JP 12206181A JP S6056694 B2 JPS6056694 B2 JP S6056694B2
Authority
JP
Japan
Prior art keywords
xylene
aromatic dicarboxylic
reaction
dicarboxylic acid
bromide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56122061A
Other languages
Japanese (ja)
Other versions
JPS5823643A (en
Inventor
明 千葉
進 楯
博善 鎌谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizushima Aroma Co Ltd
Mitsubishi Gas Chemical Co Inc
Toyobo Co Ltd
Original Assignee
Mizushima Aroma Co Ltd
Mitsubishi Gas Chemical Co Inc
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizushima Aroma Co Ltd, Mitsubishi Gas Chemical Co Inc, Toyobo Co Ltd filed Critical Mizushima Aroma Co Ltd
Priority to JP56122061A priority Critical patent/JPS6056694B2/en
Publication of JPS5823643A publication Critical patent/JPS5823643A/en
Publication of JPS6056694B2 publication Critical patent/JPS6056694B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明はキシレンを臭素イオンおよび銅イオンの存在下
て、水を分散媒として酸化して芳香族ジカルボン酸を製
造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing aromatic dicarboxylic acids by oxidizing xylene in the presence of bromide ions and copper ions using water as a dispersion medium.

従来、キシレンを酸化して芳香族ジカルボン酸を得る方
法としては、重金属および臭素化合物触媒の存在下ある
いはアルデヒド、ケトンの如き助触媒の存在下で、酢酸
の如き低級脂肪族カルホン酸を溶媒として酸化反応を行
う方法(たとえば米国特許第第2833816号明細書
参照)が実施されている。
Conventionally, the method of oxidizing xylene to obtain aromatic dicarboxylic acids involves oxidation using a lower aliphatic carbonic acid such as acetic acid as a solvent in the presence of heavy metal and bromine compound catalysts or in the presence of co-catalysts such as aldehydes and ketones. Methods for conducting the reaction (see, eg, US Pat. No. 2,833,816) have been implemented.

ところが、これらの方法では、溶媒として使用する低級
脂肪族カルボン酸の燃焼などによる相当量の消費を避け
られ得ず、余分な費用がかかるという欠点がある。また
、低級脂肪族カルボン酸溶媒の代わりに水を使用する方
法が見出され、英国特許第8334あ号明細書および特
公昭39−13921号公報に提案されている。
However, these methods have the drawback that a considerable amount of the lower aliphatic carboxylic acid used as a solvent cannot be avoided due to combustion, etc., resulting in extra costs. Furthermore, a method of using water in place of the lower aliphatic carboxylic acid solvent has been discovered and proposed in British Patent No. 8334A and Japanese Patent Publication No. 13921/1983.

この方法は、アルキル置換基または一部酸化されたアル
キル置換基を含有する芳香族化合物を、臭素化合物存在
下、水溶媒中で酸化する方法であるが、酸化反応速度が
極めて遅く、たとえばp−キシレンを酸化してテレフタ
ル酸を得る場合、16、時間の反応後のテレフタル酸の
収率はわずか29%にしか達していない。また、英国特
許第833438号明細書には、水分散媒系の酸化に於
ては、バナジウム、銅、マンガンが触媒としてすぐれて
いると述べられており、実施例に於て、これらの触媒を
用いてパラジイソプロピルベンゼン等の酸化を行なつた
例は示されて”いるが、キシレン類を酸化した例は見当
たらない。
In this method, an aromatic compound containing an alkyl substituent or a partially oxidized alkyl substituent is oxidized in an aqueous solvent in the presence of a bromine compound, but the oxidation reaction rate is extremely slow, such as p- When xylene is oxidized to obtain terephthalic acid, the yield of terephthalic acid after 16 hours of reaction reaches only 29%. Furthermore, British Patent No. 833438 states that vanadium, copper, and manganese are excellent catalysts for the oxidation of an aqueous dispersion medium system, and in the examples, these catalysts were used. There are examples of oxidation of paradiisopropylbenzene etc. using it, but no examples of oxidation of xylenes have been found.

更にここに述べられている金属類はキシレンの酸化反応
触媒としては必ずしも全て有効ではない。例えばキシレ
ンの酸化に於ては、臭化マンガンの如くは全く有効では
ない。そこでは、本発明者らは水溶媒を用いて反応効率
の良い方法を見出すべく、鋭意研究した結果、遂に本発
明を完成するに到つた。
Furthermore, not all of the metals mentioned herein are effective as catalysts for xylene oxidation reactions. For example, in the oxidation of xylene, it is not as effective as manganese bromide. The present inventors conducted extensive research to find a method with high reaction efficiency using an aqueous solvent, and as a result, they finally completed the present invention.

