JPH06250086A - Zoom lens - Google Patents
Zoom lensInfo
- Publication number
- JPH06250086A JPH06250086A JP5061035A JP6103593A JPH06250086A JP H06250086 A JPH06250086 A JP H06250086A JP 5061035 A JP5061035 A JP 5061035A JP 6103593 A JP6103593 A JP 6103593A JP H06250086 A JPH06250086 A JP H06250086A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- group
- zoom
- focal length
- wide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/144—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
- G02B15/1441—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
- G02B15/144109—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +--+
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はズームレンズに関し、特
に非球面をレンズ系中の一部に適切に用いることによ
り、広角端のFナンバーが1.7と大口径でしかも変倍
比8〜30程度と高変倍比の全変倍範囲にわたり良好な
る光学性能を有したテレビカメラや写真用カメラ、そし
てビデオカメラ等に好適なズームレンズに関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens, and in particular, by appropriately using an aspherical surface as part of the lens system, the F number at the wide-angle end is 1.7 with a large aperture and a zoom ratio of 8 to 10. The present invention relates to a zoom lens suitable for a television camera, a photographic camera, a video camera and the like, which has good optical performance over the entire zoom range of about 30 and a high zoom ratio.
【0002】[0002]
【従来の技術】従来よりテレビカメラや写真用カメラ、
そしてビデオカメラ等には大口径、高変倍でしかも高い
光学性能を有したズームレンズが要求されている。2. Description of the Related Art Conventionally, a television camera or a camera for photography,
A zoom lens having a large aperture, a high zoom ratio and high optical performance is required for a video camera or the like.
【0003】このうち特に放送用のカラーテレビカメラ
では操作性、機動性が重視され、その要求に答えて撮像
デバイスも最近では2/3インチや1/2インチの小型
のCCD(固体撮像素子)が主流になりつつある。Of these, particularly in a color television camera for broadcasting, operability and mobility are emphasized, and in response to the demand, the image pickup device has recently been a small CCD (solid-state image pickup device) of 2/3 inch or 1/2 inch. Is becoming mainstream.
【0004】このCCDは撮像範囲全体が略均一の解像
力を有しているため、これを用いるズームレンズに対し
ては、画面中心から画面周辺まで解像力が略均一である
ことが要求されている。Since the CCD has a substantially uniform resolving power over the entire image pickup range, a zoom lens using this CCD is required to have a substantially uniform resolving power from the center of the screen to the periphery of the screen.
【0005】例えば非点収差や歪曲収差や倍率色収差等
の諸収差が良好に補正され画面全体が高い光学性能を有
していることが要望されている。更に高変倍比でしかも
小型軽量であること、そして撮像手段の前方に色分解系
や各種のフィルターを配置するため、長いバックフォー
カスを有していること等が要望されている。For example, various aberrations such as astigmatism, distortion, and chromatic aberration of magnification are satisfactorily corrected, and it is desired that the entire screen has high optical performance. Further, it is required to have a high zoom ratio, be small and lightweight, and have a long back focus because a color separation system and various filters are arranged in front of the image pickup means.
【0006】ズームレンズのうち物体側から順に合焦用
(フォーカス用)の正の屈折力の第1群、変倍用の負の
屈折力の第2群、変倍に伴って変動する像面を補正する
ための正又は負の屈折力の第3群、そして結像用の正の
屈折力の第4群の4つのレンズ群より成る所謂4群ズー
ムレンズは比較的高変倍化及び大口径比化が容易である
ため、放送用のカラーテレビカメラに多く用いられてい
る。In the zoom lens, from the object side, in order from the object side, a first group of positive refracting power for focusing (focusing), a second group of negative refracting power for zooming, and an image plane that varies with zooming. A so-called four-group zoom lens composed of four lens groups of a third lens group having a positive or negative refractive power for correcting the above and a fourth lens group having a positive refractive power for image formation has a relatively high zoom ratio and a large zoom lens. Since it is easy to adjust the aperture ratio, it is widely used in color television cameras for broadcasting.
【0007】4群ズームレンズのうちFナンバー1.6
〜1.8程度、変倍比20程度の大口径、高変倍の4群
ズームレンズが、例えば特開昭54−127322号公
報で提案されている。Of the four-group zoom lens, an F number of 1.6
A large-aperture, high-magnification, four-group zoom lens having a zoom ratio of about 1.8 to about 20 and a zoom ratio of about 20 has been proposed in, for example, Japanese Patent Laid-Open No. 54-127322.
【0008】[0008]
【発明が解決しようとする課題】ズームレンズにおいて
大口径比(Fナンバー1.6〜1.8)で高変倍比(変
倍比15〜20)で、しかも全変倍範囲にわたり高い光
学性能を得るには各レンズ群の屈折力やレンズ構成を適
切に設定する必要がある。The zoom lens has a large aperture ratio (F number 1.6 to 1.8), a high zoom ratio (variable ratio 15 to 20), and high optical performance over the entire zoom range. In order to obtain, it is necessary to properly set the refractive power and lens configuration of each lens group.
【0009】一般に全変倍範囲にわたり収差変動が少な
く高い光学性能を得るには、例えば各レンズ群のレンズ
枚数を増加させて収差補正上の自由度を増やすことが必
要となってくる。Generally, in order to obtain high optical performance with little aberration variation over the entire zooming range, it is necessary to increase the degree of freedom in aberration correction by increasing the number of lenses in each lens group, for example.
【0010】このため、大口径比で高変倍比のズームレ
ンズを達成しようとすると、どうしてもレンズ枚数が増
加し、レンズ系全体が大型化してくるという問題点が生
じてくる。For this reason, if a zoom lens having a large aperture ratio and a high zoom ratio is to be achieved, the number of lenses will inevitably increase and the size of the entire lens system will increase.
【0011】又、結像性能に関しては、画面中心の最も
像コントラストが良い点、所謂ベスト像面の変倍に伴う
変動が問題となってくる。これは主に変倍に伴う球面収
差の変動に起因している。Regarding the image forming performance, there is a problem that the image contrast at the center of the screen is the best, that is, the variation due to the so-called zooming of the best image plane. This is mainly due to the fluctuation of spherical aberration associated with zooming.
【0012】一般に球面収差の変倍に伴う変動はズーム
比をZ、広角端の焦点距離をfWとすると、図25に示
すように球面収差が0の広角端よりズーム位置fW′=
fW×Z1/4 付近まではガウス像面に対してアンダー
(マイナス)傾向となる。そしてズーム位置fW′=f
W×Z1/4 付近をすぎるとアンダー量が少なくなり、あ
るズーム位置で0となり、今度はオーバー(プラス)傾
向となる。Generally, when the zoom ratio is changed to Z and the focal length at the wide-angle end is fW, the variation due to the zooming of the spherical aberration is fW '= from the wide-angle end where the spherical aberration is 0 as shown in FIG.
Up to around FW × Z 1/4 , there is an under (minus) tendency with respect to the Gaussian image plane. And the zoom position fW ′ = f
If the distance is close to W × Z 1/4 , the under amount becomes small, becomes 0 at a certain zoom position, and tends to be over (plus) this time.
【0013】そしてFナンバーが大きくなってくる(レ
ンズ系が暗くなってくる)F−ドロップの始まるズーム
位置(FNW/FNT)×fT付近で最もオーバー(プ
ラス)となり、このズーム位置を過ぎると望遠端にかけ
てオーバー量が少なくなり、望遠端で略0となってく
る。Then, the F number becomes larger (the lens system becomes darker), and it becomes the most over (plus) in the vicinity of the zoom position (FNW / FNT) × fT at which F-drop starts, and when the zoom position is passed, the telephoto lens becomes a telephoto lens. The amount of over becomes small toward the end, and becomes almost 0 at the telephoto end.
【0014】一般に画面中心のベスト像面を左右する球
面収差の変倍に伴う変動と画面周辺のベスト像面を左右
するサジタル像面とメリディオナル像面の変倍に伴う変
動との合致の度合を全変倍範囲にわたり、バランス良く
制御するのが高い光学性能を得るのに重要となってく
る。Generally, the degree of coincidence between the variation due to zooming of the spherical aberration that influences the best image plane at the center of the screen and the variation due to zooming of the sagittal image plane and the meridional image plane that influences the best image plane around the screen is determined. A well-balanced control over the entire zoom range is important for obtaining high optical performance.
【0015】特に最近ではズームレンズの小型軽量化や
広角化の要望により、ズームレンズは各レンズ群の屈折
力を強めてズームレンズ全系を縮小系とすることが試み
られている。In particular, recently, in response to a demand for reduction in size, weight and wide angle of the zoom lens, it has been attempted to increase the refracting power of each lens group to make the entire zoom lens system a reduction system.
【0016】中でも4群ズームレンズでは、第3群であ
るコンペンセーター(像面変動補正群)の屈折力を強め
てその往復運動を減らすことにより、ズームレンズ全系
の小型化を図っており、このため像面補正レンズ群の負
担が増加する傾向があった。Among them, in the four-group zoom lens, the total power of the zoom lens system is reduced by strengthening the refracting power of the compensator (image surface variation correction group) which is the third group and reducing the reciprocating movement thereof. Therefore, the load on the image plane correction lens group tends to increase.
【0017】図27,図28,図29は4群ズームレン
ズにおいて広角端(f=10),中間(f=19.6
8),望遠端(f=150)での第1群から第3群まで
のレンズ系中を光束が通過するときの状態を示す説明図
である。27, 28, and 29 show the wide-angle end (f = 10) and the middle (f = 19.6) in the 4-group zoom lens.
8) is an explanatory diagram showing a state when a light beam passes through the lens systems from the first group to the third group at the telephoto end (f = 150).
【0018】同図に示すように軸上光線のコンペンセー
ターCへの入射高は広角端で最も高く、焦点距離fM=
fW×Z1/4 なるズーム位置にかけて急激に低くなる。
このため、広角端においてコンペンセーターC内部での
球面収差の打消が不足し、球面収差のオーバー成分が残
存している場合には広角端において球面収差が良好に補
正されていてもコンペンセーターCが往復運動を開始
し、コンペンセーターCへの軸上光線入射高が急激に低
くなることにより球面収差も急激にアンダーとなる。こ
の傾向はコンペンセーターCの屈折力が強くなるほど顕
著になる。As shown in the figure, the incident height of the axial ray on the compensator C is the highest at the wide-angle end, and the focal length fM =
It rapidly decreases toward the zoom position of FW × Z 1/4 .
Therefore, when the spherical aberration is not canceled in the compensator C at the wide-angle end and the over-component of the spherical aberration remains, the compensator C is corrected even if the spherical aberration is well corrected at the wide-angle end. Since the reciprocating motion is started and the incident height of the axial ray on the compensator C is drastically lowered, the spherical aberration is also drastically under. This tendency becomes more remarkable as the refractive power of the compensator C becomes stronger.
