JPH06249970A - Visibility measuring method, rainfall/snowfall deciding method, method and system for measuring intensity of rainfall/snowfall - Google Patents

Visibility measuring method, rainfall/snowfall deciding method, method and system for measuring intensity of rainfall/snowfall

Info

Publication number
JPH06249970A
JPH06249970A JP3541693A JP3541693A JPH06249970A JP H06249970 A JPH06249970 A JP H06249970A JP 3541693 A JP3541693 A JP 3541693A JP 3541693 A JP3541693 A JP 3541693A JP H06249970 A JPH06249970 A JP H06249970A
Authority
JP
Japan
Prior art keywords
data
received light
light intensity
rainfall
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3541693A
Other languages
Japanese (ja)
Other versions
JP3260888B2 (en
Inventor
Iesato Sato
佐藤家郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Original Assignee
Meisei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd filed Critical Meisei Electric Co Ltd
Priority to JP03541693A priority Critical patent/JP3260888B2/en
Publication of JPH06249970A publication Critical patent/JPH06249970A/en
Application granted granted Critical
Publication of JP3260888B2 publication Critical patent/JP3260888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To realize concurrence in the observation by utilizing the correlational characteristics of histogram of the number of A/D converted data of optical signal projected into the air, reflected and scattered in the air, and then received for each strength of received light. CONSTITUTION:A light projector 1 constantly projects an optical signal, subjected to luminance modulation by a modulator 3, into the air and the optical signal reflected or scattered by floating substances or raindrops impinges on a light receiver 2. Output signals from the light receiver 2 are demodulated by a demodulator 4 in synchronism with a modulation signal delivered from the modulator 3 and then delivered through an A/D converter 5 to a CPU 6. The CPU 6 reads in a conversion data one by one from the converter and stores the data in a memory 7 while classifying according to the intensity of received light. The CPU 6 then totalize the A/D converted data, detects the intensity of received light based on a histogram data thus obtained, operates a rain/snow discrimination coefficient defined by the ratio between the maximum intensity of received light and the number of A/D converted data, and then decides rainfall or snowfall.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空中に放射した光信号
の空中での反射散乱光を受光し、受光信号によって視程
測定、降雨降雪判別、降雨降雪強度測定を行なう方法
と、この方法を実施する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of receiving reflected and scattered light in the air of an optical signal emitted in the air, and performing visibility measurement, rainfall / snow discrimination, and rainfall / intensity measurement by the received light signal, and a method thereof. It relates to a device to be implemented.

【0002】[0002]

【従来の技術】視程測定方法として、従来、空中に光信
号を放射し、該光信号の空中での反射散乱光を受信し、
受信した光信号(受光信号)の受光強度を平均して得ら
れる当該受光信号の直流レベルによって視程値を演算す
る方法が公知である。
2. Description of the Related Art Conventionally, as a visibility measuring method, an optical signal is radiated in the air, and reflected and scattered light in the air of the optical signal is received.
A method of calculating a visibility value by a DC level of the received light signal obtained by averaging received light intensities of received light signals (received light signals) is known.

【0003】また、降水時の降雨降雪判別方法として、
従来、一対のくし形電極をくし歯部分が交互に配列され
るように組み合せ、当該一対の電極間の通電状態によっ
て雪粒による当該一対の電極間のブリッジ形成を監視し
て降雨か又は降雪かを判別する方法が公知である。
In addition, as a method of determining rainfall during rainfall,
Conventionally, a pair of comb-shaped electrodes are combined so that the comb teeth are alternately arranged, and it is raining or snowing by monitoring the formation of a bridge between the pair of electrodes due to the snow grains depending on the energization state between the pair of electrodes. A method for discriminating is known.

【0004】また、降雨降雪強度の測定方法として、従
来、雨量計又は積電計を使用して、単位時間当りの雨量
又は積雪深を測定して降雨又は降雪の強度を演算する方
法が公知である。
Further, as a method of measuring rainfall and snowfall intensity, conventionally, there is known a method of calculating rainfall or snowfall intensity per unit time by using a rain gauge or a power meter to calculate the rainfall or snowfall intensity. is there.

【0005】[0005]

【発明が解決しようとする課題】上記従来の方法による
と、視程測定と降雨降雪判別と降雨降雪強度測定とを、
それぞれ別個の手段で行なう必要があり、上記3種類の
観測を同時に行なう場合には、装置が大掛かりなものに
なるばかりか、それぞれの測定は互に別個のデータに基
いて行なわれるため、特に気象変化の激しいときには、
観測の同時性(同一時刻での測定)がとりにくいという
問題がある。
According to the above conventional method, visibility measurement, rainfall / snow discrimination, and rainfall / snow intensity measurement are performed.
It is necessary to use separate means, and if the above three types of observations are performed simultaneously, not only will the equipment become bulky, but each measurement will be performed on the basis of separate data. When changes are rapid,
There is a problem that it is difficult to synchronize observations (measurements at the same time).

【0006】そこで、本発明は、1種類の測定データに
基いて、視程測定と降雨降雪判別と降雨降雪強度測定と
を行なうことのできる方法と、当該方法を実施するため
の装置を得ることを課題とする。
Therefore, the present invention provides a method capable of performing visibility measurement, rainfall snowfall determination, and rainfall snowfall intensity measurement, and an apparatus for carrying out the method, based on one type of measurement data. It is an issue.

【0007】また、それぞれの測定について、従来技術
をみると、従来の視程測定方法では、受光強度の平均処
理は通常一定の時定数のもとで受光信号を積分すること
により行なわれるため、当該時定数によって定まる時間
より速い視程変化は検出できず、また、変化の速い視程
を測定するために上記時定数を短時間に設定すると、受
光信号の積分値の変化分に加わる測定装置の雑音成分が
多くなり(雑音は不規則な信号であるので、長い時定数
の回路を通ると、相殺効果によってその成分が少なくな
りS/N比はよくなるが、時定数が短いと上記相殺効果
が小さくなってS/N比が低下する。)、受光信号のS
/N比が低下するため、特に視程変化が緩やかな視程良
好時における視程測定において測定精度が悪化する。ま
た、従来の方法では、視程値とは関係の少ない降雨又は
降雪による受光信号の強度も受光強度の平均値に内包さ
れるため、測定誤差が大きくなる。
Further, regarding each measurement, in the conventional technique, in the conventional visibility measuring method, since the average processing of the received light intensity is usually performed by integrating the received light signal under a constant time constant, Visibility changes faster than the time determined by the time constant cannot be detected, and if the time constant is set to a short time in order to measure the fast-changing visibility, the noise component of the measuring device added to the change in the integrated value of the received light signal will be detected. (The noise is an irregular signal, so if it goes through a circuit with a long time constant, its components will decrease due to the canceling effect and the S / N ratio will improve, but if the time constant is short, the canceling effect will decrease. S / N ratio decreases, and S of the received light signal
Since the / N ratio decreases, the measurement accuracy deteriorates particularly in the visibility measurement when the visibility is good with a gradual change in visibility. Further, in the conventional method, the intensity of the received light signal due to rainfall or snow, which has little relation to the visibility value, is included in the average value of the received light intensity, so that the measurement error increases.

【0008】そこで、本発明は、視程測定において、視
程変化が速い場合にも、その変化に追従して視程測定が
可能であり、また、視程変化が緩やかな場合にも高い精
度の測定が可能となる視程測定方法と、この方法を実施
するための装置を得ることを課題とする。
Therefore, in the present invention, in the visibility measurement, even when the visibility change is fast, it is possible to measure the visibility by following the change, and also when the visibility change is gradual, highly accurate measurement is possible. An object of the present invention is to obtain a visibility measuring method and a device for implementing this method.

【0009】また、一対の電極配置による従来の降雨降
雪判別方法では、一対の電極相互間の間隔によって降雨
降雪の判別確度が左右される。すなわち、当該電極相互
間の間隔を広くすると、雪粒が細かい雪の場合には降雪
による電極間のブリッジが形成されにくく、特に降雪初
期には降雪判定がむづかしくなり、また上記間隔を狭く
すると、降雨又は濃霧等でも電極間ブリッジが形成され
てしまうため降雨降雪の判別ができなくなる。このよう
に、従来の降雨降雪判別方法では、降雨又は降雪の状況
に係りなく降雨降雪判別を降水時初期段階で判定できる
確実性に欠ける問題点がある。
Further, in the conventional rain / snow discrimination method using a pair of electrodes, the accuracy of rainfall / snow discrimination is affected by the distance between the pair of electrodes. That is, if the interval between the electrodes is widened, a bridge between the electrodes is less likely to be formed due to snowfall when the snow grains are fine, and it becomes difficult to determine the snowfall especially in the early stage of snowfall. Then, the inter-electrode bridge is formed even if it is raining or in thick fog, so that it is impossible to discriminate between rainfall and snowfall. As described above, the conventional rain / snow determination method has a problem that the rain / snow determination cannot be determined at the initial stage of precipitation regardless of the state of rainfall or snowfall.

【0010】そこで、本発明は、降雨降雪判定におい
て、降雨降雪の状況に係りなく、初期段階(降り始め)
において降雨降雪を確実に判定できる降雨降雪判別方法
と、この方法を実施するための装置を得ることを課題と
する。
Therefore, the present invention determines the rainfall and snowfall in the initial stage (beginning of snowfall) regardless of the state of rainfall and snowfall.
An object of the present invention is to obtain a rainfall / snowfall determination method capable of reliably determining rainfall / snowfall and a device for implementing this method.

【0011】また、雨量計又は積雪計を使用する従来の
降雨降雪強度の測定方法では、降雨時と降雪時とでは別
個の測定装置で測定する必要があるばかりか、降雨又は
降雪の一定時間の間の量を測定してこの量を強度に換算
する必要があることから測定時間が長くなり、特に降雨
又は降雪の変化が激しい場合に、当該変化に追従した降
雨降雪強度の測定が不可能となる。
Further, according to the conventional method of measuring rainfall and snow intensity using a rain gauge or a snow cover, not only it is necessary to measure with a separate measuring device during rainfall and during snowfall, but also during a certain period of rainfall or snowfall. Since it is necessary to measure the amount of time and convert this amount to intensity, the measurement time becomes longer, and it is impossible to measure the rainfall snowfall intensity that follows the change, especially when the change in rainfall or snowfall is severe. Become.

【0012】そこで、本発明は、同じ測定手段によって
降雨強度と降雪強度の双方の測定が可能であり、かつ降
雨又は降雪の変化が激しい場合であっても、その変化に
追従して確実に測定可能な降雨降雪強度の測定方法と、
この方法を実施するための装置を得ることを課題とす
る。
Therefore, according to the present invention, it is possible to measure both the rainfall intensity and the snowfall intensity by the same measuring means, and even if the rainfall or the snowfall changes drastically, the change can be reliably followed. A possible method of measuring the amount of rainfall and snowfall,
It is an object to obtain a device for carrying out this method.