すなわち本発明は、キシレンを臭素原子として0.3〜
10重量%の臭素化合物および銅原子として0.01〜
0.5重量%の銅化合物を含む水溶液中で、分子状酸素
含有ガスで酸化することを特徴とする芳香族カルボン酸
の製造方法である。本発明において使用するキシレンは
オルソ、メタおよびパラキシレンである。
That is, in the present invention, xylene has a bromine atom of 0.3 to
0.01 to 10% by weight of bromine compound and copper atom
This is a method for producing an aromatic carboxylic acid, which is characterized by oxidizing with a molecular oxygen-containing gas in an aqueous solution containing 0.5% by weight of a copper compound. The xylenes used in this invention are ortho, meta and para xylene.

本発明において使用する触媒は臭素化合物と銅化合物を
併用したものであり、臭素化合物としてはそれ自体臭素
イオンを発生するものまたは酸化反応中に分解して臭素
イオンを発生するもののいずれでも良く、たとえば、臭
素、臭化水素または臭化ナトリウム、臭化カリウム、臭
化マンガン、臭化コバルトなどの金属臭化物および臭化
エチル、テトラブロモエタン、などの有機の臭化物であ
る。
The catalyst used in the present invention is a combination of a bromine compound and a copper compound, and the bromine compound may be one that itself generates bromine ions or one that decomposes during the oxidation reaction to generate bromine ions, such as , metal bromides such as bromine, hydrogen bromide or sodium bromide, potassium bromide, manganese bromide, cobalt bromide, and organic bromides such as ethyl bromide, tetrabromoethane, etc.

臭素化合物の添加量は水溶媒に対して臭素原子として0
.3〜1踵量%であり、0.鍾量%より少なくても、1
喧量%より多くても得られる芳香族ジカルボン酸の収率
が低下してしまうので、好ましくは0.5〜5.喧量%
の範囲である。一方、銅化合物は水に可溶性の塩が好ま
しく、具体的には硫酸塩、塩化塩、臭化塩、酢酸塩等で
ある。銅化合物の添加量は水溶媒に対して0.01〜0
.5重量%であり、0.01重量%より少ない場合は反
応が事実上進行せず、又、0.5重量%より多い場合は
、副反応が増大し、生成物か着色し、又収率も低下して
好ましくない。本発明において反応温度は160〜26
Cf′Cであり、特に180〜220′Cが好ましい。
The amount of bromine compound added is 0 as a bromine atom to the water solvent.
.. 3-1% heel mass, 0. Even if it is less than 1%
The yield of aromatic dicarboxylic acid obtained decreases even if the amount exceeds 0.5% to 5%. Busy %
is within the range of On the other hand, the copper compound is preferably a water-soluble salt, and specific examples include sulfate, chloride, bromide, and acetate. The amount of copper compound added is 0.01 to 0 relative to the water solvent.
.. If it is less than 0.01% by weight, the reaction will not actually proceed, and if it is more than 0.5% by weight, side reactions will increase, the product will be colored, and the yield will be reduced. It also decreases, which is not desirable. In the present invention, the reaction temperature is 160-26
Cf'C, particularly preferably 180 to 220'C.

反応温度が160℃より低いときは実質上反応が進行せ
ず、また260℃より高いときはキシレンの燃焼が激し
く製品の収率が低下する。反応圧力は、反応液と液相に
保ち得る圧力範囲であれば特に制限はないが、通常8〜
70k9/CltGの範囲である。
When the reaction temperature is lower than 160°C, the reaction does not substantially proceed, and when it is higher than 260°C, xylene is burned violently and the yield of the product is reduced. The reaction pressure is not particularly limited as long as it can maintain the reaction liquid and the liquid phase, but it is usually 8 to 8.
It is in the range of 70k9/CltG.

分子状酸素含有ガスとしては、酸素、酸素と窒*ネ素な
ど不活性ガスとの混合ガスおよび空気などいずれも使用
し得るが、空気を使用することが経済的に有利である。
As the molecular oxygen-containing gas, any of oxygen, a mixed gas of oxygen and an inert gas such as nitrogen*nitrogen, and air can be used, but it is economically advantageous to use air.