【0019】特に放送用のズームレンズのように高仕様
・高性能を要求されるズームレンズの場合には、コンペ
ンセーターCを少なくとも1枚の負レンズと正レンズの
組合せレンズにより構成している。そして貼合わせレン
ズによる球面収差補正用の発散面を設けたり、媒質の屈
折率差をつけてコンペンセーター内部の収差補正をして
いる。Particularly in the case of a zoom lens for which high specifications and high performance are required such as a zoom lens for broadcasting, the compensator C is composed of at least one negative lens and positive lens combination lens. Then, a diverging surface for spherical aberration correction is provided by a cemented lens, and a difference in refractive index of the medium is provided to correct aberration inside the compensator.
【0020】しかしながら球面収差の変倍に伴う変動や
高次の色収差等の補正が不充分であるため、レンズ枚数
を増加させたり、レンズ群の屈折力を弱めたりしてい
た。このため、ズームレンズのコンパクト化及び高性能
化を図るのが大変困難であった。However, the correction of spherical aberration due to zooming and the correction of high-order chromatic aberration are insufficient, so that the number of lenses is increased or the refractive power of the lens group is weakened. For this reason, it has been very difficult to make the zoom lens compact and have high performance.
【0021】本発明は所謂4群ズームレンズにおいて、
各群の屈折力やFナンバー、バリエーターの変倍に伴う
結像倍率の変化、コンペンセーターの像点補正の軌跡等
を適切に設定した上で、コンペンセーターの少なくとも
1つのレンズ面に非球面を施し、軸上光束や軸外光束等
がコンペンセーターのレンズ面を通過する際の入射高が
非球面の効果を最大限効率アップするような所定の条件
を満足するように規定することにより、変倍に伴う球面
収差の変動を少なくし、更に変倍に伴う非点収差、像面
弯曲等の軸外収差の変動をバランス良く補正し、全変倍
範囲にわたり高い光学性能を有した広角端Fナンバー
1.7程度、変倍比8〜30程度の大口径比で高変倍比
のズームレンズの提供を目的とする。The present invention is a so-called four-group zoom lens,
After properly setting the refractive power and F number of each group, the change in imaging magnification due to the variator's magnification change, the locus of image point correction of the compensator, etc., an aspherical surface is formed on at least one lens surface of the compensator. The axial height and the off-axis luminous flux pass through the lens surface of the compensator so that the incident height satisfies the prescribed conditions that maximize the efficiency of the aspherical surface. Wide-angle end F that has high optical performance over the entire zoom range by reducing fluctuations in spherical aberration due to zooming and by correcting well-balanced fluctuations in astigmatism and curvature of field associated with zooming. It is an object of the present invention to provide a zoom lens having a large zoom ratio of about 1.7 and a zoom ratio of about 8 to 30 and a high zoom ratio.
【0022】[0022]
【課題を解決するための手段】本発明のズームレンズ
は、物体側より順に変倍の際に固定の正の屈折力の第1
群、変倍用の負の屈折力の第2群、変倍に伴う像面変動
を補正する負の屈折力の第3群、そして固定の正の屈折
力の第4群を有し、望遠端の全系の焦点距離とFナンバ
ーを各々fT,FNT、第i群の焦点距離とFナンバー
を各々fi,FNi、該第2群は変倍の際に結像倍率が
等倍を含む領域内で変化し、広角端における軸上光束の
該第3群への最大入射高をh3m、該第3群は少なくと
も1つの負レンズ31と正レンズ32とを有しており、
広角端から望遠端への変倍に際して物体側へ凸状の軌跡
を有し、かつ望遠端では広角端に比べて像面側に位置す
るように移動し、該負レンズ31と正レンズ32の材質
のアッベ数の差をΔν3としたとき、 1.09<FNT<1.61 但し、FN1=f1/(fT/FNT) ‥‥‥(1) −1.03<f3/f1<−0.37 ‥‥‥(2) 1.43<FN3<2.13 但し、FN3=|(f3/2×h3m)| ‥‥‥(3) 20<Δν3 ‥‥‥(4) なる条件を満足することを特徴とするズームレンズ。The zoom lens according to the present invention has a first positive refractive power which is fixed when zooming in order from the object side.
It has a group, a second group of negative refractive power for zooming, a third group of negative refractive power that corrects image plane variation due to zooming, and a fourth group of fixed positive refractive power, The focal length and the F number of the entire system at the ends are fT and FNT, the focal length and the F number of the i-th group are fi and FNi, respectively, and the second group is a region in which the image forming magnification includes the same magnification. The maximum incident height of the axial light flux at the wide-angle end on the third lens group is h3m, and the third lens group has at least one negative lens 31 and positive lens 32.
At the time of zooming from the wide-angle end to the telephoto end, it has a convex locus toward the object side, and at the telephoto end, it moves so as to be positioned on the image plane side compared to the wide-angle end, and the negative lens 31 and the positive lens 32 are moved. 1.09 <FNT <1.61 where FN1 = f1 / (fT / FNT) (1) -1.03 <f3 / f1 <-0. 37 (2) 1.43 <FN3 <2.13 However, FN3 = | (f3 / 2 × h3m) | A zoom lens featuring.
【0023】[0023]
【実施例】図1,図2,図3,図4は各々本発明の後述
する数値実施例1,2,3,4の広角端におけるレンズ
断面図である。図5〜図9は数値実施例1、図10〜図
14は数値実施例2、図15〜図19は数値実施例3、
図20〜図24は数値実施例4の諸収差図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1, 2, 3, and 4 are lens cross-sectional views at the wide-angle end of Numerical Embodiments 1, 2, 3, and 4 to be described later, respectively. 5 to 9 are numerical example 1, FIGS. 10 to 14 are numerical example 2, and FIGS. 15 to 19 are numerical example 3.
20 to 24 are various aberration diagrams of Numerical Example 4.
【0024】図中、Fは第1群としての正の屈折力のフ
ォーカス群(前玉レンズ群)である。図1〜図3ではフ
ォーカス群F全体を光軸上移動させてフォーカスを行な
っている。図4ではフォーカス群Fを負の屈折力の前群
フォーカス固定群F1と正の屈折力のフォーカス移動群
F2と正の屈折力の後群フォーカス群F3の3つのレン
ズ群とから構成している。そして物体距離の変動に伴う
フォーカスはフォーカス移動群F2を光軸上移動させて
行なっている。In the figure, F is a focus group (front lens group) having a positive refractive power as the first group. 1 to 3, the entire focus group F is moved on the optical axis for focusing. In FIG. 4, the focus group F is composed of three lens groups, a front focus group F1 having a negative refractive power, a focus moving group F2 having a positive refractive power, and a rear focus group F3 having a positive refractive power. . Focusing with a change in the object distance is performed by moving the focus moving group F2 on the optical axis.
【0025】Vは第2群としての変倍用の負の屈折力の
バリエーターであり、光軸上像面側へ単調に移動させる
ことにより、広角端(ワイド)から望遠端(テレ)への
変倍を行なっている。バリエーターVは変倍の際に結像
倍率が等倍を含む領域内で使用している。V is a variator of negative refracting power for zooming as the second lens unit, which is monotonically moved to the image plane side on the optical axis to change from the wide-angle end (wide) to the telephoto end (tele). We are changing the magnification. The variator V is used in a region in which the imaging magnification includes the same magnification when changing the magnification.
【0026】Cは第3群としての負の屈折力のコンペン
セーターであり、変倍に伴う像面変動を補正するために
光軸上を物体側に凸状の軌跡を有するように往復運動し
ている。C is a compensator of negative refracting power as the third lens unit, which reciprocates so as to have a convex locus on the object side on the optical axis in order to correct the image plane variation due to zooming. ing.
【0027】SPは絞り、Rは第4群としての正の屈折
力のリレー群である。Gは色分解プリズムや光学フィル
ター等であり、同図ではガラスブロックとして示してい
る。SP is an aperture and R is a relay group having a positive refractive power as the fourth group. G is a color separation prism, an optical filter or the like, which is shown as a glass block in FIG.
【0028】次に本発明のズームレンズの特徴について
説明する。Next, the features of the zoom lens of the present invention will be described.
【0029】本発明のズームレンズは8倍から30倍程
度のズーム比を有し、更にズーム全域にて大口径化を実
現するために、まず前玉レンズ群Fに条件式(1)を満
足するような明るいレンズ系を用いている。そしてバリ
エーターVがズーミングに際して結像倍率が−1倍(等
倍)の点を通過するようにし、これにより高い変倍率を
持たせるズーム方式をとっている。The zoom lens of the present invention has a zoom ratio of about 8 to 30 times, and further, in order to realize a large aperture in the entire zoom range, the front lens group F first satisfies the conditional expression (1). It uses a bright lens system. The variator V is configured to pass a point where the image forming magnification is -1 (equal magnification) at the time of zooming, thereby adopting a zoom method in which a high variable magnification is provided.
【0030】更にコンペンセーターCは広角端から望遠
端へのズーミングに伴う像面変動の補正に際し、広角端
の基準位置からまず物体側へ移動し、ある焦点距離より
逆に像面側へ移動し、望遠端では該広角端の基準位置よ
りも像面側に存在するようなズーム方式をとっている。
そしてコンペンセーターCの屈折力を条件式(2)を満
足するようにし、これによりコンパクト化を図ってい
る。なおかつコンペンセーターCの実効Fナンバー値F
N3をも条件式(3)を満足するように明るく維持し、
大口径化を容易にしている。Further, the compensator C first moves to the object side from the reference position at the wide-angle end and then moves to the image surface side from a certain focal length in the correction of the image-plane variation due to zooming from the wide-angle end to the telephoto end. At the telephoto end, a zoom method is adopted such that it exists closer to the image plane than the reference position at the wide-angle end.
Then, the refractive power of the compensator C is made to satisfy the conditional expression (2), thereby making it compact. Moreover, the effective F number value F of the compensator C
Keep N3 bright enough to satisfy conditional expression (3),
It is easy to increase the diameter.
【0031】そして図26に示すようにズーミングによ
り変動する収差のうち、特に焦点距離fM=fW×Z
1/4 なるズーム位置近辺で大きく変動する球面収差を良
好に補正している。Among the aberrations that fluctuate due to zooming as shown in FIG. 26, the focal length is fM = fW × Z.
Spherical aberration that greatly fluctuates near the zoom position of 1/4 is well corrected.
【0032】軸上光線のコンペンセーターCへの入射高
は図27〜図29に示すように広角端で最も高くなり、
焦点距離fM=fW×Z1/4 なるズーム位置にかけて急
激に低くなり、焦点距離fMのズーム位置を過ぎると入
射高の変化はほとんどなくなる。The incident height of the axial ray on the compensator C is highest at the wide-angle end as shown in FIGS.
The focal length fM = fW × Z 1/4 sharply decreases toward the zoom position, and after the zoom position of the focal length fM, the incident height hardly changes.
【0033】しかし望遠端でのFドロップがなく、コン
ペンセーターCの望遠端での位置が広角端の基準位置よ
りも物体側に存在すると望遠端での入射高は再び高くな
る。このため、望遠端でのコンペンセーターCの位置を
広角端の基準位置よりも像面側に存在させるようにして
いる。However, if there is no F drop at the telephoto end and the position of the compensator C at the telephoto end is on the object side of the reference position at the wide-angle end, the incident height at the telephoto end becomes high again. For this reason, the position of the compensator C at the telephoto end is set to be closer to the image plane side than the reference position at the wide-angle end.