【0013】更に、本発明は、以上に述べた方法を実施
することにより、視程測定、降雨降雪の判別及びその強
度測定を総合して可能とするシステムを得ることを課題
とする。
A further object of the present invention is to obtain a system that can perform visibility measurement, determination of rainfall and snowfall, and intensity measurement thereof by implementing the method described above.

【0014】[0014]

【課題を解決するための手段】以上に述べた各課題を解
決するため、本発明は、空中に投射した光信号の空中で
の反射散乱光の受光信号をA/D変換し、これによって
得たA/D変換データを受光強度別に振り分け集計する
ことによって作成した受光強度別A/D変換データ個数
を示すヒストグラムが、視程値、降雨降雪の違い及び降
雨降雪強度と相関する特性を利用して視程測定、降雨降
雪判別、降雨降雪強度測定を行なうようにしたものであ
る。
In order to solve each of the problems described above, the present invention A / D-converts the received light signal of the reflected scattered light in the air of the optical signal projected in the air and obtains it by this. The histogram showing the number of A / D converted data classified by received light intensity created by distributing and aggregated the A / D converted data according to the received light intensity is utilized by utilizing the characteristics that correlate with the visibility value, the difference in rainfall and snowfall, and the rainfall and snowfall intensity. Visibility measurement, rainfall / snow discrimination, and rainfall / snow intensity measurement are performed.

【0015】[0015]

【作用】発明者は、空中に光信号を投射し、該光信号の
空中での反射散乱光を受光して、受光信号をA/D変換
し、これによって得たA/D変換データを受光強度別に
振り分け集計することによって作成したヒストグラムを
解析することによって次の知見を得た。
The inventor projects an optical signal in the air, receives the reflected and scattered light of the optical signal in the air, A / D-converts the received light signal, and receives the A / D-converted data thus obtained. The following findings were obtained by analyzing the histogram created by sorting by strength.

【0016】図4(A)は受光信号の受光強度(L)対
受光時間(T)を示しており、これは受光手段から出力
される受光強度に比例したアナログ信号をそのまま表わ
したものである。この受光特性で特に強いレベルを呈し
ている部分Pは、降雨時又は降雪時において雨滴又は雪
粒で反射して受光手段に入射した受光信号によるもの
で、他の部分のレベル変動は、概ね、測定装置が有する
雑音及び受光手段が受光する背光(投射光信号の反射散
乱以外で入射する光)に起因する雑音によるものであ
る。
FIG. 4A shows the received light intensity (L) of the received light signal versus the received light time (T), which directly represents an analog signal output from the light receiving means and proportional to the received light intensity. . The portion P exhibiting a particularly strong level in this light receiving characteristic is due to the light receiving signal reflected by raindrops or snow grains and incident on the light receiving means during rainfall or snowfall, and the level fluctuation of other portions is generally This is due to the noise of the measuring device and the noise caused by the back light received by the light receiving means (light incident other than the reflection and scattering of the projection light signal).

【0017】また、上記強レベル部分Pは、降雨時に比
べて降雪時の方がより強いレベルとなって現れる。これ
は、雪粒による反射が雨滴による反射より強いことから
容易に理解でき処である。
Further, the above-mentioned strong level portion P appears as a stronger level during snowfall than during rainfall. This can be easily understood because the reflection by snow grains is stronger than the reflection by raindrops.

【0018】また、視程を左右する霧は空中に浮遊して
いる極小水滴で生ずるものであり、受光手段の視野とな
る比較的狭い空間と、比較的短かい測定時間とを考える
と、霧濃度は略一定であるので、霧による反射散乱光の
受光手段への入射による受光強度は、上記強レベル部分
Pを除く他の部分の略平均したレベルL1(従来の視程
測定方法による受光信号の直流レベルに相当する。)と
なる。
Further, the fog that influences the visibility is generated by extremely small water droplets floating in the air. Considering a relatively narrow space which is the visual field of the light receiving means and a relatively short measurement time, the fog density Is substantially constant, the received light intensity due to the incidence of reflected and scattered light due to fog on the light receiving means has a level L1 (a DC level of a received light signal obtained by a conventional visibility measuring method) that is substantially averaged in other portions except the strong level portion P. It corresponds to the level).

【0019】以上の受光信号をA/D変換し、これによ
って得たA/D変化データを受光強度別に集計し、受光
強度(L)とA/D変換データの集計個数(N)の関係
を表わすと、図4(B)のようなヒストグラムとなる
(このデータをヒストグラムデータという。)なお、図
4(B)においては理解を容易にするために受光強度
(L)側の軸目盛を平均レベルL1を中心として同図
(A)の軸目盛より若干広く描いてある。
The above received light signals are A / D converted, and the A / D change data obtained by this is aggregated for each received light intensity, and the relationship between the received light intensity (L) and the total number (N) of the A / D converted data is shown. When represented, a histogram as shown in FIG. 4B is obtained (this data is referred to as histogram data). In FIG. 4B, the axis scale on the light receiving intensity (L) side is averaged to facilitate understanding. The axis scale is drawn slightly wider than the axis scale of FIG.

【0020】図4(B)に示すように、A/D変換デー
タ個数(N)は、上記平均レベルL1に最大個数Npが
集計され、該平均レベルL1を中心として受光強度
(L)の増減方向に個数(N)が減少しながら分布して
おり、降雨又は降雪がある場合には受光レベルの高い方
向に広く、低い方向に狭く分布し(実線)、降雨及び降
雪のない場合には上記平均レベルL1を中心として受光
強度(L)の増減方向に均等に分布する(高レベル側の
破線、低レベル側は降雨又は降雪時と同じ。)。
As shown in FIG. 4 (B), the maximum number Np of A / D converted data (N) is summed up in the average level L1 and the received light intensity (L) is increased or decreased with the average level L1 as the center. The number (N) is distributed in a decreasing direction, and when there is rainfall or snow, it is wide in the direction of high light reception level and narrow in the direction of low light reception (solid line), and when there is no rainfall or snow, it is the above. They are evenly distributed in the increasing / decreasing direction of the received light intensity (L) around the average level L1 (the broken line on the high level side, the low level side is the same as during rain or snow).

【0021】また、降雨又は降雪がある場合において、
降雨又は降雪が激しくなるに従って、高レベル側のA/
D変換データ個数(N)の分布曲線の傾きが緩やかにな
り、かつ降雪時には降雨時に比べて、A/D変換データ
が分布する最高受光強度Lpのレベルが高くなる。
When there is rainfall or snowfall,
As rainfall or snowfall increases, A / on the higher level side
The slope of the distribution curve of the number of D-converted data (N) becomes gentle, and the level of the maximum received light intensity Lp in which the A / D-converted data is distributed becomes higher when snowing than when it rains.

【0022】ヒストグラムデータに現われる以上の特性
から次の事実が判明した。
The following facts have been found from the above characteristics appearing in the histogram data.

【0023】(1)霧の濃度は最大A/D変換データ個
数Npが集計された受光強度L1と相関関係があり、か
つ、視程値は霧の濃度によって決まるので、当該視程値
は上記受光強度L1から求めることができる。
(1) The fog density has a correlation with the received light intensity L1 in which the maximum number A / D converted data Np is tabulated, and the visibility value is determined by the fog density. Therefore, the visibility value is the above received light intensity. It can be calculated from L1.

【0024】(2)降雨又は降雪があると、上記受光強
度L1を対象軸としたヒストグラムデータの対称性が崩
れるので、当該ヒストグラムデータの対称性を判断する
ことで、降雨又は降雪があるか否かの判断が可能とな
る。
(2) If there is rainfall or snowfall, the symmetry of the histogram data with the received light intensity L1 as the target axis is broken. Therefore, by judging the symmetry of the histogram data, it is determined whether there is rain or snowfall. It becomes possible to judge whether.

【0025】(3)ヒストグラムデータに現われる最大
受光強度Lpは、降雪時は降雨時に比べて高レベルとな
る。この特性を利用して降雨降雪の判別が可能である。
なお、上記最大受光強度Lpは降雨又は降雪の激しさの
違いによっても異ってくるが、発明者は、上記最大受光
強度Lpとヒストグラムデータの非対称部分Sの分布巾
(この分布巾については、実施例の説明で明らかにされ
る。)との比を降雨降雪の判別手段とすることにより、
降雨又は降雪の激しさに無関係に降雨降雪の判別が可能
であることを確認している。
(3) The maximum received light intensity Lp appearing in the histogram data is at a higher level during snowfall than during rainfall. It is possible to distinguish rainfall and snowfall by utilizing this characteristic.
The maximum received light intensity Lp varies depending on the intensity of rainfall or snowfall, but the inventors have found that the maximum received light intensity Lp and the distribution width of the asymmetric portion S of the histogram data (for this distribution width, It will be clarified in the description of the embodiments)) and the ratio of
It has been confirmed that it is possible to distinguish between rainfall and snow regardless of the severity of rainfall or snowfall.

【0026】(4)降雨又は降雪の強度が強くなると、
前記のようにヒストグラムデータの受光強度L1より高
レベル側の分布曲線が緩やかになるが、このことは、ヒ
ストグラムデータに現われる非対称部分Sに降雨又は降
雪の強度と何らかの相関関係が存在することを意味して
いる。発明者は、この非対称部分Sについて種々の相関
を検討した結果、当該非対称部分Sに現われている受光
強度の各レベル(Lk)毎のD/A変換データ個数(対
称部分(破線より下の部分)の個数を除いた個数ΔN
k)と当該各レベル(Lk)の積(Lk・ΔNk)の総
和(ΣLk・ΔNk)が降雨又は降雪の強度と最も強い
相関関係を有することを見出した。従って、この相関関
係から降雨降雪強度を測定することができる。
(4) When the intensity of rainfall or snowfall increases,
As described above, the distribution curve on the higher level side of the received light intensity L1 of the histogram data becomes gentle, which means that the asymmetrical portion S appearing in the histogram data has some correlation with the intensity of rainfall or snowfall. is doing. As a result of examining various correlations with respect to the asymmetrical portion S, the inventor found that the number of D / A converted data for each level (Lk) of the received light intensity appearing in the asymmetrical portion S (symmetrical portion (portion below the broken line ) Number excluding the number of
It was found that the sum (ΣLk · ΔNk) of the product (Lk · ΔNk) of k) and each level (Lk) has the strongest correlation with the intensity of rainfall or snowfall. Therefore, the rainfall and snowfall intensity can be measured from this correlation.

【0027】以上のように、本発明では、1つのヒスト
グラムデータから、視程値、降雨降雪判別及び降雨降雪
強度が同時に得られる。
As described above, according to the present invention, the visibility value, the rainfall snowfall determination, and the rainfall snowfall intensity can be simultaneously obtained from one histogram data.