反応の方法は回分式であつても、またキシレンと水溶液
を連続的に供給し、芳香族ジカルボン酸を連続的に抜き
出すいわゆる連続式のいずれてあつてもよい。以上、か
かる構成よりなる本発明方法を用いると、溶媒として水
を使用するため、従来の溶媒コストがほとんど皆無とな
り、また酸化反応速度も速く、得られる芳香族ジカルボ
ン酸の収率も高く、本発明の産業界に寄与すること大で
ある。
The reaction method may be either a batch method or a so-called continuous method in which xylene and an aqueous solution are continuously supplied and the aromatic dicarboxylic acid is continuously extracted. As described above, when using the method of the present invention having such a configuration, since water is used as a solvent, the cost of conventional solvents is almost eliminated, the oxidation reaction rate is fast, and the yield of aromatic dicarboxylic acids obtained is high. It is a great contribution to the invention industry.

次に実施例を示し本発明方法を具体的に説明するが、本
発明はこれらの実施例に限定されるものではない。実施
例1〜8、比較例1〜4 還流冷却器および攪拌器を備えたチタン製オートクレー
ブ(内容積500m1)に、バラキシレン30yおよび
第1表記載の量の臭素イオンおよび銅イオンを含む水溶
液270yをそれぞれ仕込み、オートクレーブを30k
9/CFlfG加圧下、210℃に加熱し、空気を12
0N1/Hrの速度て液中に連続的に吹き込みながら、
3時間反応を行つた。
Next, the method of the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples. Examples 1 to 8, Comparative Examples 1 to 4 In a titanium autoclave (inner volume: 500 m1) equipped with a reflux condenser and a stirrer, 30 y of paraxylene and 270 y of an aqueous solution containing bromide ions and copper ions in the amounts listed in Table 1 were placed. Prepare each and autoclave for 30k.
9/CFlfG Heated to 210°C under pressure, and air was heated to 12
While continuously blowing into the liquid at a rate of 0N1/Hr,
The reaction was carried out for 3 hours.

反応終了後オートクレーブを冷却し、得られた固形物量
と、その固形物中のテレフタル酸量から、仕込みバラキ
シレンに対するテレフタル酸収率を求めた。実施例9酸
化されるキシレンをメタキシレンに代えた以外は実施例
2と全く同じ方法で酸化反応を行つた。
After the reaction was completed, the autoclave was cooled, and the yield of terephthalic acid based on the charged baraxylene was determined from the amount of solid matter obtained and the amount of terephthalic acid in the solid matter. Example 9 An oxidation reaction was carried out in exactly the same manner as in Example 2, except that the xylene to be oxidized was replaced with meta-xylene.

3.0時間の酸化反応の後、仕込みメタキシレンに対し
て72モル1モル%のイソフタル酸が得られた。
After 3.0 hours of oxidation reaction, 72 mol 1 mol % of isophthalic acid was obtained based on the charged meta-xylene.

実施例10 酸化されるキシレンをオルソキシレンに代えた以外は実
施例2と全く同じ方法で酸化反応を行つた。
Example 10 An oxidation reaction was carried out in exactly the same manner as in Example 2, except that the xylene to be oxidized was replaced with ortho-xylene.

3.0時間の酸化反応の後、仕込みオルソキシレンに対
して70モル1モル%のオルソフタル酸が得られた。
After 3.0 hours of oxidation reaction, orthophthalic acid was obtained in an amount of 70 mol 1 mol % based on the charged ortho-xylene.

比較例5 硫酸第2銅の代わりに、コバルト原子濃度0.5重量%
の酢酸コバルトを使用した以外は実施例2と全く同じ方
法で酸化反応を行つたが、酸素の消費は全く見られず、
テレフタル酸は得られなかつた。
Comparative Example 5 Cobalt atomic concentration 0.5% by weight instead of cupric sulfate
An oxidation reaction was carried out in exactly the same manner as in Example 2, except that cobalt acetate was used, but no consumption of oxygen was observed.
No terephthalic acid was obtained.

比較例6 硫酸第2銅の代わりに、マンガン原子濃度0.5重量%
の酢酸マンガンを使用した以外は実施例2と全く同じ方
法で酸化反応を行つたが、酸素の消費は全く見られず、
テレフタル酸は得られなかつた。
Comparative Example 6 Manganese atomic concentration 0.5% by weight instead of cupric sulfate
The oxidation reaction was carried out in exactly the same manner as in Example 2, except that manganese acetate was used, but no consumption of oxygen was observed.
No terephthalic acid was obtained.