【0034】特に本実施例では後述する条件式(5)の
Fドロップを満足させることにより望遠端での入射高を
低く抑えて非球面の効果を広角側に作用するようにして
いる。尚、図27〜図29は図1のレンズ断面図の一部
分の光学系の各ズーム位置における光路について示して
いる。In particular, in this embodiment, by satisfying the F drop of the conditional expression (5) described later, the incident height at the telephoto end is suppressed to be low, and the effect of the aspherical surface acts on the wide angle side. 27 to 29 show an optical path at each zoom position of the optical system which is a part of the lens sectional view of FIG.
【0035】本発明ではこのようなズームレンズの光学
配置を設けた上で、上記条件に該当するコンペンセータ
ーCに球面収差補正のための、或は色収差補正のための
レンズ面を設ける。このためにコンペンセーターを少な
くとも1つの負レンズ31と正レンズ32を有するよう
に構成し、これらのレンズの接合レンズ面、或は比較的
小さな空間間隔により球面収差補正用の発散面としてい
る。In the present invention, after the optical arrangement of such a zoom lens is provided, the compensator C which satisfies the above conditions is provided with a lens surface for spherical aberration correction or chromatic aberration correction. For this reason, the compensator is configured to have at least one negative lens 31 and positive lens 32, and is a cemented lens surface of these lenses or a diverging surface for spherical aberration correction due to a relatively small space.
【0036】そしてこのとき球面収差のみならず、色収
差補正の効果を増大させるためにそのレンズエレメント
の媒質のアッベ数Δν3を条件式(4)の如く設定して
いる。これによりズーミングによる色収差の変動を良好
に補正している。At this time, not only the spherical aberration but also the Abbe number Δν3 of the medium of the lens element is set as in conditional expression (4) in order to increase the effect of correcting chromatic aberration. As a result, variations in chromatic aberration due to zooming are well corrected.
【0037】本発明に係るズームレンズのコンペンセー
ターCはその実効FナンバーFN3が非常に明るく、又
コンペンセーターの屈折力を強めてズーミングによる像
面補正のための往復運動のスペースを削減している。こ
のため、球面収差の変動が多くなってくる。In the compensator C for the zoom lens according to the present invention, the effective F number FN3 is very bright, and the refracting power of the compensator is strengthened to reduce the space for reciprocating motion for image plane correction by zooming. . For this reason, the fluctuation of spherical aberration increases.
【0038】これに対し、レンズ枚数を増やして設計の
自由度を増加させると、コンペンセーターCの前後の軸
上光線は強い発散光束であるため、ズームレンズが大型
化してしまう。このため、コンペンセーターCを球面レ
ンズのみで構成しようとすると大口径化が難しくなって
くる。On the other hand, if the number of lenses is increased and the degree of freedom in design is increased, the axial rays before and after the compensator C are strong divergent rays, and the zoom lens becomes large. For this reason, if the compensator C is made up of only spherical lenses, it becomes difficult to increase the diameter.
【0039】そこで本実施例においてはコンペンセータ
ー(第3群)に少なくとも1つの非球面を設け、該非球
面はレンズ周辺部にいくにつれて負の屈折力が弱くなる
形状より成り、該非球面のレンズ有効径の10割,9
割,7割における非球面量を各々ΔX10 ,ΔX9 ,Δ
X7 としたときTherefore, in this embodiment, at least one aspherical surface is provided in the compensator (third group), and the aspherical surface has a shape in which the negative refracting power becomes weaker toward the peripheral portion of the lens. 100% of diameter, 9
The amount of aspherical surface is divided by ΔX 10 , ΔX 9 , and Δ
When X 7
【0040】[0040]
【数1】 なる条件を満足するようにしている。[Equation 1] I try to satisfy the following conditions.
【0041】このように本実施例では前記条件式(a)
を満足する非球面をコンペンセーターCの少なくとも1
つのレンズ面に設けることにより残存する球面収差の変
動を打消している。As described above, in this embodiment, the conditional expression (a)
An aspherical surface satisfying at least one of compensator C
By providing it on one lens surface, the fluctuation of the remaining spherical aberration is canceled.
【0042】図26はこのときの非球面を用いたときの
球面収差の変動を示す説明図である。尚、本実施例にお
いてこのとき非球面の効果を最も変化が大きくアンダー
に倒れる広角側の範囲に効率良く効かせるようにするた
めには、次の条件式を満足させるのが良い。FIG. 26 is an explanatory diagram showing the variation of spherical aberration when the aspherical surface at this time is used. In this embodiment, in order to efficiently bring the effect of the aspherical surface into the wide-angle range in which the change is the largest and the angle falls under, the following conditional expression should be satisfied.
【0043】広角端における全系の焦点距離をFナンバ
ーを各々fW,FNW、ズーム比をZ、焦点距離fMが
fM=fW×Z1/4 なるズーム位置における軸上光束の
前記第3群への最大入射高をhMとしたとき 0.9 <FNW/FNT ‥‥‥(5) 1.08<h3m/hM ‥‥‥(6) なる条件を満足することである。The focal lengths of the entire system at the wide-angle end are f-numbers fW and FNW, the zoom ratio is Z, and the focal length fM is the third group of axial luminous fluxes at the zoom position where fM = fW × Z 1/4 . When the maximum incident height of Hm is hM, 0.9 <FNW / FNT (5) 1.08 <h3m / hM (6).
【0044】本実施例においてコンペンセーターCに適
用する非球面は高次の球面収差を良好に補正するために
非球面の中心部は略球面で周辺ほど非球面が大きくなる
形状をしている。The aspherical surface applied to the compensator C in this embodiment has a shape in which the central portion of the aspherical surface is substantially spherical and the aspherical surface becomes larger toward the periphery in order to favorably correct high-order spherical aberration.
【0045】条件式(5),(6)はズームレンズの変
倍系においてズーム全域のうち広角端から焦点距離fM
=fW×Z1/4 なるズーム位置近辺までのごく一部のズ
ーム範囲のみ非球面の効果を発揮させ、他のズーム領域
においては球面収差や非点収差等への影響がなるべく少
なくするためのものである。The conditional expressions (5) and (6) are the focal length fM from the wide-angle end in the zoom range in the zoom lens system.
= FW × Z 1/4 In order to exert the effect of the aspherical surface only in a part of the zoom range up to the vicinity of the zoom position and to reduce the influence on spherical aberration and astigmatism as much as possible in other zoom regions. It is a thing.
【0046】条件式(6)で入射高h3mと入射高hM
の比が1に近くなることは非球面における軸上光線の入
射高の変化が広角端から焦点距離fM=fW×Z1/4 な
るズーム位置にかけて小さいことを示しており、非球面
による球面収差補正の効果がズーム全域に及ぼしてしま
うことになる。In conditional expression (6), the entrance height h3m and the entrance height hM
A ratio of 1 near 1 indicates that the change in the incident height of the axial ray on the aspherical surface is small from the wide-angle end to the zoom position where the focal length is fM = fW × Z 1/4. The correction effect will affect the entire zoom range.
【0047】これは非球面により広角端での球面収差を
アンダー方向に補正したとき、焦点距離fM=fW×Z
1/4 なるズーム位置での球面収差もこの非球面の影響を
受けてよりアンダー方向に変化してしまい、球面収差の
変動を補正する効果が弱くなってしまうので良くない。This is because when the spherical aberration at the wide-angle end is corrected in the under direction by the aspherical surface, the focal length fM = fW × Z
The spherical aberration at the zoom position of 1/4 is also affected by this aspherical surface and changes to the under direction, which is not good because the effect of correcting the fluctuation of the spherical aberration becomes weak.
【0048】このように本実施例では図26(A),
(B)に示すように、非球面を施すレンズ面を適切に設
定してズーム中間域から望遠側での球面収差の影響を少
なくし、広角側での球面収差を補正すると共に全変倍範
囲にわたり球面収差を良好に補正している。Thus, in this embodiment, as shown in FIG.
As shown in (B), the aspherical lens surface is appropriately set to reduce the influence of spherical aberration on the telephoto side from the zoom intermediate range, correct spherical aberration on the wide-angle side, and adjust the entire zoom range. The spherical aberration is satisfactorily corrected over the range.
【0049】次に本発明の数値実施例を示す。数値実施
例においてRiは物体側より順に第i番目のレンズ面の
曲率半径、Diは物体側より第i番目のレンズ厚及び空
気間隔、Niとνiは各々物体側より順に第i番目のレ
ンズのガラスの屈折率とアッベ数である。Next, numerical examples of the present invention will be shown. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air gap from the object side, and Ni and νi are respectively from the object side of the i-th lens. The refractive index of glass and the Abbe number.
【0050】非球面形状は光軸方向にX軸、光軸と垂直
方向にH軸、光の進行方向を正としRを近軸曲率半径、
A,B,C,D,Eを各々非球面係数としたときThe aspherical shape has an X axis in the optical axis direction, an H axis in a direction perpendicular to the optical axis, a positive light traveling direction, and R as a paraxial radius of curvature.