【0028】[0028]

【実施例】図1は本発明の実施例を示すブロック図であ
り、1は投光器、2は受光器、3は変調器、4は復調
器、5はA/D変換器、6はCPU、7はメモリ、8は
記録・表示器、9は温度センサである。
1 is a block diagram showing an embodiment of the present invention, in which 1 is a projector, 2 is a light receiver, 3 is a modulator, 4 is a demodulator, 5 is an A / D converter, 6 is a CPU, Reference numeral 7 is a memory, 8 is a recording / display device, and 9 is a temperature sensor.

【0029】投光器1は空中に向けて測定用光信号を放
射する投光手段であって、発光素子、該発光素子の駆動
源及び投光用レンズ等の光学系で構成される。
The light projector 1 is a light projecting means for radiating a measurement optical signal toward the air, and comprises a light emitting element, a drive source for the light emitting element, and an optical system such as a light projecting lens.

【0030】受光器2は投光器1から放射された光信号
の空中での反射散乱光を受光する受光手段であって、受
光素子及び受光用レンズ等の光学系で構成される。
The light receiver 2 is a light receiving means for receiving the reflected and scattered light in the air of the optical signal emitted from the light projector 1, and is composed of an optical system such as a light receiving element and a light receiving lens.

【0031】変調器3は、受光器2の受光動作におい
て、背光と正規の信号とを区別するために、投光器1か
ら放射する光信号を例えば輝度変調する変調手段を構成
するものである。
In the light receiving operation of the light receiver 2, the modulator 3 constitutes a modulator for, for example, brightness-modulating an optical signal emitted from the light projector 1 in order to distinguish between the back light and a normal signal.

【0032】復調器4は受光器2で受光した信号を変調
器3による変調周波数に同期して復調する復調手段であ
って、これによって受光信号は投光器1から放射された
光信号の反射散乱光による受光信号のみが選択される。
The demodulator 4 is a demodulation means for demodulating the signal received by the light receiver 2 in synchronization with the modulation frequency by the modulator 3, and the received light signal is reflected and scattered light of the optical signal emitted from the projector 1. Only the received light signal by is selected.

【0033】A/D変換器5は復調器4を介して得られ
る受光信号(アナログ信号)をA/D変換して当該受光
信号のA/D変換データを出力するA/D変換手段であ
って、高速のサンプリング周期で作動して当該周期に対
応した受光強度別のA/D変換データを出力する。
The A / D converter 5 is an A / D conversion means for A / D converting the received light signal (analog signal) obtained through the demodulator 4 and outputting the A / D converted data of the received light signal. Then, it operates in a high-speed sampling cycle and outputs A / D conversion data for each received light intensity corresponding to the cycle.

【0034】CPU6は実施例装置の制御、処理手段を
一括して有するものであり、これらの手段はプログラム
制御で実現され、主な手段として、A/D変換器5から
送付される受光信号のA/D変換データの集計処理手段
601(第1の処理手段)、該集計処理手段601で得
られたデータ(ヒストグラムデータ)により処理を行な
う視程値算出処理手段602(第2の処理手段)、降雨
降雪判別処理手段603(第3の処理手段)、及び降雨
降雪強度算出処理手段604(第4の処理手段)、これ
らの各処理手段により得たデータを記録し、又は/及び
表示する記録表示処理手段605等がある。
The CPU 6 collectively has the control and processing means of the apparatus of the embodiment, and these means are realized by program control, and the main means is to control the light reception signal sent from the A / D converter 5. A / D conversion data totalization processing means 601 (first processing means), visibility value calculation processing means 602 (second processing means) for processing data (histogram data) obtained by the totalization processing means 601. Rainfall / snow determination processing means 603 (third processing means), rainfall / snow intensity calculation processing means 604 (fourth processing means), and record display for recording and / or displaying data obtained by each of these processing means. There are processing means 605 and the like.

【0035】メモリ7はCPU6による処理で必要とす
るデータ及び当該処理で得られたデータを記憶するもの
で、CPU6によるA/D変換データの集計処理で得ら
れたヒストグラムデータを記憶する第1メモリ701
(第1の記憶手段)、視程値算出処理のための相関デー
タを予め記憶してある第2メモリ702(第2の記憶手
段)、降雨降雪強度算出処理のための相関データを予め
記憶してある第3メモリ703(第3の記憶手段)、集
計するA/D変換データ個数を決定するためのデータを
予め記憶してある第4メモリ704があり、その他に記
録し表示するデータを記憶する第5メモリ705及び図
では省略してあるが、処理途中のデータを一時記憶する
メモリ、CPU6のプログラム格納用メモリ等がある。
The memory 7 stores the data necessary for the processing by the CPU 6 and the data obtained by the processing. The first memory stores the histogram data obtained by the processing of the A / D conversion data totaling by the CPU 6. 701
(First storage means), second memory 702 (second storage means) in which correlation data for visibility value calculation processing is stored in advance, correlation data for rainfall and snowfall intensity calculation processing is stored in advance. There is a certain third memory 703 (third storage means), a fourth memory 704 in which data for determining the number of A / D converted data to be totaled is stored in advance, and other data to be recorded and displayed is stored. Although omitted in the fifth memory 705 and the drawing, there are a memory for temporarily storing data in the middle of processing, a program storage memory for the CPU 6, and the like.

【0036】記録・表示器8は、CPU6によって算出
された視程値、降雨降雪判別及び降雨降雪強度を示すデ
ータを表示し、又は/及び記録する記録表示手段であっ
て、液晶ディスプレイパネル、プリンタ等で構成され
る。
The recording / display unit 8 is a recording / display unit for displaying and / or recording data indicating the visibility value, the rainfall / snow discrimination, and the rainfall / snow intensity calculated by the CPU 6, and is a liquid crystal display panel, a printer, or the like. Composed of.

【0037】温度センサ9は外気温度を検出するセンサ
で、これによって検出された外気温度は、降雨降雪判別
処理において判定係数(後述する)が降雨降雪の境界値
を呈したとき、判別の補助データとして使用される。
The temperature sensor 9 is a sensor for detecting the outside air temperature. The outside air temperature detected by the temperature sensor 9 is auxiliary data for the determination when the determination coefficient (described later) indicates the boundary value of the rainfall snowfall in the rainfall snowfall determination process. Used as.

【0038】前記図4(B)で説明したヒストグラムデ
ータにおいて、最大A/D変換データ個数Npが集計さ
れた受光強度(以下、最大データ個数レベルという。)
L1と視程値との間に存在する相関関係の特性は、図5
に示すように、両対数座標上で縦軸に最大データ個数レ
ベルL1を、横軸に視程値をとった場合、直線状右下り
に変化する特性となる。この相関関係を示すデータは、
前記第2メモリ702に予め格納され記憶されている。
In the histogram data described in FIG. 4B, the maximum received light intensity (hereinafter referred to as the maximum data number level) in which the maximum A / D converted data number Np is tabulated.
The characteristic of the correlation existing between L1 and the visibility value is shown in FIG.
As shown in, when the maximum data number level L1 is taken on the ordinate and the visibility value is taken on the abscissa on the logarithmic coordinate, the characteristic becomes a linear right-downward change. The data showing this correlation is
It is previously stored and stored in the second memory 702.

【0039】また、前記図4(B)で示したS部分にお
ける各受光強度別の受光強度とA/D変換データ個数と
の積の総和ΔV(=ΣLk・ΔNk)と降雨又は降雪の
強度との間の相関特性は、図6に示すように、両対数座
標上で縦軸に上記総和ΔVを、横軸に降雨又は降雪の強
度をとった場合、直線上右上りに変化する特性となり、
傾きは(イ)に示す降雨強度特性の方が(ロ)に示す降
雪強度特性より急となる。この相関関係を示すデータ
は、前記第3メモリ703に予め格納され記憶されてい
る。なお、上記総和ΔVを強度相関値ということとす
る。
Further, the total sum ΔV (= ΣLk · ΔNk) of the product of the received light intensity for each received light intensity and the number of A / D converted data in the S portion shown in FIG. 4B and the intensity of rain or snow. As shown in FIG. 6, when the vertical axis is the above summation ΔV and the horizontal axis is the rainfall or snowfall intensity, the correlation characteristic between the two changes to the upper right on the straight line.
The slope of the rainfall intensity characteristic shown in (a) is steeper than that of the snow intensity characteristic shown in (b). The data indicating this correlation is stored and stored in the third memory 703 in advance. The summation ΔV will be referred to as an intensity correlation value.

【0040】図2は(A),(B)は本発明の実施例装
置の動作を示すフローチャートで、CPU6における処
理を示している。以下、このフローチャートに従って動
作を説明する。
2A and 2B are flowcharts showing the operation of the apparatus of the embodiment of the present invention, showing the processing in the CPU 6. The operation will be described below according to this flowchart.

【0041】投光器1からは、変調器3によって輝度変
調された光信号が空中に向けて常時放射されており、こ
の光信号は空気中の浮遊物質(霧、スモッグ等)や雨
滴、雪粒等で反射散乱して受光器2に入射し、該受光器
2で受光され、該受光器2は受光強度に比例した受光信
号を出力する。
From the projector 1, an optical signal whose brightness is modulated by the modulator 3 is constantly radiated toward the air, and this optical signal is a suspended matter (fog, smog, etc.) in the air, raindrops, snow particles, etc. The light is reflected and scattered by and is incident on the light receiver 2, and the light is received by the light receiver 2. The light receiver 2 outputs a light reception signal proportional to the light reception intensity.

【0042】受光器2から出力された上記受光信号は復
調器4で変調器3からの変調信号に同期して復調され、
A/D変換器5でデジタル信号に変換されてCPU6に
送付される。
The received light signal output from the light receiver 2 is demodulated by the demodulator 4 in synchronization with the modulation signal from the modulator 3,
The digital signal is converted by the A / D converter 5 and sent to the CPU 6.

【0043】CPU6は、A/D変換器5から送付され
ている受光信号のA/D変換データを1データづつ読み
込み(ステップS1)、読み込んだA/D変換データを
その受光強度別に第1メモリ701に記憶する(ステッ
プS2)。
The CPU 6 reads the A / D converted data of the received light signal sent from the A / D converter 5 one by one (step S1), and reads the read A / D converted data into the first memory according to the received light intensity. It is stored in 701 (step S2).

【0044】次に、CPU6は、第1メモリ701に設
定個数A/D変換データが記憶されたか否かを判断し
(ステップS3)、否の場合にはA/D変換データの格
納数が設定個数となるまで以上の動作を繰り返す。この
ようにして、受光強度別のA/D変換データ個数を示す
ヒストグラムデータが完成する。以上のステップS1〜
S3の処理は、CPU6が有する集計処理手段601に
よって行なわれる。
Next, the CPU 6 determines whether or not the set number of A / D converted data is stored in the first memory 701 (step S3), and if not, the stored number of A / D converted data is set. The above operation is repeated until the number is reached. In this way, the histogram data indicating the number of A / D converted data for each received light intensity is completed. Steps S1 to S1
The processing of S3 is performed by the totalization processing unit 601 included in the CPU 6.