比較例7 臭化水素及び硫酸第2銅の代わりに、臭化マンガンを用
い、マンガン原子濃度を0.5重量%とした以外は実施
例2と全く同じ方法で酸化反応を行なつたが、酸素の消
費は全く見られず、テレフタル酸は得られなかつた。
Comparative Example 7 An oxidation reaction was carried out in the same manner as in Example 2, except that manganese bromide was used instead of hydrogen bromide and cupric sulfate, and the manganese atomic concentration was 0.5% by weight. No consumption of oxygen was observed and no terephthalic acid was obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 キシレンを、臭素原子として0.3〜10重量%の
臭素化合物および銅原子として0.01〜0.5重量%
の銅化合物を含む水溶液中で、分子状酸素含有ガスで酸
化することを特徴とする芳香族ジカルボン酸の製造方法
1 xylene, 0.3 to 10% by weight of bromine compound as bromine atom and 0.01 to 0.5% by weight as copper atom
A method for producing an aromatic dicarboxylic acid, which comprises oxidizing it with a molecular oxygen-containing gas in an aqueous solution containing a copper compound.
JP56122061A 1981-08-03 1981-08-03 Method for producing aromatic dicarboxylic acid Expired JPS6056694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56122061A JPS6056694B2 (en) 1981-08-03 1981-08-03 Method for producing aromatic dicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56122061A JPS6056694B2 (en) 1981-08-03 1981-08-03 Method for producing aromatic dicarboxylic acid

Publications (2)

Publication Number Publication Date
JPS5823643A JPS5823643A (en) 1983-02-12
JPS6056694B2 true JPS6056694B2 (en) 1985-12-11

Family

ID=14826649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56122061A Expired JPS6056694B2 (en) 1981-08-03 1981-08-03 Method for producing aromatic dicarboxylic acid

Country Status (1)

Country Link
JP (1) JPS6056694B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144066A (en) * 1990-06-26 1992-09-01 Nippon Shokubai Co., Ltd. Method of producing naphthalenedicarboxylic acids and diaryldicarboxylic acids
GB0807904D0 (en) * 2008-04-30 2008-06-04 Invista Technologies Srl Oxidation reactions

Also Published As

Publication number Publication date
JPS5823643A (en) 1983-02-12

Similar Documents

Publication Publication Date Title
US3920735A (en) Zirconium enhanced activity of transition metal-bromine catalysis of di- and trimethyl benzene oxidation in liquid phase
US4992580A (en) Production of polycarboxylic acids with a molybdenum-activated cobalt catalyst
JPS582222B2 (en) Production method of aromatic polycarboxylic acid
JPS6051150A (en) Production of biphenyltetracarboxylic acid ester
JP5055262B2 (en) Method for producing p-toluic acid by liquid phase oxidation of p-xylene in water
JPS6056694B2 (en) Method for producing aromatic dicarboxylic acid
US4208352A (en) Oxidation process for alkylaromatics
JPS6310941B2 (en)
US4214100A (en) Process for preventing blackening of phthalic acid
JPS5913495B2 (en) Method for producing 2,6-naphthalene dicarboxylic acid
JPH01160943A (en) Production of naphthalenedicarboxylic acid
US3907881A (en) Quality of phthalic acids improved by oxidizable organic acids
JP2736129B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
JPS60184043A (en) Preparation of aromatic dicarboxylic acid
JPH03255049A (en) Preparation of biphenylcarboxylic acid
JPS6056695B2 (en) Method for producing aromatic dicarboxylic acid
JPH06172260A (en) Production of naphthalenecarboxylic acid
JPH082836B2 (en) Process for producing 2,6-naphthalenedicarboxylic acid
JPH0768247B2 (en) Method for producing diallyl dicarboxylic acid
JPH06211733A (en) Production of 2,6-naphthalene dicarboxylic acid
JPS5949213B2 (en) Method for producing aromatic dicarboxylic acid
JPS61246143A (en) Production of 2,6-naphthalenedicarboxylic acid
JPS63104943A (en) Production of 2,6-naphthalenedicarboxylic acid
JP2003520262A (en) Oxidation of alkylaromatics to aromatic acids in aqueous media
JPS598253B2 (en) Production method of high purity terephthalic acid