When A, B, C, D, and E are aspherical coefficients, respectively
【0051】[0051]
【数2】 なる式で表わしている。[Equation 2] It is expressed by
【0052】〈数値実施例1〉 f =10.0 fno =1:1.8〜2.1 2ω=57.62°〜4.20° R 1 = 959.78 D 1= 2.30 N 1=1.81265 ν 1= 25.4 R 2 = 101.24 D 2= 0.10 R 3 = 101.06 D 3= 10.15 N 2=1.48915 ν 2= 70.2 R 4 = -873.87 D 4= 0.20 R 5 = 133.99 D 5= 7.77 N 3=1.51825 ν 3= 64.2 R 6 =-1406.74 D 6= 0.00 R 7 = 99.83 D 7= 6.79 N 4=1.60548 ν 4= 60.7 R 8 = 368.44 D 8= 0.20 R 9 = 70.69 D 9= 6.76 N 5=1.69979 ν 5= 55.5 R10 = 166.41 D10= 可変 R11 = 60.98 D11= 0.80 N 6=1.83945 ν 6= 42.7 R12 = 16.22 D12= 5.81 R13 = -29.73 D13= 0.80 N 7=1.80811 ν 7= 46.6 R14 = 47.69 D14= 2.24 R15 = 35.80 D15= 4.73 N 8=1.81265 ν 8= 25.4 R16 = -28.90 D16= 0.43 R17 = -25.06 D17= 0.80 N 9=1.77621 ν 9= 49.6 R18 = 142.67 D18= 可変 R19 = -26.07 D19= 0.80 N10=1.79013 ν10= 44.2 R20 = 30.87 D20= 3.47 N11=1.85501 ν11= 23.9 R21 = 736.14 D21= 可変 R22 =(絞り) D22= 1.40 R23 = -140.14 D23= 3.57 N12=1.72794 ν12= 38.0 R24 = -37.07 D24= 0.20 R25 = 68.87 D25= 4.98 N13=1.51314 ν13= 60.5 R26 = -69.05 D26= 0.20 R27 = 35.78 D27= 9.49 N14=1.50229 ν14= 66.0 R28 = -30.39 D28= 1.66 N15=1.83932 ν15= 37.2 R29 = 542.75 D29= 15.69 R30 = -770.53 D30= 4.69 N16=1.51314 ν16= 60.5 R31 = -34.66 D31= 0.20 R32 = 156.95 D32= 1.40 N17=1.83932 ν17= 37.2 R33 = 17.57 D33= 7.55 N18=1.50014 ν18= 65.0 R34 = -183.30 D34= 0.20 R35 = 91.81 D35= 5.69 N19=1.51977 ν19= 52.4 R36 = -24.46 D36= 1.40 N20=1.80811 ν20= 46.6 R37 = 268.36 D37= 0.30 R38 = 33.66 D38= 5.54 N21=1.51977 ν21= 52.4 R39 = -46.30 D39= 4.73 R40 = ∞ D40= 29.35 N22=1.60718 ν22= 38.0 R41 = ∞ D41= 16.20 N23=1.51825 ν23= 64.2 R42 = ∞ 非球面=R19Numerical Example 1 f = 10.0 fno = 1: 1.8 to 2.1 2 ω = 57.62 ° to 4.20 ° R 1 = 959.78 D 1 = 2.30 N 1 = 1.81265 ν 1 = 25.4 R 2 = 101.24 D 2 = 0.10 R 3 = 101.06 D 3 = 10.15 N 2 = 1.48915 ν 2 = 70.2 R 4 = -873.87 D 4 = 0.20 R 5 = 133.99 D 5 = 7.77 N 3 = 1.51825 ν 3 = 64.2 R 6 = -1406.74 D 6 = 0.00 R 7 = 99.83 D 7 = 6.79 N 4 = 1.60548 ν 4 = 60.7 R 8 = 368.44 D 8 = 0.20 R 9 = 70.69 D 9 = 6.76 N 5 = 1.69979 ν 5 = 55.5 R10 = 166.41 D10 = variable R11 = 60.98 D11 = 0.80 N 6 = 1.83945 ν 6 = 42.7 R12 = 16.22 D12 = 5.81 R13 = -29.73 D13 = 0.80 N 7 = 1.80811 ν 7 = 46.6 R14 = 47.69 D14 = 2.24 R15 = 35.80 D15 = 4.73 N 8 = 1.81265 ν 8 = 25.4 R16 = -28.90 D16 = 0.43 R17 = -25.06 D17 = 0.80 N 9 = 1.77621 ν 9 = 49.6 R18 = 142.67 D18 = Variable R19 = -26.07 D19 = 0.80 N10 = 1.79013 ν10 = 44.2 R20 = 30.87 D20 = 3.47 N11 = 1.85501 ν11 = 23.9 R21 = 736.14 D21 = Variable R22 = (Aperture) D22 = 1.40 R23 = -140.14 D23 = 3.57 N12 = 1.72794 ν12 = 38.0 R24 = -37.07 D24 = 0.20 R25 = 68.87 D25 = 4.98 N13 = 1.51314 ν13 = 60.5 R26 = -69.05 D26 = 0.20 R27 = 35.78 D27 = 9.49 N14 = 1.50229 ν14 = 66.0 R28 = -30.39 D28 = 1.66 N15 = 1.83932 ν15 = 37.2 R29 = 542.75 D29 = 15.69 R30 = -770.53 D30 = 4.69 N16 = 1.51314 ν16 = 60.5 R31 = -34.66 D31 = 0.20 R32 = 156.95 D32 = 1.40 N17 = 1.83932 ν17 = 37.2 R33 = 17.57 D33 = 7.55 N18 = 1.50014 ν18 = 65.0 R34 = -183.30 D34 = 0.20 R35 = 91.81 D35 = 5.69 N19 = 1.51977 ν19 = 52.4 R36 = -24.46 D36 = 1.40 N20 = 1.80811 ν20 = 46.6 R37 = 268.36 D37 = 0.30 R38 = 33.66 D38 = 5.54 N21 = 1.51977 ν21 = 52.4 R39 = -46.30 D39 = 4.73 R40 = ∞ D40 = 29.35 N22 = 1.60718 ν22 = 38.0 R41 = ∞ D41 = 16.20 N23 = 1.51825 ν23 = 64.2 R42 = ∞ Aspheric surface = R19
【0053】[0053]
【表1】 非球面形状 参照球面 R=-26.074 パラメーター FN1 = 1.091 非球面係数 A=B=0 FN3 = 1.433 C= 2.36359×10-8 f3/f1=-0.436 D=-2.17787×10-10 FNW/FNT= 0.857 E= 6.77619×10-13 Δν3 =20.3 h3m/hM= 1.105 〈数値実施例2〉 f =8.50 fno =1:1.7〜3.6 2ω=65.81°〜3.71° R 1 = -144.71 D 1= 2.20 N 1=1.81265 ν 1= 25.4 R 2 = 256.49 D 2= 3.28 R 3 = 670.58 D 3= 8.23 N 2=1.48915 ν 2= 70.2 R 4 = -131.23 D 4= 0.15 R 5 = 210.33 D 5= 8.57 N 3=1.51825 ν 3= 64.2 R 6 = -216.00 D 6= 0.15 R 7 = 115.22 D 7= 7.37 N 4=1.62287 ν 4= 60.3 R 8 =-4024.89 D 8= 0.15 R 9 = 69.19 D 9= 5.27 N 5=1.73234 ν 5= 54.7 R10 = 139.74 D10= 可変 R11 = 62.27 D11= 0.90 N 6=1.83945 ν 6= 42.7 R12 = 16.10 D12= 7.30 R13 = -44.83 D13= 0.80 N 7=1.80811 ν 7= 46.6 R14 = 40.62 D14= 2.05 R15 = 30.61 D15= 5.80 N 8=1.81265 ν 8= 25.4 R16 = -35.85 D16= 0.79 R17 = -28.53 D17= 0.80 N 9=1.77621 ν 9= 49.6 R18 = 137.04 D18= 可変 R19 = -31.47 D19= 0.90 N10=1.77621 ν10= 49.6 R20 = 43.74 D20= 2.77 N11=1.85501 ν11= 23.9 R21 =-1447.41 D21= 可変 R22 =(絞り) D22= 2.30 R23 = 515.99 D23= 4.32 N12=1.55099 ν12= 45.8 R24 = -45.85 D24= 0.20 R25 = 117.89 D25= 4.19 N13=1.51825 ν13= 64.2 R26 = -69.14 D26= 0.20 R27 = 47.78 D27= 7.72 N14=1.48915 ν14= 70.2 R28 = -37.07 D28= 1.20 N15=1.83945 ν15= 42.7 R29 = 380.52 D29= 30.00 R30 = 340.64 D30= 4.29 N16=1.51825 ν16= 64.2 R31 = -43.67 D31= 0.20 R32 = 238.15 D32= 1.40 N17=1.81077 ν17= 41.0 R33 = 19.74 D33= 7.12 N18=1.51314 ν18= 60.5 R34 = -284.16 D34= 0.20 R35 = 103.90 D35= 5.28 N19=1.51314 ν19= 60.5 R36 = -28.83 D36= 1.40 N20=1.83945 ν20= 42.7 R37 =-6948.66 D37= 0.20 R38 = 35.36 D38= 5.86 N21=1.51825 ν21= 64.2 R39 = -53.78 D39= 5.00 R40 = ∞ D40= 30.00 N22=1.60718 ν22= 38.0 R41 = ∞ D41= 16.20 N23=1.51825 ν23= 64.2 R42 = ∞ 非球面=R21[Table 1] Aspherical shape Reference spherical surface R = -26.074 Parameter FN1 = 1.091 Aspherical surface coefficient A = B = 0 FN3 = 1.433 C = 2.336 59 × 10 -8 f3 / f1 = -0.436 D = -2.17787 × 10 -10 FNW / FNT = 0.857 E = 6.77619 × 10 -13 Δν3 = 20.3 h3m / hM = 1.105 <Numerical Example 2> f = 8.50 fno = 1: 1.7 to 3.6 2 ω = 65.81 ° to 3.71 ° R 1 = -144.71 D 1 = 2.20 N 1 = 1.81265 ν 1 = 25.4 R 2 = 256.49 D 2 = 3.28 R 3 = 670.58 D 3 = 8.23 N 2 = 1.48915 ν 2 = 70.2 R 4 = -131.23 D 4 = 0.15 R 5 = 210.33 D 5 = 8.57 N 3 = 1.51825 ν 3 = 64.2 R 6 = -216.00 D 6 = 0.15 R 7 = 115.22 D 7 = 7.37 N 4 = 1.62287 ν 4 = 60.3 R 8 = -4024.89 D 8 = 0.15 R 9 = 69.19 D 9 = 5.27 N 5 = 1.73234 ν 5 = 54.7 R10 = 139.74 D10 = variable R11 = 62.27 D11 = 0.90 N 6 = 1.83945 ν 6 = 42.7 R12 = 16.10 D12 = 7.30 R13 = -44.83 D13 = 0.80 N 7 = 1.80811 ν 7 = 46.6 R14 = 40.62 D14 = 2.05 R15 = 30.61 D15 = 5.80 N 8 = 1.81265 ν 8 = 25.4 R16 = -35.85 D16 = 0.79 R17 = -28.53 D17 = 0.80 N 9 = 1.77621 ν 9 = 49.6 R18 = 137.04 D18 = Variable R19 = -31.47 D19 = 0.90 N10 = 1.77621 ν10 = 49.6 R20 = 43.74 D20 = 2.77 N11 = 1.85501 ν11 = 23.9 R21 = -1447.41 D21 = Variable R22 = (Aperture) D22 = 2.30 R23 = 515.99 D23 = 4.32 N12 = 1.55099 ν12 = 45.8 R24 = -45.85 D24 = 0.20 R25 = 117.89 D25 = 4.19 N13 = 1.51825 ν13 = 64.2 R26 = -69.14 D26 = 0.20 R27 = 47.78 D27 = 7.72 N14 = 1.48915 ν14 = 70.2 R28 = -37.07 D28 = 1.20 N15 = 1.83945 ν15 = 42.7 R29 = 380.52 D29 = 30.00 R30 = 340.64 D30 = 4.29 N16 = 1.51825 ν16 = 64.2 R31 = -43.67 D31 = 0.20 R32 = 238.15 D32 = 1.40 N17 = 1.81077 ν17 = 41.0 R33 = 19.74 D33 = 7.12 N18 = 1.51314 ν18 = 60.5 R34 = -284.16 D34 = 0.20 R35 = 103.90 D35 = 5.28 N19 = 1.51314 ν19 = 60.5 R36 = -28.83 D36 = 1.40 N20 = 1.83945 ν20 = 42.7 R37 = -6948.66 D37 = 0.20 R38 = 35.36 D38 = 5.86 N21 = 1.51825 ν21 = 64.2 R39 = -53.78 D39 = 5.00 R40 = ∞ D40 = 30.00 N22 = 1.60718 ν22 = 38.0 R41 = ∞ D41 = 16.20 N23 = 1.51825 ν23 = 64.2 R42 = ∞ Aspherical surface = R21