【0045】ヒストグラムデータの例を図7(A)〜
(C)に示す。
An example of histogram data is shown in FIG.
It shows in (C).

【0046】図7(A)は降雨降雪がない場合のデータ
例で、視程良好時(霧の発生がないとき)には、当該デ
ータはA/D変換データの集計個数(N)が受光強度
(L)のゼロレベルにおいて最も多くなるようなガウス
分布となり、また、視程不良時(霧発生時)には上記集
計個数(N)が視程値と相関する受光強度L1において
最も多くなるガウス分布となる。この場合のガウス分布
は、最大A/D変換データ個数Npが集計された受光強
度(ゼロ又はL1)を中心に左右対称となる。この特性
は、ヒストグラムデータに現われているA/D変換デー
タの分布が、不規則な雑音(機器雑音、背光雑音等)に
起因したものであること、及び霧が発生した場合、光信
号は、空中に留って浮遊する極微小水滴で持続的に反射
され平均化されて受光されるので、霧による受光成分は
信号中、直流成分となって現われることによって得られ
る特性である。
FIG. 7A shows an example of data when there is no rainfall or snowfall, and when the visibility is good (when there is no fog), the data is the received light intensity when the total number (N) of A / D conversion data is (L) has a Gaussian distribution that becomes the largest at the zero level, and when the visibility is poor (when fog occurs), the aggregated number (N) has the largest Gaussian distribution at the received light intensity L1 that correlates with the visibility value. Become. The Gaussian distribution in this case is bilaterally symmetric with respect to the received light intensity (zero or L1) in which the maximum number A / D converted data Np is totaled. This characteristic is that the distribution of A / D converted data appearing in the histogram data is caused by irregular noise (device noise, back light noise, etc.), and when fog occurs, the optical signal is This is a characteristic obtained by the fact that the light-receiving component due to fog appears as a DC component in the signal, because it is continuously reflected by the extremely small water droplets that remain in the air and is suspended, averaged, and received.

【0047】図7(B),(C)はそれぞれ降雨時及び
降雪時のデータ例で、A/D変換データの集計個数
(N)が視程値と相関する受光強度L1において最も多
くなるガウス分布となることは上記図7(A)の場合と
同じであるが、上記受光強度L1より高いレベル側によ
り多くのA/D変換データが分布する特性となり、更に
降雪時には降雨時に比べてより高いレベルの範囲まで当
該A/D変換データが分布する。すなわち、降雨時又は
降雪時には、前記図7(A)の場合における分布の左右
対称性が崩れることとなる。この特性は、雨滴又は雪粒
は空中に留まることなく、受光器2の監視区域を通過す
るため、当該雨滴又は雪粒による反射光は平均化される
ことなく上記受光強度L1より高いレベルの信号として
検出されること、及び一般に雨滴による反射よりも雪粒
による反射の方が強いことによって得られる特性であ
る。
7 (B) and 7 (C) are data examples at the time of rainfall and at the time of snowfall, respectively, and the Gaussian distribution in which the total number (N) of the A / D converted data is the largest at the received light intensity L1 which correlates with the visibility value. This is the same as the case of FIG. 7 (A) above, but a characteristic that more A / D converted data is distributed on the level side higher than the received light intensity L1, and when snowing, the level is higher than when raining. The A / D conversion data is distributed up to the range. That is, when it is raining or snowing, the left-right symmetry of the distribution in the case of FIG. 7A is broken. This characteristic is that the raindrops or snowflakes do not stay in the air and pass through the monitoring area of the photodetector 2, so that the light reflected by the raindrops or snowflakes is not averaged and the signal has a level higher than the received light intensity L1. Is detected, and in general, the reflection due to snow grains is stronger than the reflection due to raindrops.

【0048】第1メモリ701内にヒストグラムデータ
が完成し記憶されると、次にCPU6は、当該ヒストグ
ラムデータにおいて最大A/D変換データNpが集計さ
れた受光強度(最大データ個数レベル)L1を検出し
(ステップS4)、第2メモリ702に格納されている
前記図5に示した相関データを参照して、上記最大デー
タ個数レベルL1から視程値を算出する(ステップS
5)。このようにして算出された視程値データは、記録
・表示器8への表示又は記録のために第5メモリ705
(表示メモリ)に格納される(ステップS6)。以上の
ステップS4〜S6の処理は、CPU6が有する視程値
算出処理手段602によって行なわれる。
When the histogram data is completed and stored in the first memory 701, the CPU 6 then detects the received light intensity (maximum data number level) L1 in which the maximum A / D conversion data Np is aggregated in the histogram data. Then, the visibility value is calculated from the maximum data number level L1 with reference to the correlation data shown in FIG. 5 stored in the second memory 702 (step S4) (step S4).
5). The visibility value data calculated in this way is displayed on the recording / display device 8 or displayed on the fifth memory 705 for recording.
It is stored in (display memory) (step S6). The above steps S4 to S6 are performed by the visibility value calculation processing means 602 included in the CPU 6.

【0049】次に、CPU6は、ヒストグラムデータか
ら最小受光強度Ls、最大受光強度Lpを検出し(ステ
ップS7)、最大データ個数レベルL1から高レベル方
向にレベル差(L1−Ls)だけ離れた点の受光強度L
4を求める演算、すなわち(2L1−Ls)の演算を行
ない(ステップS8)、次に当該受光強度L4に集計さ
れたA/D変換データの個数ΔNを検出する(ステップ
S9)。
Next, the CPU 6 detects the minimum received light intensity Ls and the maximum received light intensity Lp from the histogram data (step S7), and a point away from the maximum data number level L1 by a level difference (L1-Ls) in the high level direction. Received light intensity L
4, the calculation of (2L1-Ls) is performed (step S8), and then the number ΔN of A / D converted data tabulated in the received light intensity L4 is detected (step S9).

【0050】次にCPU6は上記A/D変換データ個数
ΔNが実質的にゼロであるか否か(実質的にゼロである
とは、ΔNが雑音成分によるものとみなせる数値を示し
た場合であってもゼロであるとすることを意味する。)
を判断し(ステップS10)、「ΔN=0」であれば降
雨及び降雪がないものと判断して(ステップS11)、
これまでに得られたデータ(視程値及び降雨降雪ゼロ)
を記録・表示器8に表示し、又は/及び記録して一連の
処理を終える(ステップS18)。
Next, the CPU 6 determines whether or not the A / D converted data number ΔN is substantially zero (substantially zero means that ΔN indicates a numerical value which can be regarded as a noise component. Means zero.)
Is determined (step S10), and if “ΔN = 0”, it is determined that there is no rainfall or snowfall (step S11),
Data obtained so far (visibility value and zero rainfall and snowfall)
Is displayed on the recording / display unit 8 and / or recorded to end a series of processing (step S18).

【0051】また、「ΔN≠0」である場合には降雨又
は降雪がある場合であり、CPU6は最大受光強度Lp
と上記A/D変換データ個数ΔNとの比で定義した雨雪
判別係数Kの演算を行ない(ステップS12)、当該雨
雪判別係数Kと降雨、降雪の境界値KS(図8参照)と
を比較して(ステップS13)降雨であるか又は降雪で
あるかを判断する(ステップS14)。以上のステップ
S7〜S14の処理は、CPU6が有する降雨降雪判別
処理手段603によって行なわれる。
When "ΔN ≠ 0", it means that there is rainfall or snowfall, and the CPU 6 causes the maximum received light intensity Lp.
And the rain / snow discrimination coefficient K defined by the ratio of the above-mentioned A / D converted data number ΔN is calculated (step S12), and the rain / snow discrimination coefficient K and the boundary value KS of rainfall and snowfall (see FIG. 8) are calculated. By comparison (step S13), it is determined whether it is raining or snowing (step S14). The processes of steps S7 to S14 described above are performed by the rainfall and snowfall determination processing means 603 included in the CPU 6.

【0052】ここで雨雪判別係数Kについて説明する。
図8はヒストグラムデータの非対称部分Sにおける各受
光強度Lkと当該受光強度LkにおけるA/D変換デー
タの個数ΔNkとの積の総和(ΣLk・ΔNkなおこの
総和の意味は後で説明する降雨降雪強度算出処理で明ら
かにされる。)と雨雪判別係数Kとの関係を示してい
る。
Here, the rain / snow discrimination coefficient K will be described.
FIG. 8 shows the sum of products of each received light intensity Lk in the asymmetric portion S of the histogram data and the number ΔNk of the A / D converted data at the received light intensity Lk (ΣLk · ΔNk). It is clarified by the calculation process) and the rain / snow discrimination coefficient K.

【0053】図8に示すように、雨雪判別係数Kは、降
雨時にはある値KSより小さな値となり、降雪時には当
該値KSより大きな値となる。そこで当該値KSを降
雨、降雪の境界値とし、この境界値KSとヒストグラム
データから求めた雨雪判別係数Kとを比較することによ
り降雨降雪の判別が可能となる。
As shown in FIG. 8, the rain / snow discrimination coefficient K becomes a value smaller than a certain value KS at the time of rain and becomes larger than the value KS at the time of snowfall. Therefore, the value KS is set as a boundary value between rainfall and snowfall, and by comparing the boundary value KS with the rain / snow distinction coefficient K obtained from the histogram data, it is possible to determine the rainfall and snowfall.

【0054】また、図8で明らかなように、強雨時と小
雪時とでは雨雪判別係数Kは上記境界値KSに近づいて
同じような値となるため、このような雨雪判別係数K
(≒KS)では降雨降雪の判別ができなくなる。そこ
で、図2のフローチャートでは示していないが、このよ
うな場合には、CPU6は温度センサ9から外気温度を
読み込み、外気温度が一定温度(例えば4℃)より低い
場合には降雪であると判断し、高い場合には降雨である
と判断する。
Further, as is clear from FIG. 8, the rain / snow discrimination coefficient K approaches the boundary value KS and becomes similar in the heavy rain and the light snow.
If (≈KS), it becomes impossible to determine the rainfall and snowfall. Therefore, although not shown in the flow chart of FIG. 2, in such a case, the CPU 6 reads the outside air temperature from the temperature sensor 9, and when the outside air temperature is lower than a constant temperature (for example, 4 ° C.), it is determined that it is snowing. If it is high, it is judged that it is raining.

【0055】また、降雨降雪の判別は、ヒストグラムデ
ータにおいて、最大A/D変換データ個数Npの2分の
1の個数1/2Npが集計された受光強度に基いて行な
うこともできる。
Further, the determination of rainfall and snowfall can be carried out based on the received light intensity obtained by counting the number 1 / 2Np, which is a half of the maximum number Np of A / D converted data, in the histogram data.

【0056】すなわち、ヒストグラムデータから1/2
Np個のA/D変換データが集計された受光強度L2,
L3(但し、L3>L2とする。)を求め、最大データ
個数レベルL1と上記2つの受光強度L2,L3との受
光強度差(L3−L1)及び(L1−L2)を求め、更
にこの2つの受光強度差の差ΔL(=L2+L3−2L
1)を求めて、当該差ΔLの値が実質ゼロであるときに
は降雨及び降雪がないものと判断し、当該差ΔLの値が
実質ゼロでないときは降雨又は降雪があるものとして、
雨雪判別係数Kを「K=Lp/ΔL」と定義して、前記
と同様に降雨、降雪の境界値KS(但し、KSの値自体
は前記方法とは異なる。)と比較して降雨降雪の判別を
行なう。
That is, from the histogram data, 1/2
Received light intensity L2 in which Np A / D converted data are aggregated
L3 (provided that L3> L2) is obtained, the difference (L3-L1) and (L1-L2) between the maximum data number level L1 and the above-mentioned two received light intensities L2 and L3 are obtained, and further 2 Difference in received light intensity difference ΔL (= L2 + L3-2L
1) is obtained, it is determined that there is no rainfall or snowfall when the value of the difference ΔL is substantially zero, and it is determined that there is rain or snowfall when the value of the difference ΔL is not substantially zero,
The rain / snow discrimination coefficient K is defined as “K = Lp / ΔL”, and rain / snow is compared with the boundary value KS of rain and snow (however, the value of KS itself is different from the above method) as described above. Is determined.

【0057】以上の処理により降雨又は降雪があるもの
と判断されると、次にCPUはヒストグラムデータの非
対称部分Sについて、各受光強度Lkと該受光強度Lk
に集計されているA/D変換データ個数ΔNk(対称部
分(破線より下の部分)のデータ個数を差し引いた個
数)との積を当該各受光強度Lkごとに演算し、これを
総計する処理、すなわち、強度相関値ΔV(=ΣLk・
ΔNk)を求める演算を行なう(ステップS15)。
When it is determined that there is rainfall or snowfall by the above processing, the CPU next receives each received light intensity Lk and the received light intensity Lk for the asymmetric portion S of the histogram data.
A process of calculating a product of the A / D converted data number ΔNk (the number obtained by subtracting the data number of the symmetric portion (the portion below the broken line)) that has been totalized for each of the received light intensities Lk, and totalizing this. That is, the intensity correlation value ΔV (= ΣLk ·
A calculation for obtaining ΔNk) is performed (step S15).

【0058】この演算は例えば次のようにして行なわれ
る。すなわち、図7(B)又は(C)に示すヒストグラ
ムデータにおいて、まず、A/D変換データが集計され
ている各受光強度Lk毎に、当該各受光強度Lkと最大
データ個数レベルL1との差ΔLkを演算し、最大デー
タ個数レベルL1から最大受光強度Lpまでの範囲及び
最大データ個数レベルL1から最小受光強度Lsまでの
範囲のそれぞれについて、上記各受光強度Lkに集計さ
れたA/D変換データ個数Nkと当該各受光強度Lkに
対応する上記差の値ΔLkとの積を各受光強度Lk毎に
求めて合算し、このようにして得たそれぞれの総和V
p,Vsにより「Vp−Vs」を演算すると、この値が
強度相関値ΔV(=ΣLk・ΔNk)となる。
This calculation is performed as follows, for example. That is, in the histogram data shown in FIG. 7 (B) or (C), first, for each received light intensity Lk for which A / D conversion data is aggregated, the difference between each received light intensity Lk and the maximum data number level L1. ΔLk is calculated, and A / D conversion data tabulated into the above respective received light intensities Lk for each of the range from the maximum data number level L1 to the maximum received light intensity Lp and the range from the maximum data number level L1 to the minimum received light intensity Ls The product of the number Nk and the value ΔLk of the difference corresponding to each received light intensity Lk is calculated for each received light intensity Lk and summed, and the total sum V thus obtained is obtained.
When “Vp−Vs” is calculated from p and Vs, this value becomes the intensity correlation value ΔV (= ΣLk · ΔNk).

【0059】次にCPU6は第3メモリ703に格納さ
れている前記図6に示した相関データを参照して、上記
強度相関値ΔVから降雨又は降雪の強度を算出する(ス
テップS16)。このようにして算出された降雨降雪強
度データは、前記降雨降雪判別処理で得られた降雨降雪
判別データとともに第5メモリ705に格納される(ス
テップS17)。以上のステップS15〜S17の処理
は、CPU6が有する降雨降雪強度算出処理手段604
によって行なわれる。
Next, the CPU 6 refers to the correlation data shown in FIG. 6 stored in the third memory 703 and calculates the intensity of rainfall or snow from the intensity correlation value ΔV (step S16). The rainfall and snowfall intensity data calculated in this manner is stored in the fifth memory 705 together with the rainfall and snowfall determination data obtained in the rainfall and snowfall determination processing (step S17). The above-described processing of steps S15 to S17 is performed by the rainfall and snow intensity calculation processing means 604 included in the CPU 6.
Done by.

【0060】次にCPU6は、第5メモリ705に記憶
されているデータ(視程値データ、降雨降雪判別データ
及び降雨降雪強度データ)の記録・表示器8への表示処
理又は/及び記録処理を記録表示処理手段605によっ
て行ない(ステップS18)、一連の制御を終える。
Next, the CPU 6 records the data stored in the fifth memory 705 (the visibility value data, the rainfall / snow discrimination data, and the rainfall / snow intensity data) and / or displays the display process on the display unit 8 and / or the recording process. This is performed by the display processing means 605 (step S18), and a series of control is completed.

【0061】ところで、A/D変換データを受光強度毎
に集計してヒストグラムデータを作成する処理におい
て、特に視程値の測定精度及び降雨降雪強度の測定精度
を上げるためには、集計するA/D変換データの個数を
多くしなければならないが、集計個数が多くなると処理
時間が長くなって測定速度が遅くなり、例えば気象状況
の変化が激しいときには気象状況変化に追従した測定が
不可能となる。
By the way, in the process of collecting the A / D converted data for each received light intensity and creating the histogram data, in order to improve the measurement accuracy of the visibility value and the measurement accuracy of the rainfall and snowfall intensity in particular, the A / D Although the number of converted data must be increased, the processing time becomes longer and the measurement speed becomes slower when the number of collected data increases. For example, when the weather condition changes drastically, it is impossible to perform the measurement following the weather condition change.

【0062】ところで、気象状況が急激に変化する場合
は一般に視程不良(濃霧)時であって、受光信号が雑音
に比べて高レベルとなり、S/N比が極めて高いため、
A/D変換データ個数が少なくても一定の測定精度を保
つことができるが、反対に気象状況が平穏なときには、
受光信号の強度が低くなって(雑音レベルは変わらな
い)S/N比が低下するので、一定の測定精度を維持す
るためにはA/D変換データの集計個数を多くしなけれ
ばならない。然しながら、気象状況の平穏時には一般に
速い測定速度を要求されることはないので、ヒストグラ
ムデータの作成にあたり、気象状況変化に対応させてA
/D変換データの集計個数を変える処理を行なうこと
は、一定の測定精度を維持しつつ気象状況の緩急に対応
したデータを得るうえで、極めて有効である。
By the way, when the meteorological condition changes rapidly, the visibility signal is generally high (dense fog), the received light signal has a higher level than noise, and the S / N ratio is extremely high.
Even if the number of A / D converted data is small, it is possible to maintain a certain measurement accuracy, but on the contrary, when the weather conditions are calm,
Since the intensity of the received light signal decreases (the noise level does not change) and the S / N ratio decreases, the total number of A / D converted data must be increased in order to maintain constant measurement accuracy. However, when the weather is calm, generally, a high measurement speed is not required. Therefore, when creating the histogram data, A
Performing the process of changing the total number of the / D conversion data is extremely effective in obtaining the data corresponding to the gradual change of the weather condition while maintaining the constant measurement accuracy.

【0063】図3は上記処理によるヒストグラムデータ
の作成処理を説明するフローチャート、図9(A)は上
記処理を説明するヒストグラムデータの例を示す図、図
9(B)は上記処理に必要な相関データを示すもので、
第4メモリ704に格納されているデータを示してい
る。
FIG. 3 is a flow chart for explaining the histogram data creating process by the above process, FIG. 9A is a diagram showing an example of the histogram data for explaining the above process, and FIG. 9B is the correlation necessary for the above process. Data,
The data stored in the fourth memory 704 is shown.

【0064】当該処理を行なう場合には、図2に示すA
/D変換データ集計処理のステップS1〜S3が図3に
示すフローに置き換えられる。以下に当該処理によるヒ
ストグラムデータ作成処理を説明する。
When performing the processing, A shown in FIG.
Steps S1 to S3 of the / D conversion data totaling process are replaced by the flow shown in FIG. The histogram data creation process by the process will be described below.

【0065】CPU6は、A/D変換器5から送付され
ている受光信号のA/D変換データを1データづつ読み
込み(ステップS101)、読み込んだA/D変換デー
タをその受光強度別に第1メモリ701に記憶する(ス
テップS102)。
The CPU 6 reads the A / D converted data of the received light signal sent from the A / D converter 5 one by one (step S101), and reads the read A / D converted data into the first memory for each received light intensity. It is stored in 701 (step S102).

【0066】次に、CPU6は、第1メモリ701にヒ
ストグラムデータの予備データ(気象状況の概要を把握
するためのデータ)作成のために設定された個数Na
(比較的少ない個数)のA/D変換データが記憶された
か否かを判断し(ステップS103)、否の場合にはA
/D変換データの格納数が上記個数Naになるまで以上
の動作を繰り返す。
Next, the CPU 6 sets the number Na set in the first memory 701 for creating preliminary data of histogram data (data for grasping the outline of weather conditions).
It is determined whether (a relatively small number) of A / D converted data has been stored (step S103).
The above operation is repeated until the number of stored D / D converted data reaches the number Na.

【0067】第1メモリ701へのA/D変換データの
格納数が上記個数Naになり、上記予備データが完成す
ると、次にCPU6は当該予備データにおける最大デー
タ個数レベルL0を検出し(ステップS104)、第4
メモリ704に格納されている図9(B)に示すデータ
を参照して、最終的に作成するヒストグラムデータに必
要なA/D変換データ個数(トータルデータ個数)Nt
を決定する(ステップS104)。
When the number of A / D converted data stored in the first memory 701 reaches the number Na and the preliminary data is completed, the CPU 6 next detects the maximum data number level L0 in the preliminary data (step S104). ), The fourth
Referring to the data shown in FIG. 9B stored in the memory 704, the number of A / D converted data (total number of data) Nt necessary for the histogram data to be finally created
Is determined (step S104).