【0054】[0054]
【表2】 非球面形状 参照球面 R=-1447.410 パラメーター FN1 = 1.601 非球面係数 A=B=C=D=E=0 FN3 = 2.031 D= 9.80814×10-13 f3/f1=-0.595 FNW/FNT= 0.472 Δν3 =25.7 h3m/hM= 1.131 〈数値実施例3〉 f =11.0 fno =1:1.7〜2.75 2ω=53.13°〜1.91° R 1 = 834.14 D 1= 5.30 N 1=1.72311 ν 1= 29.5 R 2 = 188.89 D 2= 1.06 R 3 = 189.46 D 3= 16.52 N 2=1.49845 ν 2= 81.6 R 4 = -616.13 D 4= 0.25 R 5 = 291.81 D 5= 8.16 N 3=1.48915 ν 3= 70.2 R 6 = 722.87 D 6= 0.25 R 7 = 160.89 D 7= 9.91 N 4=1.48915 ν 4= 70.2 R 8 = 330.43 D 8= 0.25 R 9 = 165.17 D 9= 10.96 N 5=1.51825 ν 5= 64.2 R10 = 536.33 D10= 可変 R11 = 67.85 D11= 1.70 N 6=1.82017 ν 6= 46.6 R12 = 29.05 D12= 10.17 R13 = -51.01 D13= 1.60 N 7=1.77621 ν 7= 49.6 R14 = 69.63 D14= 2.05 R15 = 50.83 D15= 5.22 N 8=1.81265 ν 8= 25.4 R16 = -72.19 D16= 1.01 R17 = -49.10 D17= 1.00 N 9=1.77621 ν 9= 49.6 R18 = 168.38 D18= 可変 R19 = -52.40 D19= 1.70 N10=1.74679 ν10= 49.3 R20 = 67.42 D20= 4.00 N11=1.93306 ν11= 21.3 R21 =348.95(絞り) D21= 可変 R22 =-1923.50 D22= 5.86 N12=1.62287 ν12= 60.3 R23 = -47.39 D23= 0.20 R24 = 131.09 D24= 4.36 N13=1.48915 ν13= 70.2 R25 = -162.09 D25= 0.20 R26 = 58.62 D26= 9.70 N14=1.48915 ν14= 70.2 R27 = -46.27 D27= 2.10 N15=1.83932 ν15= 37.2 R28 = 154.20 D28= 35.97 R29 = 68.25 D29= 6.28 N16=1.51825 ν16= 64.2 R30 = -118.74 D30= 0.20 R31 = 141.42 D31= 2.20 N17=1.77621 ν17= 49.6 R32 = 32.68 D32= 9.37 N18=1.59143 ν18= 61.2 R33 = -85.02 D33= 0.20 R34 = 41.73 D34= 6.33 N19=1.48915 ν19= 70.2 R35 = -68.89 D35= 2.20 N20=1.74795 ν20= 44.8 R36 = 35.35 D36= 1.90 R37 = 59.88 D37= 2.54 N21=1.80811 ν21= 46.6 R38 = 151.93 D38= 6.00 R39 = ∞ D39= 30.00 N22=1.60718 ν22= 38.0 R40 = ∞ D40= 16.20 N23=1.51825 ν23= 64.2 R41 = ∞ 非球面=R19[Table 2] Aspherical shape Reference spherical surface R = -1447.410 Parameter FN1 = 1.601 Aspherical surface coefficient A = B = C = D = E = 0 FN3 = 2.031 D = 9.80814 × 10 -13 f3 / f1 = -0.595 FNW / FNT = 0.472 Δν3 = 25.7 h3m / hM = 1.131 <Numerical Example 3> f = 11.0 fno = 1: 1.7 to 2.75 2ω = 53.13 ° to 1.91 ° R 1 = 834.14 D 1 = 5.30 N 1 = 1.72311 ν 1 = 29.5 R 2 = 188.89 D 2 = 1.06 R 3 = 189.46 D 3 = 16.52 N 2 = 1.49845 ν 2 = 81.6 R 4 = -616.13 D 4 = 0.25 R 5 = 291.81 D 5 = 8.16 N 3 = 1.48915 ν 3 = 70.2 R 6 = 722.87 D 6 = 0.25 R 7 = 160.89 D 7 = 9.91 N 4 = 1.48915 ν 4 = 70.2 R 8 = 330.43 D 8 = 0.25 R 9 = 165.17 D 9 = 10.96 N 5 = 1.51825 ν 5 = 64.2 R10 = 536.33 D10 = variable R11 = 67.85 D11 = 1.70 N 6 = 1.82017 ν 6 = 46.6 R12 = 29.05 D12 = 10.17 R13 = -51.01 D13 = 1.60 N 7 = 1.77621 ν 7 = 49.6 R14 = 69.63 D14 = 2.05 R15 = 50.83 D15 = 5.22 N 8 = 1.81265 ν 8 = 25.4 R16 =- 72.19 D16 = 1.01 R17 = -49.10 D17 = 1.00 N 9 = 1.77621 ν 9 = 49.6 R18 = 168.38 D18 = Variable R19 = -52.40 D19 = 1.70 N10 = 1.74679 ν10 = 49.3 R20 = 67.42 D20 = 4.00 N11 = 1.93306 ν11 = 21.3 R21 = 348.95 (Aperture) D21 = Variable R22 = -1923.50 D22 = 5.86 N12 = 1.62287 ν12 = 60.3 R23 = -47.39 D23 = 0.20 R24 = 131.09 D24 = 4.36 N13 = 1.48915 ν13 = 70.2 R25 = -162.09 D25 = 0.20 R26 = 58.62 D26 = 9.70 N14 = 1.48915 ν14 = 70.2 R27 = -46.27 D27 = 2.10 N15 = 1.83932 ν15 = 37.2 R28 = 154.20 D28 = 35.97 R29 = 68.25 D29 = 6.28 N16 = 1.51825 ν16 = 64.2 R30 = -118.74 D30 = 0.20 R31 = 141.42 D31 = 2.20 N17 = 1.77621 ν17 = 49.6 R32 = 32.68 D32 = 9.37 N18 = 1.59143 ν18 = 61.2 R33 = -85.02 D33 = 0.20 R34 = 41.73 D34 = 6.33 N19 = 1.48915 ν19 = 70.2 R35 = -68.89 D35 = 2.20 N20 = 1.74795 ν20 = 44.8 R36 = 35.35 D36 = 1.90 R37 = 59.88 D37 = 2.54 N21 = 1.80811 ν21 = 46.6 R38 = 151.93 D38 = 6.00 R39 = ∞ D39 = 30.00 N22 = 1.60718 ν22 = 38.0 R40 = ∞ D40 = 16.20 N23 = 1.51825 ν23 = 64.2 R41 = ∞ aspheric surface = R19
【0055】[0055]
【表3】 非球面形状 参照球面 R=-52.400 パラメーター FN1 = 1.595 非球面係数 A=B=0 FN3 = 1.947 C= 6.36551×10-10 f3/f1=-0.367 D=-2.23017×10-12 FNW/FNT= 0.618 E= 2.29897×10-15 Δν3 =28.0 h3m/hM= 1.144 〈数値実施例4〉 f =6.50 fno =1:1.7〜1.88 2ω= 80.5°〜12.1° R 1 = 61.13 D 1= 2.50 N 1=1.77621 ν 1= 49.6 R 2 = 32.50 D 2= 17.51 R 3 = 465.72 D 3= 2.00 N 2=1.64254 ν 2= 60.1 R 4 = 55.73 D 4= 11.31 R 5 = -93.76 D 5= 2.00 N 3=1.64254 ν 3= 60.1 R 6 = -540.14 D 6= 0.20 R 7 = 83.20 D 7= 5.90 N 4=1.76168 ν 4= 27.5 R 8 =-3243.08 D 8= 5.70 R 9 = 167.64 D 9= 7.64 N 5=1.48915 ν 5= 70.2 R10 = -85.86 D10= 9.17 R11 = 241.58 D11= 2.00 N 6=1.81265 ν 6= 25.4 R12 = 42.25 D12= 9.22 N 7=1.48915 ν 7= 70.2 R13 = 1729.81 D13= 0.20 R14 = 127.61 D14= 8.69 N 8=1.48915 ν 8= 70.2 R15 = -68.28 D15= 0.20 R16 = 50.95 D16= 4.45 N 9=1.79025 ν 9= 50.0 R17 = 136.34 D17= 可変 R18 = 45.39 D18= 0.90 N10=1.83945 ν10= 42.7 R19 = 17.32 D19= 4.79 R20 = -33.93 D20= 0.90 N11=1.80811 ν11= 46.6 R21 = 28.59 D21= 1.33 R22 = 29.87 D22= 3.10 N12=1.81265 ν12= 25.4 R23 = -51.93 D23= 0.64 R24 = -35.29 D24= 0.90 N13=1.77621 ν13= 49.6 R25 = -948.20 D25= 可変 R26 = -33.14 D26= 1.00 N14=1.71615 ν14= 53.8 R27 = 43.95 D27= 2.85 N15=1.79191 ν15= 25.7 R28 = 695.80 D28= 可変 R29 =(絞り) D29= 1.05 R30 = 210.62 D30= 3.83 N16=1.57047 ν16= 42.8 R31 = -44.84 D31= 0.20 R32 = 100.51 D32= 3.74 N17=1.50014 ν17= 65.0 R33 = -76.46 D33= 0.20 R34 = 87.32 D34= 6.90 N18=1.50014 ν18= 65.0 R35 = -26.52 D35= 1.40 N19=1.83945 ν19= 42.7 R36 = -441.81 D36= 32.29 R37 = -267.84 D37= 4.47 N20=1.57047 ν20= 42.8 R38 = -41.12 D38= 0.20 R39 = 485.78 D39= 1.50 N21=1.83932 ν21= 37.2 R40 = 28.73 D40= 7.64 N22=1.51977 ν22= 52.4 R41 = -120.25 D41= 0.20 R42 = 75.81 D42= 6.49 N23=1.48915 ν23= 70.2 R43 = -36.57 D43= 1.60 N24=1.83932 ν24= 37.2 R44 = -365.87 D44= 0.20 R45 = 51.72 D45= 5.69 N25=1.51825 ν25= 64.2 R46 = -64.48 D46= 8.00 R47 = ∞ D47= 55.50 N26=1.51825 ν26= 64.2 R48 = ∞ 非球面=R26[Table 3] Aspherical surface Reference spherical surface R = -52.400 Parameter FN1 = 1.595 Aspherical coefficient A = B = 0 FN3 = 1.947 C = 6.36551 × 10 -10 f3 / f1 = -0.367 D = -2.23017 × 10 -12 FNW / FNT = 0.618 E = 2.29897 × 10 -15 Δν3 = 28.0 h3m / hM = 1.144 Numerical Example 4 f = 6.50 fno = 1: 1.7 to 1.88 2 ω = 80.5 ° to 12.1 ° R 1 = 61.13 D 1 = 2.50 N 1 = 1.77621 ν 1 = 49.6 R 2 = 32.50 D 2 = 17.51 R 3 = 465.72 D 3 = 2.00 N 2 = 1.64254 ν 2 = 60.1 R 4 = 55.73 D 4 = 11.31 R 5 = -93.76 D 5 = 2.00 N 3 = 1.64254 ν 3 = 60.1 R 6 = -540.14 D 6 = 0.20 R 7 = 83.20 D 7 = 5.90 N 4 = 1.76168 ν 4 = 27.5 R 8 = -3243.08 D 8 = 5.70 R 9 = 167.64 D 9 = 7.64 N 5 = 1.48915 ν 5 = 70.2 R10 = -85.86 D10 = 9.17 R11 = 241.58 D11 = 2.00 N 6 = 1.81265 ν 6 = 25.4 R12 = 42.25 D12 = 9.22 N 7 = 1.48915 ν 7 = 70.2 R13 = 1729.81 D13 = 0.20 R14 = 127.61 D14 = 8.69 N 8 = 1.48915 ν 8 = 70.2 R15 = -68.28 D15 = 0.20 R16 = 50.95 D16 = 4.45 N 9 = 1.79025 ν 9 = 50.0 R17 = 136.34 D17 = Variable R18 = 45.39 D18 = 0.90 N10 = 1.83945 ν10 = 42.7 R19 = 17.32 D19 = 4.79 R20 = -33.93 D20 = 0.90 N11 = 1.80811 ν11 = 46.6 R21 = 28.59 D21 = 1.33 R22 = 29.87 D22 = 3.10 N12 = 1.81265 ν12 = 25.4 R23 = -51.93 D23 = 0.64 R24 = -35.29 D24 = 0.90 N13 = 1.77621 ν13 = 49.6 R25 = -948.20 D25 = variable R26 = -33.14 D26 = 1.00 N14 = 1.71615 ν14 = 53.8 R27 = 43 .95 D27 = 2.85 N15 = 1.79191 ν15 = 25.7 R28 = 695.80 D28 = Variable R29 = (Aperture) D29 = 1.05 R30 = 210.62 D30 = 3.83 N16 = 1.57047 ν16 = 42.8 R31 = -44.84 D31 = 0.20 R32 = 100.51 D32 = 3.74 N17 = 1.50014 ν17 = 65.0 R33 = -76.46 D33 = 0.20 R34 = 87.32 D34 = 6.90 N18 = 1.50014 ν18 = 65.0 R35 = -26.52 D35 = 1.40 N19 = 1.83945 ν19 = 42.7 R36 = -441.81 D36 = 32.29 R37 = -267.84 D37 = 4.47 N20 = 1.57047 ν20 = 42.8 R38 = -41.12 D38 = 0.20 R39 = 485.78 D39 = 1.50 N21 = 1.83932 ν21 = 37.2 R40 = 28.73 D40 = 7.64 N22 = 1.51977 ν22 = 52.4 R41 = -120.25 D41 = 0.20 R42 = 75.81 D42 = 6.49 N23 = 1.48915 ν23 = 70.2 R43 = -36.57 D43 = 1.60 N24 = 1.83932 ν24 = 37.2 R44 = -365.87 D44 = 0.20 R45 = 51.72 D45 = 5.69 N25 = 1.51825 ν25 = 64.2 R46 = -64.48 D46 = 8.00 R47 = ∞ D47 = 55.50 N26 = 1.51825 ν26 = 64.2 R48 = ∞ Aspherical surface = R26