【0068】以上の処理における予備データは、集計す
るA/D変換データ個数Naが少ないため、極めて短か
い処理時間で完成し、気象状況の概況を示すデータとな
る。すなわち、気象状況の変化の緩急は、当該予備デー
タで判断できることとなる。
The preliminary data in the above-described processing is data that indicates the general condition of the weather condition because the number of A / D converted data Na to be totaled is small, so that the processing is completed in a very short processing time. That is, whether the change in weather conditions is slow or rapid can be determined by the preliminary data.

【0069】また、第4メモリ704に格納されている
データは、最大データ個数Npoの受光強度(予備デー
タにおける最大データ個数レベル)とトータルデータ個
数Ntとの関係を示すものであり、両対数座標上で表わ
した場合、図示のような直線関係に設定すると、精度の
よい測定が可能であることが確認された(最終的なヒス
トグラムデータにおける最大データ個数レベルL1と視
程値との関係に現われる精度は、集計するA/D変換デ
ータ個数(トータルデータ個数Nt)の平方根にほぼ比
例することによる。)。
The data stored in the fourth memory 704 shows the relationship between the received light intensity of the maximum data number Npo (the maximum data number level in the preliminary data) and the total data number Nt, and the logarithmic coordinate. In the case of the above, it was confirmed that accurate measurement is possible by setting the linear relationship as shown in the figure (accuracy in the relationship between the maximum data number level L1 in the final histogram data and the visibility value). Is almost proportional to the square root of the total number of A / D converted data (total data number Nt).)

【0070】最大データ個数L0を検出すると、次にC
PU6は第4メモリ704に格納されている上記データ
を参照してトータルデータ個数Ntを決定し(ステップ
S105)、次に再びA/D変換器5から送付されてい
るA/D変換データを読み込み(ステップS106)、
読み込んだA/D変換データを再びその受光強度別に第
1メモリ701に記憶し(ステップS107)、ステッ
プS108の判断によって、第1メモリ701へのデー
タ格納数が上記トータルデータ個数Ntに達するまで上
記ステップS106,S107の処理を繰り返す。ステ
ップS107の処理以後は図2のステップS4以降の処
理を行なう。
When the maximum data number L0 is detected, C
The PU 6 refers to the data stored in the fourth memory 704 to determine the total number of data Nt (step S105), and then reads the A / D conversion data sent from the A / D converter 5 again. (Step S106),
The read A / D converted data is again stored in the first memory 701 according to the received light intensity thereof (step S107), and the judgment is made in step S108 until the number of data stored in the first memory 701 reaches the total data number Nt. The processing of steps S106 and S107 is repeated. After the processing of step S107, the processing of step S4 and subsequent steps in FIG. 2 is performed.

【0071】以上のようにして、気象変化の急激なとき
には少ない個数のA/D変換データの集計によって速い
処理で迅速に諸データを得、気象変化が穏やかなときに
は多い個数のA/D変換データの集計によって所定の精
度を維持して諸データを得ることが可能となる。
As described above, when a weather change is rapid, a small number of A / D conversion data are aggregated to quickly obtain various data, and when the weather change is mild, a large number of A / D conversion data are obtained. It becomes possible to obtain various data while maintaining a predetermined accuracy by totaling.

【0072】また、図3に示す処理でヒストグラムデー
タを作成した場合、気象状況によって集計するA/D変
換データ個数が異なるので、降雨降雪強度を算出する処
理(前記図2のステップS15〜S17の処理)におい
て、ステップS15で演算する強度相関値ΔVは同一基
準に基いた値とならないため、これにより降雨又は降雪
の強度を算定することはできない。そこで、同一基準の
強度相関値となるように上記強度相関値ΔVを正規化す
る必要が生ずるが、この正規化処理は、当該強度相関値
ΔVを、トータルデータ個数Ntに比例する値で割る処
理を行なうことにより容易に可能である。
Further, when the histogram data is created by the process shown in FIG. 3, the number of A / D converted data to be aggregated differs depending on the weather condition, so the process of calculating the rainfall and snowfall intensity (steps S15 to S17 in FIG. 2). In the process), the intensity correlation value ΔV calculated in step S15 does not become a value based on the same standard, and therefore the intensity of rainfall or snow cannot be calculated. Therefore, it is necessary to normalize the intensity correlation value ΔV so that the intensity correlation value has the same standard. In this normalization processing, the intensity correlation value ΔV is divided by a value proportional to the total number of data Nt. This is easily possible by performing

【0073】以上に説明した実施例は、視程値、測度処
理、降雨降雪判別処理及び降雨降雪強度測定処理を同時
に行なうようにしたものであるが、いずれか1又は2の
処理を行うことも可能であることは云うまでもない。
In the embodiment described above, the visibility value, the measurement process, the rainfall / snow discrimination process, and the rainfall / snow intensity measurement process are performed at the same time, but any one or two processes may be performed. Needless to say.

【0074】[0074]

【発明の効果】以上に説明した処から明らかなように、
本発明は、次に掲げるような効果がある。
As is apparent from the above description,
The present invention has the following effects.

【0075】(1)視程測定、降雨降雪の有無及び降雨
降雪判別、降雨降雪強度測定が同一データ(ヒストグラ
ムデータ)に基いて可能であるので、観測の同時性が得
られる。
(1) Since the visibility measurement, the presence / absence of rainfall / snowfall, the rainfall / snowfall determination, and the rainfall / snowfall intensity measurement can be performed based on the same data (histogram data), simultaneous observation can be obtained.

【0076】(2)観測項目が異っていても別個の観測
機器を必要とせず、観測システムの小型化、単純化が図
れるうえ、多項目観測の総合システムが容易に可能とな
る。
(2) Even if the observation items are different, separate observation equipment is not required, and the observation system can be downsized and simplified, and a comprehensive system for multi-item observation can be easily realized.

【0077】(3)時定数回路を必要とするデータの平
均化処理を含まないので、激しい気象変化があっても安
定した観測が可能となる。
(3) Since the data averaging process which requires the time constant circuit is not included, stable observation is possible even when there is a drastic weather change.

【0078】(4)気象変化が激しくても、当該変化に
追従できる観測が可能であり、また、一般に観測精度が
低下する平穏時にも一定の精度を維持した観測が可能で
ある。
(4) Even if the weather changes drastically, it is possible to carry out observations that can follow the changes, and it is also possible to perform observations that maintain a certain degree of accuracy even during calm times when the observation accuracy generally decreases.

【0079】(5)視程測定においては、視程値との係
りが少ない雨滴又は雪粒による受光成分が視程値算出デ
ータに入らないので、高精度の測定が可能となる。
(5) In the visibility measurement, since the received light component due to raindrops or snowflakes, which has little relation to the visibility value, is not included in the visibility value calculation data, the measurement can be performed with high accuracy.

【0080】(6)降雨降雪判別においては、降雨降雪
の状況に係らず、その初期段階(降り始め)において確
実に判定することができる。
(6) In the rainfall / snowfall determination, regardless of the situation of rainfall / snowfall, it is possible to make a reliable determination in the initial stage (beginning of rainfall).

【0081】(7)降雨降雪強度の測定においては、同
じ測定手段によって降雨強度と降雪強度の双方が可能で
ある。
(7) Rainfall In measuring the snowfall intensity, both the rainfall intensity and the snowfall intensity can be measured by the same measuring means.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例のブロック図FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】(A),(B)は本発明実施例の全体的なフロ
ーチャート
2A and 2B are overall flowcharts of an embodiment of the present invention.

【図3】本発明実施例の集計処理について他の実施例の
フローチャート
FIG. 3 is a flowchart of another embodiment regarding the totalization processing of the embodiment of the present invention.

【図4】(A),(B)は本発明の原理を説明する図4A and 4B are views for explaining the principle of the present invention.

【図5】最大データ個数レベルと視程値との相関関係を
示す図
FIG. 5 is a diagram showing a correlation between a maximum data number level and a visibility value.

【図6】強度相関値と降雨、降雪の強度との相関関係を
示す図
FIG. 6 is a diagram showing the correlation between the intensity correlation value and the intensity of rainfall and snowfall.

【図7】ヒストグラムデータを示す図で、(A)は降雨
及び降雪がないとき、(B)は降雨時、(C)は降雪時
のデータをそれぞれ示す。
FIG. 7 is a diagram showing histogram data, (A) shows data when there is no rainfall and no snow, (B) shows data when it rains, and (C) shows data when it snows.

【図8】強度相関値と雨雪判別係数の関係を示す図FIG. 8 is a diagram showing a relationship between an intensity correlation value and a rain / snow discrimination coefficient.

【図9】(A)は図3に従ってヒストグラムデータを作
成する場合を説明する図、(B)は予備データの最大デ
ータ個数レベルとトータルデータ個数の関係を示す図
9A is a diagram illustrating a case where histogram data is created according to FIG. 3, and FIG. 9B is a diagram showing a relationship between a maximum data number level of preliminary data and a total data number.

【符号の説明】[Explanation of symbols]

1…投光器 2…受光器 3…変調器 4…復調器 5…A/D変換器 6…CPU 7…メモリ 8…記録・表示
器 9…温度センサ 601…A/D変換データ集計処理手段 602…視程値算出処理手段 603…降雨降
雪判別処理手段 604…降雨降雪強度算出手段 605…記録表
示処理手段
DESCRIPTION OF SYMBOLS 1 ... Emitter 2 ... Light receiver 3 ... Modulator 4 ... Demodulator 5 ... A / D converter 6 ... CPU 7 ... Memory 8 ... Recording / display 9 ... Temperature sensor 601 ... A / D conversion data total processing means 602 ... Visibility value calculation processing means 603 ... Rainfall and snowfall determination processing means 604 ... Rainfall and snowfall intensity calculation means 605 ... Record display processing means