【0056】[0056]
【表4】 非球面形状 参照球面 R=-33.140 パラメーター FN1 = 1.316 非球面係数 A=B=0 FN3 = 2.129 C= 9.13843×10-10 f3/f1=-1.304 D=-6.95659×10-14 FNW/FNT= 0.904 E= 1.13899×10-14 Δν3 =28.1 h3m/hM= 1.085 次に本発明の各数値実施例の特徴について説明する。[Table 4] Aspherical shape Reference spherical surface R = -33.140 Parameter FN1 = 1.316 Aspherical coefficient A = B = 0 FN3 = 2.129 C = 9.138 43 × 10 -10 f3 / f1 = -1.304 D = -6.95659 × 10 -14 FNW / FNT = 0.904 E = 1.13899 × 10 -14 Δν3 = 28.1 h3m / hM = 1.085 Next, features of each numerical example of the present invention will be described.
【0057】図1に示す数値実施例1は15倍を越える
ズーム比を有し、R1〜R10はフォーカスのための前
玉群Fであり、バリエーターVに対する物点を結ぶ作用
を有し、前玉群Fは全体でゆるい正のパワーを有する。Numerical Embodiment 1 shown in FIG. 1 has a zoom ratio of more than 15 times, and R1 to R10 are front lens groups F for focusing, which have a function of connecting an object point to the variator V, The ball group F has a loose positive power as a whole.
【0058】R11〜R18は主に変倍に寄与し、ワイ
ドからテレへの変倍に際し、側面側へ単調に移動し、途
中で結像倍率−1倍(等倍)を通過するバリエーターで
ある。R11 to R18 are variators that mainly contribute to zooming, and monotonously move to the side surface when zooming from wide to tele, and pass an imaging magnification of -1 (one-time) on the way. .
【0059】R19〜R21は主に変倍に伴う像点補正
の作用を有するコンペンセーターで負のパワーを有し、
ワイドからテレへの変倍に際し、広角端基準位置から物
体側へ移動し、ある焦点距離より像側へ移動し、望遠端
では広角端基準位置よりも像側に存在する。SP(R2
2)は絞りである。R19 to R21 are compensators mainly having an image point correcting action associated with zooming, and have a negative power.
Upon zooming from wide to tele, it moves from the wide-angle end reference position to the object side, moves from a certain focal length to the image side, and exists at the telephoto end on the image side of the wide-angle end reference position. SP (R2
2) is a diaphragm.
【0060】R23〜R39は結像作用を有するリレー
群であり、R40〜R42は色分解プリズムと等価なガ
ラスブロックである。R23 to R39 are relay groups having an image forming action, and R40 to R42 are glass blocks equivalent to color separation prisms.
【0061】大口径化の視標として前玉レンズ群のFナ
ンバーFN1をFN1=f1/(fT/FNT)と定義
したとき本実施例ではFN1=1.091である。この
前玉レンズ群のFナンバーをズーム全域で維持し、なお
かつワイド端のFナンバーFNW=1.8と長いバック
フォーカスを維持するときコンペンセーターCのFナン
バーをFN3=f3 /(2×h3m)と定義すればF
N3=1.433という大口径比になる。When the F number FN1 of the front lens group is defined as FN1 = f1 / (fT / FNT) as a target for increasing the aperture, FN1 = 1.091 in this embodiment. When the F number of the front lens group is maintained over the entire zoom range, and the F number at the wide end is FNW = 1.8 and a long back focus is maintained, the F number of the compensator C is FN3 = f3 / (2 × h3m). If defined as F
The large aperture ratio is N3 = 1.433.
【0062】これらの大口径比に対し、前玉レンズ群で
はテレ側の球面収差の補正のために1つの負のレンズと
4つの正のレンズを用いて分担させて補正している。For these large aperture ratios, in the front lens group, one negative lens and four positive lenses are used for correction in order to correct spherical aberration on the tele side.
【0063】一般にコンペンセーターCやバリエーター
Vはそのレンズ構成ができるだけシンプルでブロックの
厚みが小さい方がズームレンズ全系の小型化や駆動系の
省電力化等に好ましい。このため、コンペンセーターC
はできるだけレンズ枚数を少なくすることが望まれる。Generally, it is preferable that the compensator C and the variator V have a simple lens structure and a small block thickness in order to downsize the entire zoom lens system and save power in the drive system. Therefore, compensator C
It is desirable to reduce the number of lenses as much as possible.
【0064】これに対し、前述のようにコンペンセータ
ーCのFナンバーFN3は非常に明るいものとなるた
め、コンペンセーター群Cで球面収差を補正することが
難しくなり、特に広角端から焦点距離fM=fW×Z
1/4 なるズーム位置で球面収差は大きく変化してくる。On the other hand, as described above, the F-number FN3 of the compensator C becomes very bright, so that it becomes difficult to correct spherical aberration in the compensator group C, especially from the wide-angle end to the focal length fM = fw × Z
The spherical aberration changes greatly at the zoom position of 1/4 .
【0065】そこで本実施例では、コンペンセーターC
の第1レンズを比較的屈折率の高い両レンズ面が凹面の
負レンズ31と物体側に凸面を向けた正レンズ32の接
合レンズにより構成することにより球面収差の発生を抑
えている。Therefore, in this embodiment, the compensator C is used.
The first lens is composed of a cemented lens made up of a negative lens 31 having a relatively high refractive index on both lens surfaces and a positive lens 32 having a convex surface facing the object side, thereby suppressing the occurrence of spherical aberration.
【0066】又貼合わせレンズ面には前後の材質のアッ
ベ数の差をΔν3としたとき、Δν3=20.3として
色収差の改善の効果を持たせている。Further, when the difference between the Abbe numbers of the front and rear materials is Δν3, Δν3 = 20.3 is set on the cemented lens surface to have an effect of improving chromatic aberration.
【0067】非球面はR19面に施しており、前述の条
件式(6)はh3m/hM=1.105である。非球面
の方向は軸上入射高が高くなるにつれ、負のパワーが弱
くなる方向であり、非球面形状の急激な変化を避け、か
つ低次から高次の領域まで効率良く球面収差の変動を補
正するために非球面係数C,D,Eのみを使用して主に
球面収差を補正している。このときの非球面量は有効径
の10割で約18μmである。The aspherical surface is provided on the R19 surface, and the above conditional expression (6) is h3m / hM = 1.105. The direction of the aspherical surface is such that the negative power becomes weaker as the on-axis incident height becomes higher, so that abrupt changes in the aspherical shape are avoided and the fluctuation of spherical aberration is efficiently performed from low-order to high-order regions. For the correction, only the aspherical surface coefficients C, D and E are used to mainly correct the spherical aberration. The aspherical amount at this time is about 18 μm, which is 100% of the effective diameter.
【0068】図2の数値実施例2は20倍のズーム比を
有している。数値実施例1に比べて略同じレンズ構成で
ありながらパワー配置の適切な選択により広角端の画角
2ω65.8°、ズーム比20倍を達成している。Numerical embodiment 2 of FIG. 2 has a zoom ratio of 20 times. Compared to Numerical Embodiment 1, the lens configuration is substantially the same, but an angle of view at the wide-angle end of 2ω65.8 ° and a zoom ratio of 20 are achieved by appropriate selection of the power arrangement.
【0069】このときコンペンセーターCの移動量を大
きくしながらも少ない非球面量でズーム全域での球面収
差の変動を抑えている。このときにコンペンセーターC
における非球面はR21面に施しており、h3m/hM
=1.131となる。At this time, while the amount of movement of the compensator C is increased, the variation of spherical aberration in the entire zoom range is suppressed with a small amount of aspherical surface. At this time, the compensator C
The aspherical surface in is applied to the R21 surface, h3m / hM
= 1.131.
【0070】非球面の方向は軸上入射高が高くなるにつ
れ負のパワーが弱くなる方向であるが、小さな非球面量
でより大きな効果を出すために数値実施例1に比べて非
球面導入面の屈折率はより高いものとなっている。The direction of the aspherical surface is such that the negative power becomes weaker as the on-axis incident height becomes higher, but in order to obtain a larger effect with a small amount of aspherical surface, the aspherical surface is introduced as compared with Numerical Embodiment 1. Has a higher refractive index.
【0071】図3の数値実施例3はズーム比が30倍と
いう非常に高倍率なズームレンズであるにもかかわら
ず、テレ端でのFナンバーFNTは2.75という非常
に明るいものである。Numerical example 3 in FIG. 3 is a very high-magnification zoom lens having a zoom ratio of 30 times, but the F number FNT at the tele end is 2.75, which is very bright.
【0072】本実施例における球面収差の変動の削減の
解としては移動量が大きく、パワーもf3/f1=−
0.367と非常に強いコンペンセーターの解の探索に
ポイントを置いている。As a solution for reducing the variation of the spherical aberration in the present embodiment, the movement amount is large and the power is f3 / f1 =-.
The point is to search for a compensator solution that is very strong at 0.367.
【0073】まずコンペンセーターを両レンズ面が凹面
の負レンズと物体側凸面を向けた正レンズの貼合わせレ
ンズにより構成し、貼合わせレンズ面の前後の媒質の屈
折率差を0.18以上まで持たせて球面収差の発散面の
効果を増大させている。First, the compensator is composed of a cemented lens composed of a negative lens whose both lens surfaces are concave and a positive lens whose convex surface facing the object side, and the refractive index difference between the media before and after the cemented lens surface is 0.18 or more. The effect of the diverging surface of the spherical aberration is increased by holding it.
【0074】このときコンペンセーター群C内部の色消
しは貼合わせレンズ面の前後の媒質のアッベ数の差Δν
3をΔν3=28.0まで離して、球面収差・色収差と
もにバランス良く抑えている。At this time, the achromatism inside the compensator group C is the difference Δν in Abbe number between the media before and after the cemented lens surface.
3 is separated to Δν3 = 28.0 to suppress spherical aberration and chromatic aberration in a well-balanced manner.
【0075】図4に示す数値実施例4はズーム比は8倍
程度であるが、広角端の画角2ω=80.5°なる非常
に広角なズームレンズである。Numerical Embodiment 4 shown in FIG. 4 is a very wide-angle zoom lens having a zoom ratio of about 8 times and an angle of view 2ω = 80.5 ° at the wide-angle end.
【0076】R1〜R17は前玉レンズ群(フォーカス
群F)で、R1〜R8はズーミング、フォーカスに際し
て固定であり全体で負のパワー(屈折力)を有する前群
フォーカス固定群F1であり、R9〜R10はフォーカ
スのためのフォーカス移動群F2で正のパワーを有し、
R11〜R17はズーム、フォーカスに際し固定で正の
パワーを有する後群フォーカス固定群である。R1〜R
17によりバリエーターVに対する物点を結ぶ作用を有
する前玉レンズ群Fの作用をなし、前玉レンズ群F全体
で正のパワーを有する。R1 to R17 are the front lens group (focus group F), R1 to R8 are the front group fixed focus group F1 which is fixed for zooming and focusing and has a negative power (refractive power) as a whole, and R9 ~ R10 is a focus movement group F2 for focusing, having positive power,
R11 to R17 are rear focus fixed groups that have a positive power and are fixed during zooming and focusing. R1-R
The front lens group F has a function of connecting an object point to the variator V by 17, and the whole front lens group F has a positive power.
【0077】R18〜R25は主に変倍に寄与し、ワイ
ドからテレへの変倍に際し、像面側へ単調に移動し、途
中で結像倍率−1倍(等倍)を通過するバリエーターV
である。R26〜R28はコンペンセーターで主に変倍
に伴う像点補正の作用を有するコンペンセーターで負の
パワーを有し、ワイドからテレへの変倍に際し、広角端
基準位置から物体側へ移動し、ある焦点距離より像側へ
移動し、望遠端では広角端基準位置よりも像側に存在す
る。SP(R29)は絞りである。R18 to R25 mainly contribute to zooming, and when zooming from wide to tele, the variator V monotonously moves to the image plane side and passes the imaging magnification of -1 (actual magnification) on the way.
Is. R26 to R28 are compensators, which are mainly compensators having an image point correcting action associated with zooming, have negative power, and when zooming from wide to tele, move from the wide-angle end reference position to the object side, It moves to the image side from a certain focal length, and exists at the telephoto end to the image side from the wide-angle end reference position. SP (R29) is a diaphragm.
【0078】R30からR46は結像作用を有するリレ
ー群であり、R47〜R48は色分解プリズムと等価な
ガラスブロックである。R30 to R46 are a relay group having an image forming action, and R47 to R48 are glass blocks equivalent to color separation prisms.
【0079】前玉群FナンバーFN1はFN1=1.3
16、コンペンセーターCの実効FナンバーFN3はF
N3=2.129と大口径であるが、入射高h3mと入
射高hMの比がh3m/hM=1.085と小さくなっ
ているため、広角側の球面収差のコントロールは非球面
の設計の自由度の拡大と非球面の効率向上のため、前記
非球面の式における非球面係数のうちC,D,Eまで用
いている。そしてアッベ数の差Δν3も28.1まで離
すことにより良好に収差補正を行っている。このときの
非球面量はR26面の高さで約2.1μmである。The front lens group F number FN1 is FN1 = 1.3
16 、 Compensator C effective F number FN3 is F
N3 = 2.129, which is a large diameter, but the ratio of the entrance height h3m to the entrance height hM is as small as h3m / hM = 1.085, so the spherical aberration on the wide-angle side can be controlled freely on the aspherical surface. In order to expand the degree and improve the efficiency of the aspherical surface, C, D and E are used among the aspherical surface coefficients in the aspherical surface formula. Aberration correction is satisfactorily performed by separating the Abbe number difference Δν3 to 28.1. The amount of aspherical surface at this time is about 2.1 μm at the height of the R26 surface.
【0080】[0080]
【発明の効果】本発明によれば以上のように、所謂4群
ズームレンズにおいて各レンズ群の屈折力やFナンバー
値等を適切に設定すると共に軸上光束がレンズ面を通過
する際の入射高が所定の条件式を満足する少なくとも1
つのレンズ面に非球面を施すことにより、変倍に伴う球
面収差の変動を少なくし、更に変倍に伴う非点収差、像
面弯曲、そして歪曲収差等の軸外収差の変動をバランス
良く補正し、全変倍範囲にわたり高い光学性能を有した
広角端のFナンバー1.7程度、変倍比8〜30程度の
大口径比で高変倍比のズームレンズを達成することがで
きる。As described above, according to the present invention, in the so-called four-group zoom lens, the refractive power and F-number value of each lens group are appropriately set, and the axial light flux is incident when passing through the lens surface. High is at least 1 that satisfies the specified conditional expression
By applying an aspherical surface to the two lens surfaces, fluctuations in spherical aberration due to zooming are reduced, and in addition, fluctuations in off-axis aberrations such as astigmatism, field curvature, and distortion aberrations due to zooming are well balanced. However, it is possible to achieve a zoom lens having a high zoom ratio with a wide-angle end F number of about 1.7 and a zoom ratio of about 8 to 30, which has high optical performance over the entire zoom range.
【図1】 本発明の数値実施例1の広角端のレンズ断
面図FIG. 1 is a lens cross-sectional view at a wide-angle end according to Numerical Example 1 of the present invention.
【図2】 本発明の数値実施例2の広角端のレンズ断
面図FIG. 2 is a lens cross-sectional view at a wide-angle end according to Numerical Example 2 of the present invention.
【図3】 本発明の数値実施例3の広角端のレンズ断
面図FIG. 3 is a lens cross-sectional view at a wide-angle end according to Numerical Example 3 of the present invention.
【図4】 本発明の数値実施例4の広角端のレンズ断
面図FIG. 4 is a lens cross-sectional view at a wide-angle end according to Numerical Example 4 of the present invention.
【図5】 本発明の数値実施例1の焦点距離f=10
の収差図FIG. 5 is a focal length f = 10 of Numerical Embodiment 1 of the present invention.
Aberration diagram
【図6】 本発明の数値実施例1の焦点距離f=1
9.68の収差図FIG. 6 is a focal length f = 1 according to the first numerical embodiment of the present invention.
Aberration diagram of 9.68
【図7】 本発明の数値実施例1の焦点距離f=40
の収差図FIG. 7: Focal length f = 40 of Numerical Embodiment 1 of the present invention
Aberration diagram
【図8】 本発明の数値実施例1の焦点距離f=10
0の収差図FIG. 8 is a focal length f = 10 of Numerical Embodiment 1 of the present invention.
0 aberration diagram
【図9】 本発明の数値実施例1の焦点距離f=15
0の収差図FIG. 9 is a focal length f = 15 of Numerical Embodiment 1 of the present invention.
0 aberration diagram
【図10】 本発明の数値実施例2の焦点距離f=8.
5の収差図FIG. 10 shows a focal length f = 8.
Aberration diagram of 5
【図11】 本発明の数値実施例2の焦点距離f=1
7.98の収差図FIG. 11 is a focal length f = 1 of the second numerical embodiment of the present invention.
Aberration diagram of 7.98
【図12】 本発明の数値実施例2の焦点距離f=34
の収差図FIG. 12 is a focal length f = 34 of Numerical Embodiment 2 of the present invention.
Aberration diagram
【図13】 本発明の数値実施例2の焦点距離f=68
の収差図FIG. 13 shows a focal length f = 68 according to the second numerical embodiment of the present invention.
Aberration diagram
【図14】 本発明の数値実施例2の焦点距離f=17
0の収差図FIG. 14 is a focal length f = 17 of Numerical Embodiment 2 of the present invention.
0 aberration diagram
【図15】 本発明の数値実施例3の焦点距離f=11
の収差図FIG. 15 is a focal length f = 11 of Numerical Embodiment 3 of the present invention.
Aberration diagram
【図16】 本発明の数値実施例3の焦点距離f=2
5.74の収差図FIG. 16 is a focal length f = 2 of Numerical Embodiment 3 of the present invention.
Aberration diagram of 5.74
【図17】 本発明の数値実施例3の焦点距離f=66
の収差図FIG. 17: Focal length f = 66 of Numerical Example 3 of the present invention
Aberration diagram
【図18】 本発明の数値実施例3の焦点距離f=19
8の収差図FIG. 18 is a focal length f = 19 of Numerical Example 3 of the present invention.
8 aberration diagram
【図19】 本発明の数値実施例3の焦点距離f=33
0の収差図FIG. 19 is a focal length f = 33 of Numerical Embodiment 3 of the present invention.
0 aberration diagram
【図20】 本発明の数値実施例4の焦点距離f=6.
5の収差図FIG. 20 shows the focal length f = 6.
Aberration diagram of 5
【図21】 本発明の数値実施例4の焦点距離f=1
0.92の収差図FIG. 21 is a focal length f = 1 of the numerical value example 4 according to the present invention.
0.92 aberration diagram
【図22】 本発明の数値実施例4の焦点距離f=2
2.75の収差図FIG. 22 is a focal length f = 2 of Numerical Embodiment 4 of the present invention.
2.75 aberration diagram
【図23】 本発明の数値実施例4の焦点距離f=39
の収差図FIG. 23 is a focal length f = 39 of Numerical Embodiment 4 of the present invention.
Aberration diagram
【図24】 本発明の数値実施例4の焦点距離f=52
の収差図FIG. 24 is a focal length f = 52 of Numerical Embodiment 4 of the present invention.
Aberration diagram
【図25】 従来の4群ズームレンズの球面収差の変倍
に伴う変動を示した説明図FIG. 25 is an explanatory diagram showing a change in spherical aberration of a conventional four-group zoom lens due to zooming.
【図26】 本発明に係るズームレンズの球面収差の変
倍に伴う変動を示した説明図FIG. 26 is an explanatory diagram showing a variation of spherical aberration of the zoom lens according to the present invention due to zooming.
【図27】 ズームレンズの第1群から第3群までの光
束の光路を示した説明図FIG. 27 is an explanatory diagram showing optical paths of light beams from the first group to the third group of the zoom lens.
【図28】 ズームレンズの第1群から第3群までの光
束の光路を示した説明図FIG. 28 is an explanatory diagram showing optical paths of light beams from the first group to the third group of the zoom lens.
【図29】 ズームレンズの第1群から第3群までの光
束の光路を示した説明図FIG. 29 is an explanatory diagram showing optical paths of light fluxes from the first group to the third group of the zoom lens.
F 第1群(フォーカス群) F1 前群フォーカス固定群 F2 フォーカス移動群 F3 後群フォーカス固定群 V 第2群(バリエーター) C 第3群(コンペンセーター) R 第4群(リレー群) G ガラスブロック SP 絞り e e線 ΔS サジタル像面 ΔM メリディオナル像面 F First group (focus group) F1 Front group fixed focus group F2 Focus moving group F3 Rear group focus fixed group V Second group (variator) C Third group (Compensator) R Fourth group (Relay group) G Glass block SP aperture e e line ΔS sagittal image plane ΔM meridional image plane
Claims (3)
折力の第1群、変倍用の負の屈折力の第2群、変倍に伴
う像面変動を補正する負の屈折力の第3群、そして固定
の正の屈折力の第4群を有し、望遠端の全系の焦点距離
とFナンバーを各々fT,FNT、第i群の焦点距離と
Fナンバーを各々fi,FNi、該第2群は変倍の際に
結像倍率が等倍を含む領域内で変化し、広角端における
軸上光束の該第3群への最大入射高をh3m、該第3群
は少なくとも1つの負レンズ31と正レンズ32とを有
しており、広角端から望遠端への変倍に際して物体側へ
凸状の軌跡を有し、かつ望遠端では広角端に比べて像面
側に位置するように移動し、該負レンズ31と正レンズ
32の材質のアッベ数の差をΔν3としたとき、 1.09<FN1<1.61 但し、FN1=f1/
(fT/FNT) −1.03<f3/f1<−0.37 1.43<FN3<2.13 但し、FN3=|f3/
(2×h3m)| 20<Δν3 なる条件を満足することを特徴とするズームレンズ。1. A first lens unit having a fixed positive refracting power, a second lens unit having a negative refracting power for zooming, and a negative lens unit for correcting an image plane variation due to zooming, in order from the object side during zooming. It has a third lens group having a refractive power and a fourth lens group having a fixed positive refractive power, and the focal length and the F number of the entire system at the telephoto end are fT and FNT, and the focal length and the F number of the i-th group are respectively. fi, FNi, the second group has an imaging magnification that changes in a region including a unity magnification upon zooming, and the maximum incident height of the axial light flux on the third group at the wide-angle end is h3m, and the third group The group has at least one negative lens 31 and positive lens 32, has a convex locus toward the object side during zooming from the wide-angle end to the telephoto end, and has an image at the telephoto end compared to the wide-angle end. 1.09 <FN1 <1.6 when the difference between the Abbe numbers of the materials of the negative lens 31 and the positive lens 32 is Δν3. However, FN1 = f1 /
(FT / FNT) −1.03 <f3 / f1 <−0.37 1.43 <FN3 <2.13 However, FN3 = | f3 /
A zoom lens characterized by satisfying a condition of (2 × h3m) | 20 <Δν3.
有しており、該非球面はレンズ周辺部にいくにつれて負
の屈折力が弱くなる形状より成り、該非球面のレンズ有
効径の10割,9割,7割における非球面量を各々ΔX
10 ,ΔX9,ΔX7 としたとき 2.9 ×10-7<ΔX7 /f3<1.15×10-4 2.13×10-6<ΔX9 /f3<3.32×10-4 5.29×10-6<ΔX10/f3<5.06×10-4 なる条件を満足することを特徴とする請求項1のズーム
レンズ。2. The third group has at least one aspherical surface, and the aspherical surface has a shape in which the negative refracting power becomes weaker toward the lens peripheral portion, and the aspherical surface has a lens effective diameter of 10% or less. , 90%, 70% of the aspherical amount is ΔX
Assuming 10 , ΔX 9 and ΔX 7 , 2.9 × 10 −7 <ΔX 7 /f3<1.15×10 −4 2.13 × 10 −6 <ΔX 9 /f3<3.32×10 −4 2. The zoom lens according to claim 1, wherein the condition of 5.29 × 10 −6 <ΔX 10 /f3<5.06×10 −4 is satisfied.
バーを各々fW,FNW、ズーム比をZ、焦点距離fM
がfM=fW×Z1/4 なるズーム位置における軸上光束
の前記第3群への最大入射高をhMとしたとき 0.9 <FNW/FNT 1.08<h3m/hM なる条件を満足することを特徴とする請求項1のズーム
レンズ。3. The focal length of the entire system at the wide-angle end is f-number fW and FNW, the zoom ratio is Z, and the focal length fM.
Is hM = fW × Z 1/4 where hM is the maximum incident height of the axial light flux on the third lens group, the condition 0.9 <FNW / FNT 1.08 <h3m / hM is satisfied. The zoom lens according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5061035A JPH06250086A (en) | 1993-02-24 | 1993-02-24 | Zoom lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5061035A JPH06250086A (en) | 1993-02-24 | 1993-02-24 | Zoom lens |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06250086A true JPH06250086A (en) | 1994-09-09 |
Family
ID=13159627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5061035A Pending JPH06250086A (en) | 1993-02-24 | 1993-02-24 | Zoom lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06250086A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0893723A2 (en) * | 1997-07-25 | 1999-01-27 | Canon Kabushiki Kaisha | Zoom lens |
JP2000121942A (en) * | 1998-10-16 | 2000-04-28 | Olympus Optical Co Ltd | Zoom lens |
JP2009282199A (en) * | 2008-05-21 | 2009-12-03 | Canon Inc | Zoom lens and imaging apparatus having the same |
JP2010078803A (en) * | 2008-09-25 | 2010-04-08 | Canon Inc | Optical element and optical system having it |
WO2013065288A1 (en) * | 2011-11-04 | 2013-05-10 | 富士フイルム株式会社 | Zoom lens and imaging device |
JP2014038235A (en) * | 2012-08-17 | 2014-02-27 | Canon Inc | Zoom lens and imaging device haing the same |
JP2015094869A (en) * | 2013-11-12 | 2015-05-18 | キヤノン株式会社 | Zoom lens and imaging apparatus including the same |
CN108761748A (en) * | 2018-08-10 | 2018-11-06 | 济南和普威视光电技术有限公司 | A kind of medium wave refrigeration infrared continuous zoom lens |
-
1993
- 1993-02-24 JP JP5061035A patent/JPH06250086A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0893723A2 (en) * | 1997-07-25 | 1999-01-27 | Canon Kabushiki Kaisha | Zoom lens |
EP0893723A3 (en) * | 1997-07-25 | 1999-02-10 | Canon Kabushiki Kaisha | Zoom lens |
US5995296A (en) * | 1997-07-25 | 1999-11-30 | Canon Kabushiki Kaisha | Zoom lens |
JP2000121942A (en) * | 1998-10-16 | 2000-04-28 | Olympus Optical Co Ltd | Zoom lens |
US6229962B1 (en) | 1998-10-16 | 2001-05-08 | Olympus Optical Co., Ltd. | Zoom lens and camera using the same |
JP2009282199A (en) * | 2008-05-21 | 2009-12-03 | Canon Inc | Zoom lens and imaging apparatus having the same |
JP2010078803A (en) * | 2008-09-25 | 2010-04-08 | Canon Inc | Optical element and optical system having it |
WO2013065288A1 (en) * | 2011-11-04 | 2013-05-10 | 富士フイルム株式会社 | Zoom lens and imaging device |
CN103917911A (en) * | 2011-11-04 | 2014-07-09 | 富士胶片株式会社 | Zoom lens and imaging device |
US9025255B2 (en) | 2011-11-04 | 2015-05-05 | Fujifilm Corporation | Zoom lens and imaging apparatus |
CN103917911B (en) * | 2011-11-04 | 2016-03-30 | 富士胶片株式会社 | Zoom lens and camera head |
JP2014038235A (en) * | 2012-08-17 | 2014-02-27 | Canon Inc | Zoom lens and imaging device haing the same |
JP2015094869A (en) * | 2013-11-12 | 2015-05-18 | キヤノン株式会社 | Zoom lens and imaging apparatus including the same |
CN108761748A (en) * | 2018-08-10 | 2018-11-06 | 济南和普威视光电技术有限公司 | A kind of medium wave refrigeration infrared continuous zoom lens |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3376177B2 (en) | Zoom lens | |
US6084721A (en) | Zoom lens | |
JP2988164B2 (en) | Rear focus zoom lens | |
JP3486560B2 (en) | Zoom lens | |
JPH02201310A (en) | Zoom lens with internal focus lens | |
JPH06242378A (en) | Zoom lens | |
JP3495772B2 (en) | Zoom lens and television camera having the same | |
JPH10206736A (en) | Zoom lens | |
JP2006058584A (en) | Zoom lens and imaging device incorporating it | |
JP3102200B2 (en) | Zoom lens | |
JPH10161026A (en) | Zoom lens | |
JPH05241073A (en) | Zoom lens | |
JP3018742B2 (en) | Zoom lens | |
US6124982A (en) | Zoom lens | |
JP3147492B2 (en) | Zoom lens | |
JP4533437B2 (en) | Zoom lens | |
JP3144059B2 (en) | Rear focus zoom lens | |
JP3057921B2 (en) | Zoom lens | |
JPH0651203A (en) | Zoom lens with little near abberation fluctuation | |
JPH0713079A (en) | Rear focus type telephoto type zoom lens | |
JP3376143B2 (en) | Zoom lens | |
JPH06250086A (en) | Zoom lens | |
JPH06230285A (en) | Zoom lens | |
US5995296A (en) | Zoom lens | |
JP3315671B2 (en) | Zoom lens |