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 空中に光信号を投射し、該光信号の空中
での反射散乱光を受光し、受光信号をA/D変換するこ
とにより得たA/D変換データを受光強度別に集計する
ことにより、受光強度(L)別A/D変換データ個数
(N)を示すヒストグラムデータを作成し、該ヒストグ
ラムデータにおいて、最大A/D変換データ個数(N
p)が集計された受光強度(L1)が視程値と相関を有
することに基いて視程値を求めるようにした視程測定方
法。
1. An A / D conversion data obtained by projecting an optical signal in the air, receiving reflected / scattered light of the optical signal in the air, and A / D converting the received light signal is aggregated for each received light intensity. By doing so, histogram data indicating the number (A) of A / D converted data for each received light intensity (L) is created, and the maximum number of A / D converted data (N) is generated in the histogram data.
A visibility measuring method for obtaining a visibility value based on the fact that the received light intensity (L1) for which p) is tabulated has a correlation with the visibility value.
【請求項2】 請求項1に記載の視程測定方法で作成し
たヒストグラムデータを用い、当該ヒストグラムデータ
において、最大A/D変換データ個数(Np)が集計さ
れた受光強度(L1)を対称軸として当該ヒストグラム
データの対称性を判定し、対称であると認められるとき
には、降雨及び降雪がないものと判断し、非対称である
と認められるときには降雨又は降雪があるものと判断し
て上記ヒストグラムデータに現われている最大受光強度
(Lp)と、非対称部分(S)のA/D変換データ個数
の分布巾(ΔN)又は受光強度の分布巾(ΔL)との比
の値が降雨時と降雪時とでは異なる値を示すことに基い
て降雨か降雪かを判断するようにした降雨降雪の判別方
法。
2. The histogram data created by the visibility measuring method according to claim 1 is used, and the received light intensity (L1) in which the maximum number of A / D converted data (Np) is tabulated in the histogram data is used as an axis of symmetry. The symmetry of the histogram data is determined, and when it is found to be symmetric, it is determined that there is no rainfall or snowfall, and when it is found to be asymmetric, it is determined that there is rain or snowfall, and it appears in the histogram data. The ratio of the maximum received light intensity (Lp) and the distribution width (ΔN) of the number of A / D converted data of the asymmetrical portion (S) or the distribution width (ΔL) of the received light intensity is different between when it is raining and when it is snowing. A method for discriminating rainfall or snowfall in which it is determined whether it is raining or snowing based on showing different values.
【請求項3】 請求項2に記載の降雨降雪の判別方法に
おいて、最大A/D変換データ個数(Np)が集計され
た受光強度(L1)と、最小受光強度(Ls)をヒスト
グラムデータから求め、上記受光強度(L1)から高レ
ベル方向に上記2つの受光強度の差(L1−Ls)だけ
離れた点の受光強度(L4)に集計されたA/D変換デ
ータ個数を求め、当該データ個数が実質的にゼロである
ときには、ヒストグラムデータが対称であるものとし、
当該データ個数が実質的にゼロでないときには、ヒスト
グラムデータが非対称であるものとし、当該データ個数
をヒストグラムデータの非対称部分(S)のA/D変換
データ個数の分布巾(ΔN)とした降雨降雪の判別方
法。
3. The method for determining rainfall / snowfall according to claim 2, wherein the received light intensity (L1) and the minimum received light intensity (Ls) in which the maximum number of A / D converted data (Np) is tabulated are obtained from the histogram data. , The number of A / D converted data summed to the received light intensity (L4) at a point distant from the received light intensity (L1) in the high level direction by the difference (L1-Ls) between the two received light intensities, If is substantially zero, then the histogram data is assumed to be symmetric, and
When the number of data is not substantially zero, the histogram data is assumed to be asymmetric, and the number of data is defined as the distribution width (ΔN) of the A / D conversion data number of the asymmetric portion (S) of the histogram data. How to determine.
【請求項4】 請求項2に記載の降雨降雪の判別方法に
おいて、最大A/D変換データ個数(Np)が集計され
た受光強度(L1)と、最大A/D変換データ個数(N
p)の2分の1のA/D変換データ個数(1/2Np)
が集計された2点の受光強度(L2)及び(L3)(た
だし、L2<L3とする。)をヒストグラムデータから
求め、受光強度差(L3−L1)と受光強度差(L1−
L2)との差の値(L2+L3−2L1)が実質的にゼ
ロであるときには、ヒストグラムデータが対称であるも
のとし、当該差の値(L2+L3−2L1)が実質的に
ゼロでないときには、ヒストグラムデータが非対称であ
るものとして、当該差の値(L2+L3−2L1)をヒ
ストグラムデータの非対称部分(S)の受光強度の分布
巾(ΔL)とした降雨降雪の判別方法。
4. The method for determining rainfall and snowfall according to claim 2, wherein the maximum received light intensity (L1) and the maximum A / D converted data number (Np) are collected.
The number of A / D converted data which is half of p) (1/2 Np)
The light reception intensities (L2) and (L3) (where L2 <L3) are calculated from the histogram data, and the light reception intensity difference (L3-L1) and the light reception intensity difference (L1-) are obtained.
When the difference value (L2 + L3-2L1) from L2) is substantially zero, the histogram data is assumed to be symmetrical, and when the difference value (L2 + L3-2L1) is not substantially zero, the histogram data is A method for discriminating rainfall and snowfall in which the value of the difference (L2 + L3-2L1) is regarded as asymmetrical and the distribution width (ΔL) of the received light intensity of the asymmetrical portion (S) of the histogram data is used.
【請求項5】 請求項2に記載の降雨降雪の判別方法に
おいて、ヒストグラムデータに現われている最大受光強
度(Lp)と、非対称部分(S)の分布巾(ΔN又はΔ
L)との比の値が降雨降雪判定の境界値を示したときに
は、外気温度を判定用データに加えるようにした降雨降
雪の判別方法。
5. The rain / snow discrimination method according to claim 2, wherein the maximum received light intensity (Lp) appearing in the histogram data and the distribution width (ΔN or Δ) of the asymmetric portion (S).
A method for determining rainfall and snowfall in which the outside air temperature is added to the determination data when the value of the ratio to L) indicates the boundary value for rainfall and snowfall determination.
【請求項6】 請求項1に記載の視程測定方法で作成し
たヒストグラムデータを用い、A/D変換データが集計
されている各受光強度毎に、当該各受光強度と最大A/
D変換データ個数(Np)が集計された受光強度(L
1)との差を演算し、該差の値のそれぞれと上記各受光
強度に集計されたA/D変換データ個数との積の総和
を、上記受光強度(L1)から最大受光強度(Lp)ま
での範囲、及び上記受光強度(L1)から最小受光強度
(Ls)までの範囲についてそれぞれ演算し、該2つの
総和の差(ΔV)の値が降雨又は降雪の強度と相関を有
することに基いて降雨強度又は降雪強度を求めるように
した降雨降雪強度の測定方法。
6. Using the histogram data created by the visibility measuring method according to claim 1, for each received light intensity for which A / D conversion data is aggregated, each received light intensity and maximum A / D
Received light intensity (L
1) The difference between the received light intensity (L1) and the maximum received light intensity (Lp) is calculated as the sum of the products of each of the difference values and the number of A / D converted data collected for each received light intensity. And the range from the above received light intensity (L1) to the minimum received light intensity (Ls), and the value of the difference (ΔV) between the two sums has a correlation with the intensity of rainfall or snowfall. A method for measuring rainfall and snow intensity, in which the rainfall intensity or snow intensity is calculated.
【請求項7】 変調された光信号を空中に放射する投光
手段(1)と、該投光手段(1)から放射した光信号の
空中での反射散乱光を受光する受光手段(2)と、該受
光手段(2)の出力信号を上記光信号の変調に同期して
復調する復調手段(4)と、該復調手段(4)から出力
される受光信号をA/D変換するA/D変換手段(5)
と、該A/D変換手段(5)から出力される上記受光信
号のA/D変換データを受光強度(L)別に振り分け処
理する第1の処理手段(601)と、該第1の処理手段
(601)により受光強度(L)別に振り分けられたA
/D変換データを当該受光強度(L)別に記憶すること
により、受光強度(L)別A/D変換データ個数(N)
を示すヒストグラムデータを記憶する第1の記憶手段
(701)と、上記ヒストグラムデータにおいて最大A
/D変換データ個数(Np)が集計された受光強度(L
1)と視程値との相関データを予め格納してある第2の
記憶手段(702)と、上記第1の記憶手段(701)
に記憶されたヒストグラムデータと上記第2の記憶手段
(702)に格納された相関データとを照合して視程値
を求める第2の処理手段(602)と、該第2の処理手
段(602)により求めた視程値を記録し、又は/及び
表示する記憶表示手段(8)でなる視程測定装置。
7. A light projecting means (1) for emitting a modulated optical signal into the air, and a light receiving means (2) for receiving reflected and scattered light in the air of the optical signal emitted from the light projecting means (1). A demodulating means (4) for demodulating the output signal of the light receiving means (2) in synchronization with the modulation of the optical signal, and an A / D converting the light receiving signal output from the demodulating means (4) for A / D conversion. D conversion means (5)
A first processing means (601) for distributing the A / D conversion data of the received light signal output from the A / D conversion means (5) according to the received light intensity (L), and the first processing means. A sorted by received light intensity (L) by (601)
By storing the A / D converted data for each received light intensity (L), the number of A / D converted data (N) for each received light intensity (L)
And a first storage unit (701) for storing histogram data indicating
Received light intensity (L
1) and the second storage means (702) in which the correlation data between the visibility value and the first storage means (701) are stored in advance.
Second processing means (602) for obtaining a visibility value by collating the histogram data stored in the second storage means with the correlation data stored in the second storage means (702), and the second processing means (602) A visibility measuring device comprising a storage display means (8) for recording and / or displaying the visibility value obtained by.
【請求項8】 請求項7に記載の視程測定装置が有する
第2の記憶手段(702)及び第2の処理手段(60
2)に代え、又はこれらの手段(702,602)とと
もに、第1の記憶手段(701)に記憶されたヒストグ
ラムデータについて、その最大A/D変換データ個数
(Np)が集計された受光強度(L1)を対称軸とする
当該ヒストグラムデータの対称性を判定する判定処理
と、該判定処理で上記ヒストグラムデータが非対称であ
るという結果が得られた場合において、当該ヒストグラ
ムデータに現われている最大受光強度(Lp)と非対称
部分(S)のA/D変換データ個数分布巾(ΔN)又は
受光強度の分布巾(ΔL)との比で定義される雨雪判別
係数を演算する演算処理と、該演算処理で求めた雨雪判
別係数から降雨降雪別を判断する判断処理の各処理機能
を具備する第3の処理手段(603)を有してなる降雨
降雪判別装置。
8. A second storage means (702) and a second processing means (60) included in the visibility measuring device according to claim 7.
Instead of 2) or together with these means (702, 602), with respect to the histogram data stored in the first storage means (701), the maximum received light intensity (Np) is collected (Np). L1) is a determination process for determining the symmetry of the histogram data, and the determination process yields the result that the histogram data is asymmetrical, the maximum received light intensity appearing in the histogram data. (Lp) and an A / D conversion data number distribution width (ΔN) of the asymmetrical portion (S) or a calculation processing for calculating a rain / snow discrimination coefficient defined by a ratio of the received light intensity distribution width (ΔL), and the calculation. A rainfall and snowfall determination device including third processing means (603) having each processing function of determination processing for determining whether it is rainy or snowy from the rain / snowiness determination coefficient obtained in the processing.
【請求項9】 請求項8に記載の降雨降雪判別装置にお
いて、雨雪判別係数が降雨降雪判別の境界値を示したと
きに、外気温度を降雨降雪判別のデータとするための温
度検出手段(9)を更に有する降雨降雪判別装置。
9. The rain / snow determination device according to claim 8, wherein when the rain / snow determination coefficient indicates a boundary value of the rainfall / snow determination, the temperature detecting means for using the outside air temperature as the data of the rainfall / snow determination ( A rainfall and snowfall determination device further having 9).
【請求項10】 請求項8に記載の降雨降雪判別装置に
おいて、第1の記憶手段(701)に記憶されたヒスト
グラムデータの非対称部分(S)における各受光強度と
当該各受光強度に集計されたA/D変換データ個数との
積を各受光強度毎に演算して合計した値と降雨強度及び
降雪強度との相関データを予め記憶した第3の記憶手段
(703)と、上記ヒストグラムデータについて、A/
D変換データが集計されている各受光強度毎に当該受光
強度と最大A/D変換データ個数(Np)が集計された
受光強度(L1)との差を演算する第1の演算処理、該
第1の演算処理で求めた差の値と上記各受光強度に集計
されたA/D変換データ個数との積を上記各受光強度毎
に演算する第2の演算処理、該第2の演算処理で求めた
上記各受光強度毎の積の値を、上記受光強度(L1)か
ら最大受光強度(Lp)までの範囲、及び上記受光強度
(L1)から最小受光強度(Ls)までの範囲につい
て、それぞれ別個に合算演算してそれぞれ総和(Vp,
Vs)を求め、かつ、該2つの総和の差(ΔV=Vp−
Vs)を演算する第3の演算処理、該第3の演算処理で
求めた差の値(ΔV)を上記第3の記憶手段に記憶され
ている相関データと照合して降雨又は降雪の強度を算出
する第4の演算処理の各処理機能を具備する第4の処理
手段とを更に有してなる降雨降雪強度測定装置。
10. The rainfall / snow determination device according to claim 8, wherein the received light intensities in the asymmetric portion (S) of the histogram data stored in the first storage means (701) and the received light intensities are summarized. With respect to the histogram data, the third storage means (703) in which the correlation data between the rainfall intensity and the snowfall intensity and the value obtained by calculating and summing the product of the number of A / D converted data for each received light intensity are stored in advance, A /
A first calculation process for calculating the difference between the received light intensity and the received light intensity (L1) for which the maximum number of A / D converted data (Np) is calculated for each received light intensity for which the D-converted data is collected, In the second arithmetic processing, the product of the difference value obtained in the arithmetic processing of No. 1 and the number of A / D converted data tabulated for each of the above received optical intensities is calculated for each of the above received optical intensities. The obtained product value for each received light intensity is respectively calculated for the range from the received light intensity (L1) to the maximum received light intensity (Lp) and the range from the received light intensity (L1) to the minimum received light intensity (Ls). The summation is performed separately and the sum (Vp,
Vs), and the difference between the two sums (ΔV = Vp−
Vs) is calculated by a third calculation process, and the difference value (ΔV) obtained by the third calculation process is compared with the correlation data stored in the third storage means to determine the intensity of rainfall or snowfall. A rainfall and snowfall intensity measuring device further comprising a fourth processing means having each processing function of a fourth arithmetic processing for calculating.
【請求項11】 請求項1に記載の視程測定方法、請求
項2〜5に記載の降雨降雪の判別方法、請求項7に記載
の視程測定装置、請求項8,9に記載の降雨降雪判別装
置で用いるヒストグラムデータの作成方法であって、最
初に少ない個数(Na)の受光信号のA/D変換データ
を受光強度別に集計して受光強度(L)別A/D変換デ
ータ個数(N)を示すヒストグラムデータの予備データ
を作成し、該予備データにおいて最大A/D変換データ
個数(Npo)が集計された受光強度(L0)に基いて
A/D変換データの集計個数(Nt)を決定し、該集計
個数(Nt)と上記予備データにおいて既に集計された
個数(Na)との差の個数(Nt−Na)のA/D変換
データを上記予備データに重ねて受光強度(L)別に集
計するようにしたヒストグラムデータの作成方法。
11. A visibility measuring method according to claim 1, a rain / snow determining method according to claim 2-5, a visibility measuring device according to claim 7, and a rain / snow determining according to claim 8 or 9. A method of creating histogram data used in an apparatus, wherein first, A / D conversion data of a small number (Na) of received light signals is aggregated for each received light intensity, and number of A / D converted data for each received light intensity (L) (N) The preliminary data of the histogram data indicating is created, and the total number (Nt) of the A / D converted data is determined based on the received light intensity (L0) in which the maximum number of the A / D converted data (Npo) is calculated in the preliminary data. Then, the A / D conversion data of the difference number (Nt-Na) between the total number (Nt) and the number (Na) already counted in the preliminary data is overlaid on the preliminary data and received light intensity (L) is classified. I tried to count How to create stogram data.
【請求項12】 請求項6に記載の降雨降雪強度の測定
方法であって、請求項11に記載の方法でヒストグラム
データを作成した場合において、集計個数(Nt)のA
/D変換データで作成したヒストグラムデータにより2
つの総和の差(ΔV)を求め、この差(ΔV)の値を当
該集計個数(Nt)に比例する値で割ることにより正規
化した値に基いて降雨又は降雪の強度を求めるようにし
た降雨降雪強度の測定方法。
12. The method for measuring rainfall and snowfall intensity according to claim 6, wherein when the histogram data is created by the method according to claim 11, the total number (Nt) of A
2 according to the histogram data created from the / D conversion data
Rainfall in which the intensity of rainfall or snowfall is calculated based on the normalized value by calculating the difference (ΔV) between the two totals and dividing the value of this difference (ΔV) by a value proportional to the total number of counts (Nt). How to measure snowfall intensity.
【請求項13】 請求項10に記載の降雨降雪強度測定
装置であって、第1の処理手段(601)が請求項11
に記載の方法でヒストグラムデータを作成する手段であ
る場合において、第3の演算処理で求めた差の値(Δ
V)をA/D変換データの集計個数(Nt)に比例する
値で割ることによる当該差の値(ΔV)の正規化処理手
段を有する降雨降雪強度測定装置。
13. The rainfall / snow intensity measuring device according to claim 10, wherein the first processing means (601) is the measuring device.
In the case of a method of creating histogram data by the method described in (3), the difference value (Δ
A rainfall and snowfall intensity measuring device having a normalization processing means for the difference value (ΔV) by dividing V) by a value proportional to the total number (Nt) of the A / D converted data.
JP03541693A 1993-02-24 1993-02-24 Visibility measurement method, rainfall snowfall discrimination method, rainfall snowfall intensity measurement method and device Expired - Fee Related JP3260888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03541693A JP3260888B2 (en) 1993-02-24 1993-02-24 Visibility measurement method, rainfall snowfall discrimination method, rainfall snowfall intensity measurement method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03541693A JP3260888B2 (en) 1993-02-24 1993-02-24 Visibility measurement method, rainfall snowfall discrimination method, rainfall snowfall intensity measurement method and device

Publications (2)

Publication Number Publication Date
JPH06249970A true JPH06249970A (en) 1994-09-09
JP3260888B2 JP3260888B2 (en) 2002-02-25

Family

ID=12441276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03541693A Expired - Fee Related JP3260888B2 (en) 1993-02-24 1993-02-24 Visibility measurement method, rainfall snowfall discrimination method, rainfall snowfall intensity measurement method and device

Country Status (1)

Country Link
JP (1) JP3260888B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079912A (en) * 2007-09-25 2009-04-16 Niigata Denki Kk Snowfall intensity measuring method and snowfall intensity measuring device
JP2009128180A (en) * 2007-11-22 2009-06-11 Toshiba Corp Fog prediction device and fog prediction method
JP2010256205A (en) * 2009-04-27 2010-11-11 Nikon-Trimble Co Ltd Range finding device
JP2017044535A (en) * 2015-08-25 2017-03-02 新潟電機株式会社 Snowfall depth intensity measuring method and its device
CN117953445A (en) * 2024-03-26 2024-04-30 南京大学 Road visibility measuring method, system and medium based on traffic monitoring camera in rainy days

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079912A (en) * 2007-09-25 2009-04-16 Niigata Denki Kk Snowfall intensity measuring method and snowfall intensity measuring device
JP2009128180A (en) * 2007-11-22 2009-06-11 Toshiba Corp Fog prediction device and fog prediction method
JP2010256205A (en) * 2009-04-27 2010-11-11 Nikon-Trimble Co Ltd Range finding device
JP2017044535A (en) * 2015-08-25 2017-03-02 新潟電機株式会社 Snowfall depth intensity measuring method and its device
CN117953445A (en) * 2024-03-26 2024-04-30 南京大学 Road visibility measuring method, system and medium based on traffic monitoring camera in rainy days
CN117953445B (en) * 2024-03-26 2024-05-28 南京大学 Road visibility measuring method, system and medium based on traffic monitoring camera in rainy days

Also Published As

Publication number Publication date
JP3260888B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
WO1986004435A1 (en) Precipitation identification by utilizing particulate size and velocity, extinction coefficients and humidity measurements
US4674069A (en) System for collecting and processing data relating to moving bodies
US4408880A (en) Laser nephelometric system
JP4164285B2 (en) Method for determining viewing distance, precipitation, type of precipitation, and apparatus for implementing the method combining a viewing distance measuring device and a precipitation measuring device
US5434778A (en) Method and apparatus for measuring prevailing weather and meteorological visibility
US10761004B2 (en) Forward scatter sensor
JPH06249970A (en) Visibility measuring method, rainfall/snowfall deciding method, method and system for measuring intensity of rainfall/snowfall
SE467553B (en) OPTICAL METHOD TO DETECT AND CLASSIFY RETURNS BY DETECTING SPRITT RESP BACKGROUND LIGHT FROM A BRIGHT
CN110987873B (en) Forward scatter sensor
JP3150581B2 (en) Vehicle type identification device
JP3771729B2 (en) Traffic flow measurement system
JPH0423740B2 (en)
JPH1184024A (en) Snowfall sensor
JP2000348282A (en) Vehicle detecting device
JPH08101113A (en) Measuring device for distribution of raindrops
JPS585900A (en) Road surface state discriminator
JP3294711B2 (en) Vehicle type identification device
CN216118066U (en) Highway visibility and precipitation check out test set
EP0045495B1 (en) Laser nephelometric system
JP2002162468A (en) Method of determining certainty for laser sensor
JP2017044535A (en) Snowfall depth intensity measuring method and its device
Muramoto et al. ZR relationship for individual snowfall and its evaluation
CN118362604A (en) Road surface icing state detection method and device, electronic equipment and storage medium
JPH04281597A (en) Road freeze detector
JP2940662B2 (en) Phase displacement detection method and apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091214

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees