JP2010256205A - Range finding device - Google Patents

Range finding device Download PDF

Info

Publication number
JP2010256205A
JP2010256205A JP2009107505A JP2009107505A JP2010256205A JP 2010256205 A JP2010256205 A JP 2010256205A JP 2009107505 A JP2009107505 A JP 2009107505A JP 2009107505 A JP2009107505 A JP 2009107505A JP 2010256205 A JP2010256205 A JP 2010256205A
Authority
JP
Japan
Prior art keywords
distance
light
measurement
value
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009107505A
Other languages
Japanese (ja)
Other versions
JP5409099B2 (en
Inventor
Toshihiro Tanaka
智弘 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Trimble Co Ltd
Original Assignee
Nikon Trimble Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Trimble Co Ltd filed Critical Nikon Trimble Co Ltd
Priority to JP2009107505A priority Critical patent/JP5409099B2/en
Publication of JP2010256205A publication Critical patent/JP2010256205A/en
Application granted granted Critical
Publication of JP5409099B2 publication Critical patent/JP5409099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a range finding device capable of performing preliminary measurement properly, even if the S/N ratio is poor. <P>SOLUTION: This range finding device includes a light transmission means 4 for transmitting light toward an object; a light-receiving means 5 for receiving light reflected by the object; calculating means 1, 2 for operating a distance to the object based on a time from transmission of light until reception of the light; and a control means 1 for controlling the light transmission means 4, the light-receiving means 5 and the calculating means 1, 2 respectively so as to perform preliminary measurement before main measurement, and to perform main measurements by using a preliminary measurement value. The control means 1 at the preliminary measurement time controls repeated transmissions of the light, reception of the light, and the calculating so that a distance calculating value is operated as many as a prescribed number of times by the calculating means 1, 2; determines a histogram based on a plurality of distance calculating values acquired by calculating for the prescribed number of times; and when the maximum frequency among the frequencies in the histogram is equal to or higher than a first determination threshold P1, acquires the preliminary measured value, by using the distance calculating value included in the class of the maximum frequency. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、測距装置に関する。   The present invention relates to a distance measuring device.

対象物へ向けて光を送光した時点と、該対象物からの反射光を受光した時点との時間差に基づいて対象物までの距離を測る測距装置において、本測定の前に予備測定を行うことにより、対象物までの概略の距離を測定しておく技術が知られている(特許文献1参照)。   In a distance measuring device that measures the distance to an object based on the time difference between the time when light is transmitted toward the object and the time when reflected light from the object is received, a preliminary measurement is performed before the main measurement. A technique for measuring an approximate distance to an object by performing is known (see Patent Document 1).

特開2003−255046号公報JP 2003-255046 A

従来技術では、対象物までの距離が遠かったり、対象物の反射率が低かったりして反射光が弱い場合にはS/N比が低下し、予備測定においてもノイズの影響を受けやすくなるという問題があった。   In the prior art, when the distance to the object is far away or the reflectance of the object is low and the reflected light is weak, the S / N ratio is lowered, and it is easily affected by noise in the preliminary measurement. There was a problem.

本発明は、対象物に向けて光を送光する送光手段と、対象物で反射された光を受光する受光手段と、送光から受光までの時間に基づいて対象物までの距離を演算する演算手段と、本測定の前に予備測定を行い、該予備測定値を用いて本測定を行うように送光手段、受光手段および演算手段をそれぞれ制御する制御手段とを備える測距装置に適用される。そして、予備測定時の制御手段は、演算手段によって距離演算値を所定回数だけ演算するように送光、受光および演算を繰返し制御し、所定回数だけ演算して得た複数の距離演算値に基づいてヒストグラムを求め、ヒストグラムの度数のうち最大度数が第1判定閾値P1以上の場合は、最大度数の階級に含まれる距離演算値を用いて予備測定値を得ることを特徴とする。   The present invention calculates a distance to an object based on a light transmission means for transmitting light toward the object, a light receiving means for receiving light reflected by the object, and a time from light transmission to light reception. A distance measuring apparatus comprising: a calculating means for performing a preliminary measurement before the main measurement, and a control means for controlling the light transmitting means, the light receiving means and the calculating means so as to perform the main measurement using the preliminary measurement value. Applied. The control means at the time of preliminary measurement repeatedly controls light transmission, light reception and calculation so that the calculation means calculates the distance calculation value a predetermined number of times, and based on a plurality of distance calculation values obtained by calculating the predetermined number of times. A histogram is obtained, and when the maximum frequency among the frequencies of the histogram is equal to or greater than the first determination threshold value P1, a preliminary measurement value is obtained using a distance calculation value included in the class of the maximum frequency.

本発明による測距装置では、S/N比が悪くても適切に予備測定を行うことができる。   In the distance measuring apparatus according to the present invention, it is possible to appropriately perform preliminary measurement even if the S / N ratio is poor.

本発明の一実施の形態による光波式測距装置の電気的な構成を説明するブロック図である。1 is a block diagram illustrating an electrical configuration of a lightwave distance measuring device according to an embodiment of the present invention. 図1の光波式測距装置の光学的な構成を説明するブロック図である。It is a block diagram explaining the optical structure of the light wave type distance measuring apparatus of FIG. 演算制御回路で行う予備測定処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of the preliminary measurement process performed with a calculation control circuit. 演算制御回路で行う予備測定処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of the preliminary measurement process performed with a calculation control circuit.

以下、図面を参照して本発明を実施するための形態について説明する。図1は、本発明の一実施の形態による光波式測距装置の電気的な構成を説明するブロック図である。図1において、測距装置は、演算制御回路1と、時間計測回路2と、駆動回路3と、送光回路4と、受光回路5と、増幅回路6と、タイミング検出回路7と、信号レベル測定回路8と、調光フィルタ部9とを有する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a block diagram for explaining the electrical configuration of a lightwave distance measuring device according to an embodiment of the present invention. In FIG. 1, the distance measuring apparatus includes an arithmetic control circuit 1, a time measurement circuit 2, a drive circuit 3, a light transmission circuit 4, a light reception circuit 5, an amplification circuit 6, a timing detection circuit 7, a signal level. It has a measurement circuit 8 and a dimming filter unit 9.

演算制御回路1はマイクロコンピュータ等で構成され、測距装置内各部の動作を制御するとともに、後述する受信信号1のレベル検出を行う。時間計測回路2はFPGA(Field Programmable Gate Array)などによって構成される。時間計測回路2は、演算制御回路1から送出される計測開始信号S101に応じて、送信トリガ信号S102を駆動回路3へ送出する。時間計測回路2はさらに、送信トリガ信号S102を送出してから後述する計測ストップ信号S112を受け取るまでの時間tを計測する。ここで、時間tが後述する送光光学系42を介して外部送光パルス105を対象物へ向けて送光してから、受光光学系51を介して受光パルス106を受光するまでの時間に相当するように、あらかじめ各回路の伝播遅延時間が調節されている。   The arithmetic control circuit 1 is constituted by a microcomputer or the like, and controls the operation of each part in the distance measuring device and detects the level of the received signal 1 described later. The time measuring circuit 2 is configured by an FPGA (Field Programmable Gate Array) or the like. The time measurement circuit 2 sends a transmission trigger signal S102 to the drive circuit 3 in response to the measurement start signal S101 sent from the arithmetic control circuit 1. The time measurement circuit 2 further measures a time t from when the transmission trigger signal S102 is transmitted until a measurement stop signal S112 described later is received. Here, the time t is the time from when the external light transmission pulse 105 is transmitted toward the object through the light transmission optical system 42 described later until the light reception pulse 106 is received through the light reception optical system 51. Correspondingly, the propagation delay time of each circuit is adjusted in advance.

演算制御回路1は、時間tと光速度との積を算出して対象物までの距離Dを得る。具体的には、D=c/n×t/2により算出する。ここで、cは真空中の光速度であり、nは空気の屈折率である。cをnで除算するのは、外部送光パルス105および受光パルス106が空気中を進行するので、空気中の光速度を得るためである。また、2で除算するのは、時間tが対象物と測距装置との間の光の往復時間に相当することから片道距離に換算するためである。   The arithmetic control circuit 1 calculates the product of the time t and the speed of light to obtain the distance D to the object. Specifically, it is calculated by D = c / n × t / 2. Here, c is the speed of light in vacuum, and n is the refractive index of air. The reason why c is divided by n is to obtain the speed of light in the air because the external light transmission pulse 105 and the light reception pulse 106 travel in the air. Further, the reason for dividing by 2 is that the time t corresponds to the round-trip time of light between the object and the distance measuring device, so that it is converted into a one-way distance.

駆動回路3は、送信トリガ信号S102に同期させた送信ドライブ信号S103を送光回路4へ送る。送光回路4は、発光素子41および送光光学系42を含む。送光回路4は、送信ドライブ信号S103に応じて発光素子41をパルス駆動し、発光パルス104を出力させる。発光素子41は、たとえば、赤外波長の光を発するレーザダイオードによって構成される。   The drive circuit 3 sends a transmission drive signal S103 synchronized with the transmission trigger signal S102 to the light transmission circuit 4. The light transmission circuit 4 includes a light emitting element 41 and a light transmission optical system 42. The light transmission circuit 4 pulse-drives the light emitting element 41 according to the transmission drive signal S103 and outputs the light emission pulse 104. The light emitting element 41 is configured by, for example, a laser diode that emits light having an infrared wavelength.

内部の光路切換器42-c(図2を参照して後述)が「内部光路」側に切り替えられている場合の送光光学系42は、送光パルス104を内部送光パルス115として調光フィルタ部9へ導く。調光フィルタ部9は、内部送光パルス115を所定の信号レベルに減衰した内部受光パルス116を出力する。   When the internal optical path switch 42-c (described later with reference to FIG. 2) is switched to the “internal optical path” side, the light transmission optical system 42 performs light control using the light transmission pulse 104 as the internal light transmission pulse 115. Guide to the filter unit 9. The dimming filter unit 9 outputs an internal light reception pulse 116 in which the internal light transmission pulse 115 is attenuated to a predetermined signal level.

一方、内部の光路切換器42-cが「外部光路」側に切り替えられている場合の送光光学系42は、送光パルス104を外部送光パルス105として対象物へ向けて送光する。対象物は、たとえば測量用ターゲットなどである。光路切換器42-cは、演算制御回路1から送出される光路切換信号S117によって制御される。   On the other hand, the light transmission optical system 42 when the internal optical path switch 42-c is switched to the “external optical path” side transmits the light transmission pulse 104 toward the object as the external light transmission pulse 105. The object is, for example, a surveying target. The optical path switch 42-c is controlled by an optical path switching signal S117 sent from the arithmetic control circuit 1.

対象物からの反射光は、受光パルス106として受光回路5で受光される。受光回路5は、受光光学系51、調光回路52、合波回路53および受光素子54を含む。受光光学系51を通過した受光パルス107は、調光回路52および合波回路53を介して受光素子54へ入射される。調光回路52は、たとえば、不図示のモータで駆動される濃度可変フィルタを有し、受光パルス106を減衰させて所定レベルの受光パルス108を出力する。調光回路52による光の減衰量は、演算制御回路1から送出されるモータ駆動信号S118によって制御される。   The reflected light from the object is received by the light receiving circuit 5 as a light receiving pulse 106. The light receiving circuit 5 includes a light receiving optical system 51, a dimming circuit 52, a multiplexing circuit 53, and a light receiving element 54. The received light pulse 107 that has passed through the light receiving optical system 51 enters the light receiving element 54 via the dimming circuit 52 and the multiplexing circuit 53. The dimming circuit 52 has, for example, a density variable filter driven by a motor (not shown), attenuates the light reception pulse 106, and outputs a light reception pulse 108 of a predetermined level. The amount of light attenuation by the light control circuit 52 is controlled by a motor drive signal S118 sent from the arithmetic control circuit 1.

合波回路53は、上述した内部受光パルス116が入射された場合には、該受光パルスを受信パルス光109として受光素子54へ導く。また、合波回路53は、上述した受光パルス108が入射された場合には、該受光パルスを受信パルス光109として受光素子54へ導く。   When the above-described internal light reception pulse 116 is incident, the multiplexing circuit 53 guides the light reception pulse to the light receiving element 54 as reception pulse light 109. Further, when the light reception pulse 108 described above is incident, the multiplexing circuit 53 guides the light reception pulse to the light receiving element 54 as the reception pulse light 109.

受光素子54は、たとえばアバランシェフォトダイオードによって構成され、受信パルス光109を光電変換する。光電変換信号は、受信信号S110として増幅回路6へ送出される。増幅回路6は受信信号S110を増幅し、増幅後の受信信号S111をタイミング検出回路7および信号レベル測定回路8へそれぞれ送出する。   The light receiving element 54 is composed of, for example, an avalanche photodiode, and photoelectrically converts the received pulsed light 109. The photoelectric conversion signal is sent to the amplifier circuit 6 as a reception signal S110. The amplification circuit 6 amplifies the reception signal S110 and sends the amplified reception signal S111 to the timing detection circuit 7 and the signal level measurement circuit 8, respectively.

タイミング検出回路7は、受信信号S111のレベルがピークとなるタイミングを検出し、該ピークタイミングに対応した計測ストップ信号S112を時間計測回路2へ送出する。時間計測回路2は、計測ストップ信号S112を受けると測定終了信号S114を演算制御回路1へ送る。   The timing detection circuit 7 detects a timing at which the level of the reception signal S111 reaches a peak, and sends a measurement stop signal S112 corresponding to the peak timing to the time measurement circuit 2. Upon receiving the measurement stop signal S112, the time measurement circuit 2 sends a measurement end signal S114 to the arithmetic control circuit 1.

受信信号S111を受けた信号レベル測定回路8は、受信信号S111のピークレベルに対応した振幅レベル信号S113を演算制御回路1へ送る。演算制御回路1は、測定終了信号S114をトリガにして、内蔵するA/Dコンバータ(不図示)によって振幅レベル信号S113をA/D変換することにより、該信号S113のレベル検出を行う。   Upon receiving the reception signal S111, the signal level measurement circuit 8 sends an amplitude level signal S113 corresponding to the peak level of the reception signal S111 to the arithmetic control circuit 1. The arithmetic control circuit 1 detects the level of the signal S113 by A / D converting the amplitude level signal S113 with a built-in A / D converter (not shown) using the measurement end signal S114 as a trigger.

図2は、図1の光波式測距装置の光学的な構成を説明するブロック図である。図2において、測距装置の光学系は、送光部4A、受光部5A、および望遠鏡部10に大別される。本実施形態では、送光部4A、受光部5Aおよび望遠鏡部10の光軸を同一軸に構成し、後述する対物レンズなど一部の構成を送光部4A、受光部5Aおよび望遠鏡部10間で兼用している。   FIG. 2 is a block diagram illustrating an optical configuration of the light wave type distance measuring apparatus of FIG. In FIG. 2, the optical system of the distance measuring device is roughly divided into a light transmitter 4 </ b> A, a light receiver 5 </ b> A, and a telescope unit 10. In the present embodiment, the optical axes of the light transmitting unit 4A, the light receiving unit 5A, and the telescope unit 10 are configured on the same axis, and a part of the configuration such as an objective lens described later is provided between the light transmitting unit 4A, the light receiving unit 5A, and the telescope unit 10. It is also used in.

送光部4Aは、発光素子41および送光光学系42によって構成される。送光光学系42は、レンズ42-a、ビームスプリッタ42-b、光路切換器42-c、ミラー42-d、および対物レンズ42-eを含む。レンズ42-aは、発光素子41が発した光をコリメートする。ビームスプリッタ42-bは、入射された光を2分割する。光路切換信号S117(図1)によって「内部光路」側へ切り換え指示を受けた光路切換器42-cは、ビームスプリッタ42-bから射出される光を調光フィルタ部9へ導く。また、光路切換信号S117(図1)によって「外部光路」側へ切り換える指示を受けた光路切換器42-cは、ビームスプリッタ42-bから射出される光をミラー42-dへ導く。   The light transmitting unit 4A includes a light emitting element 41 and a light transmitting optical system 42. The light transmission optical system 42 includes a lens 42-a, a beam splitter 42-b, an optical path switch 42-c, a mirror 42-d, and an objective lens 42-e. The lens 42-a collimates the light emitted from the light emitting element 41. The beam splitter 42-b divides the incident light into two. The optical path switch 42-c that has received the switching instruction to the “internal optical path” side by the optical path switching signal S117 (FIG. 1) guides the light emitted from the beam splitter 42-b to the dimming filter unit 9. Further, the optical path switch 42-c that has received an instruction to switch to the “external optical path” by the optical path switching signal S117 (FIG. 1) guides the light emitted from the beam splitter 42-b to the mirror 42-d.

ミラー42-dは、ビームスプリッタ42-bから射出された光(測距光と呼ぶ)を折り曲げて対物レンズ42-eへ導く。対物レンズ42-eは、対象物に向けて測距光を射出する。本実施形態では、「外部光路」側への切り換え時に対物レンズ42-eの中心部を介して測距光を射出するように構成されている。上述したように、対物レンズ42-eは、望遠鏡部10の対物レンズ10-a、および受光部5Aの対物レンズ51-aを兼ねるように構成されている。   The mirror 42-d bends the light emitted from the beam splitter 42-b (referred to as distance measuring light) and guides it to the objective lens 42-e. The objective lens 42-e emits distance measuring light toward the object. In the present embodiment, the distance measuring light is emitted through the central portion of the objective lens 42-e when switching to the “external optical path” side. As described above, the objective lens 42-e is configured to serve as the objective lens 10-a of the telescope unit 10 and the objective lens 51-a of the light receiving unit 5A.

受光部5Aは、受光光学系51、調光部52、合波部53A、および受光素子54を含む。受光光学系51は、対物レンズ51-aおよびダイクロイックプリズム51-bによって構成される。対物レンズ51-aに入射した対象物からの光は、ダイクロイックプリズム51-bへ導かれる。ダイクロイックプリズム51-bは、所定波長成分(本実施形態では赤外波長領域)の光を折り曲げて結合プリズム53-aへ導き、所定波長成分以外の光(本実施形態では可視波長領域光)を望遠鏡部10の観察光学系へ導く。   The light receiving unit 5A includes a light receiving optical system 51, a light adjusting unit 52, a multiplexing unit 53A, and a light receiving element 54. The light receiving optical system 51 includes an objective lens 51-a and a dichroic prism 51-b. Light from the object incident on the objective lens 51-a is guided to the dichroic prism 51-b. The dichroic prism 51-b bends light of a predetermined wavelength component (in this embodiment, the infrared wavelength region) and guides it to the coupling prism 53-a, and transmits light other than the predetermined wavelength component (visible wavelength region light in this embodiment). Guide to the observation optical system of the telescope unit 10.

調光部52は、図1の調光回路52に対応する。合波部53Aは図1の合波回路53に対応し、結合プリズム53-a、受信ファイバ53-b、および結合光学系53-cを含む。結合プリズム53-aは、調光フィルタ部9で減衰された光を受信ファイバ53-bへ入射させる一方、ダイクロイックプリズム51-bによって折り曲げられた光(赤外波長光)を受信ファイバ53-bへ入射させる。受信ファイバ53-bを通った光は、結合光学系53-cによって受光素子54の受光面に入射される。ここで、結合光学系53-cは波長選択フィルタを含み、送光部4Aによる発光波長(赤外波長)と異なる波長の不要な光(たとえば太陽光など)を減衰させるように構成されている。   The dimming unit 52 corresponds to the dimming circuit 52 of FIG. The multiplexing unit 53A corresponds to the multiplexing circuit 53 of FIG. 1, and includes a coupling prism 53-a, a receiving fiber 53-b, and a coupling optical system 53-c. The coupling prism 53-a causes the light attenuated by the dimming filter unit 9 to enter the reception fiber 53-b, while the light (infrared wavelength light) bent by the dichroic prism 51-b is received by the reception fiber 53-b. To enter. The light passing through the receiving fiber 53-b is incident on the light receiving surface of the light receiving element 54 by the coupling optical system 53-c. Here, the coupling optical system 53-c includes a wavelength selection filter, and is configured to attenuate unnecessary light (for example, sunlight) having a wavelength different from the emission wavelength (infrared wavelength) by the light transmitting unit 4A. .

望遠鏡部10は、対物レンズ10-a(51-a、42-eを兼用)、ダイクロイックプリズム10-b(51-bと兼用)、および観察光学系を含む。観察光学系は、たとえば、合焦レンズ10-c、正立プリズム10-d、焦点板10-eおよび接眼レンズ10-fによって構成される。   The telescope unit 10 includes an objective lens 10-a (also used as 51-a and 42-e), a dichroic prism 10-b (also used as 51-b), and an observation optical system. The observation optical system includes, for example, a focusing lens 10-c, an erecting prism 10-d, a focusing screen 10-e, and an eyepiece lens 10-f.

観察光学系へ導かれた可視光は、合焦レンズ10-cおよび正立プリズム10-dを通って焦点板10-eに結像する。観察者は、焦点板10-e上の中間正立像を接眼レンズ10-fを介して観察する。   The visible light guided to the observation optical system forms an image on the focusing screen 10-e through the focusing lens 10-c and the erecting prism 10-d. The observer observes the intermediate erect image on the focusing screen 10-e through the eyepiece 10-f.

上記測距装置は、該測距装置から対象物までの距離測定処理を(i)光量平衡処理、(ii)予備測定処理、(iii)本測定処理の順番で行う。
<光量平衡処理>
光量平衡処理は、上述した「内部光路」側への切り換え時に受光部5Aで受光される光の受光レベルと、上述した「外部光路」側への切り換え時に受光部5Aで受光される光の受光レベルとを揃えるように、調光部52による減衰量を調節する処理である。具体的には、「外部光路」側へ切り換え時に演算制御回路1が検出する信号S113のレベルを、「内部光路」側へ切り換え時に演算制御回路1が検出する信号S113のレベルに近づけるように、調光部52へ送出するモータ駆動信号S118を変化させることにより、受光レベルを調節する。
The distance measuring device performs distance measurement processing from the distance measuring device to the object in the order of (i) light quantity balance processing, (ii) preliminary measurement processing, and (iii) main measurement processing.
<Light balance processing>
The light quantity balancing process includes the light receiving level of the light received by the light receiving unit 5A when switching to the “internal optical path” and the light receiving of the light received by the light receiving unit 5A when switching to the “external optical path”. This is a process of adjusting the attenuation amount by the dimming unit 52 so as to align the level. Specifically, the level of the signal S113 detected by the arithmetic control circuit 1 when switching to the “external optical path” side is brought closer to the level of the signal S113 detected by the arithmetic control circuit 1 when switching to the “internal optical path” side. The light reception level is adjusted by changing the motor drive signal S118 sent to the light control unit 52.

<予備測定処理>
予備測定処理は、本測定前に、測距装置から対象物までの概略の距離を測定し、この概略距離を予備測定値DPとする処理である。予備測定処理の詳細については後述する。
<Preliminary measurement processing>
The preliminary measurement process is a process in which an approximate distance from the distance measuring device to the object is measured before this measurement, and this approximate distance is set as a preliminary measurement value DP. Details of the preliminary measurement process will be described later.

<本測定処理>
本測定処理は、予備測定値DPを用いて測距装置から対象物までの距離を所定回数繰り返し測定する。測定値のうち予備測定値DPを含む所定範囲から外れる測定値を廃棄し、所定範囲内に含まれる測定値の数があらかじめ設定されている測定回数(たとえば2000回〜7000回)に達するまで本測定を繰り返す。測距装置は、上記所定回数分の測定値に基づいて、たとえば単純平均値を算出することにより、対象物までの距離D(本測定値)を求める。
<Main measurement process>
In this measurement process, the distance from the distance measuring device to the object is repeatedly measured a predetermined number of times using the preliminary measurement value DP. Of the measurement values, the measurement values outside the predetermined range including the preliminary measurement value DP are discarded, and the measurement values are included in the predetermined range until the number of measurement values included in the predetermined range reaches a preset number of measurements (for example, 2000 to 7000 times). Repeat the measurement. The distance measuring device obtains the distance D (main measured value) to the object by, for example, calculating a simple average value based on the measured values for the predetermined number of times.

本実施形態は、予備測定処理に特徴を有するので、以降はフローチャートを参照して予備測定処理を中心に説明する。図3および図4は、予備測定処理の流れを説明するフローチャートである。演算制御回路1は、(i)の光量平衡処理に続けて、時間計測回路2に予備測定処理を行わせる。   Since the present embodiment has a feature in the preliminary measurement process, the following description will focus on the preliminary measurement process with reference to a flowchart. 3 and 4 are flowcharts illustrating the flow of the preliminary measurement process. The arithmetic control circuit 1 causes the time measurement circuit 2 to perform a preliminary measurement process following the light intensity balancing process of (i).

図3のステップP1において、時間計測回路2は、予備測定回数c、概略距離積算値Sdp、および有効概略距離データ数Ndpをそれぞれ初期化(ここではリセット)してステップP2へ進む。本実施形態では、予備測定で行う所定回数の距離測定によって得られる所定個数の概略距離が所定のまとまり状態を有している場合に、これらの概略距離を採用して有効概略距離とする。反対に、所定のまとまり状態を有していない場合には、新たに予備測定を行う。本例では、たとえば、30回の距離測定を1セットとして当該30個の概略距離のヒストグラムを求め、該ヒストグラムの最大度数が所定値(たとえば15)に満たない場合にさらに1セット(30回分)の距離測定を行うことで、最大20セットまで予備測定を行う。   In step P1 of FIG. 3, the time measurement circuit 2 initializes (resets here) the preliminary measurement count c, the approximate distance integrated value Sdp, and the effective approximate distance data number Ndp, and proceeds to step P2. In the present embodiment, when a predetermined number of approximate distances obtained by a predetermined number of distance measurements performed in the preliminary measurement have a predetermined unitary state, these approximate distances are adopted as effective approximate distances. On the other hand, if it does not have a predetermined unity state, a preliminary measurement is newly performed. In this example, for example, a histogram of the 30 approximate distances is obtained by setting 30 distance measurements as one set, and when the maximum frequency of the histogram is less than a predetermined value (for example, 15), another set (30 times) Preliminary measurement is performed for up to 20 sets.

予備測定回数cは、上記セット数を計数するためのカウンタとして用いる。概略距離積算値Sdpは、上記有効概略距離を積算した積算距離を表す。有効概略距離データ数Ndpは、上記有効概略距離の数を表す。   The preliminary measurement count c is used as a counter for counting the number of sets. The approximate distance integrated value Sdp represents an integrated distance obtained by integrating the effective approximate distance. The effective approximate distance data number Ndp represents the number of the effective approximate distances.

ステップP2において、時間計測回路2は1セット分の予備測定を行い、概略距離データD1〜Dn(本例ではn=30)を、それぞれメモリのアドレスA1〜An(n=30)に格納する。また、概略距離データD1〜Dnを順番に距離積算値データS1〜Skに対応させておくとともに、アドレスA1〜Anに対応するF1〜Fnを初期化(ここではリセット)してステップP3へ進む。F1〜Fnは、ヒストグラムにおける度数を計数するためのカウンタとして用いる。   In step P2, the time measuring circuit 2 performs a preliminary measurement for one set, and stores the approximate distance data D1 to Dn (n = 30 in this example) at addresses A1 to An (n = 30) of the memory, respectively. Further, the approximate distance data D1 to Dn are sequentially associated with the distance integrated value data S1 to Sk, and F1 to Fn corresponding to the addresses A1 to An are initialized (reset here), and the process proceeds to Step P3. F1 to Fn are used as counters for counting the frequencies in the histogram.

また、演算制御回路1は、上述した光量平衡処理時に「外部光路」側へ切り換えた状態で検出した信号S113のレベルが所定レベルより低かった場合、1セット当たりの測定回数nの値を増やす。本実施形態では通常n=30回の予備測定を1セットとするが、信号S113のレベルが低い場合には、たとえばn=60回へ増やすように変更する。これにより、ノイズの影響を受けやすい状況では通常時の2倍の距離測定を行って、1セットにつき60個の概略距離を求めるようになる。   Further, the arithmetic control circuit 1 increases the value of the number of times of measurement n per set when the level of the signal S113 detected in the state of switching to the “external optical path” side at the time of the light quantity balancing process described above is lower than a predetermined level. In this embodiment, normally n = 30 preliminary measurements are set as one set. However, when the level of the signal S113 is low, for example, the number is changed to increase n = 60. As a result, in a situation that is easily affected by noise, distance measurement twice as normal is performed, and 60 approximate distances per set are obtained.

ステップP3において、時間計測回路2は、最大度数Fmaxを格納するアドレスmaxに初期値1を、最大度数Fmaxに初期値1を、それぞれセットしてステップP4へ進む。時間計測回路2は、アドレスA1に格納されている初回の概略距離データ(D1)をイニシャルとする。   In step P3, the time measuring circuit 2 sets the initial value 1 to the address max storing the maximum frequency Fmax and the initial value 1 to the maximum frequency Fmax, and proceeds to step P4. The time measurement circuit 2 initializes the initial approximate distance data (D1) stored at the address A1.

ステップP4において、時間計測回路2は、アドレスA2〜Anに格納されている2回目以降の概略距離データDkを読み出してステップP5へ進む。ステップP5において、時間計測回路2は、2回目以降の概略距離データDkを順次アドレスの若いデータD(k−1)と比較してステップP6へ進む。   In Step P4, the time measuring circuit 2 reads the second and subsequent approximate distance data Dk stored in the addresses A2 to An, and proceeds to Step P5. In step P5, the time measuring circuit 2 compares the approximate distance data Dk for the second and subsequent times with the data D (k-1) having a younger address, and proceeds to step P6.

ステップP6において、時間計測回路2は、概略距離データの差が所定範囲か否かを判定する。時間計測回路2は、概略距離データの差が所定範囲内の場合にステップP6を肯定判定してステップP10へ進む。時間計測回路2は、概略距離データの差が所定範囲外である場合にステップP6を否定判定してステップP7へ進む。   In Step P6, the time measuring circuit 2 determines whether or not the difference in the approximate distance data is within a predetermined range. If the difference in the approximate distance data is within the predetermined range, the time measuring circuit 2 makes a positive determination in step P6 and proceeds to step P10. If the difference in the approximate distance data is outside the predetermined range, the time measuring circuit 2 makes a negative determination in step P6 and proceeds to step P7.

ステップP7において、時間計測回路2は、アドレスAkに対応する度数カウンタFkを+1加算し、ステップP8へ進む。これにより、概略距離データDkが概略距離データD1〜D(k-1)の全てのデータと略一致でない場合には、次ステップP8で比較対象を変えるためアドレスAkを1つ繰り上げる。   In step P7, the time measuring circuit 2 adds +1 to the frequency counter Fk corresponding to the address Ak, and proceeds to step P8. As a result, when the approximate distance data Dk is not substantially coincident with all of the approximate distance data D1 to D (k-1), the address Ak is incremented by one in the next step P8 in order to change the comparison target.

ステップP8において、時間計測回路2は、アドレスAkを+1加算してステップP9へ進む。ステップP9において、時間計測回路2は、k>nが成立するか否か(すなわちアドレスAkの概略距離データDkが1セット内の30番目のデータか否か)を判定する。時間計測回路2は、k>nが成立する場合にステップP9を肯定判定して図4のステップP14へ進む。時間計測回路2は、k>nが成立しない場合にはステップP9を否定判定してステップP4へ戻る。ステップP4へ戻る場合は、上述した比較処理を繰り返す。   In Step P8, the time measuring circuit 2 adds +1 to the address Ak and proceeds to Step P9. In step P9, the time measuring circuit 2 determines whether or not k> n is satisfied (that is, whether or not the approximate distance data Dk at the address Ak is the 30th data in one set). The time measurement circuit 2 makes a positive determination in step P9 when k> n is satisfied, and proceeds to step P14 in FIG. If k> n is not satisfied, the time measuring circuit 2 makes a negative determination in step P9 and returns to step P4. When returning to Step P4, the comparison process described above is repeated.

上述したステップP6を肯定判定して進むステップP10において、時間計測回路2は、略一致した概略距離データのうち若い方のアドレスAiに対応する度数カウンタFiを+1加算し、距離積算値データSiに概略距離データDkを加算してステップP11へ進む。   In step P10, which proceeds after making an affirmative determination in step P6 described above, the time measurement circuit 2 adds +1 to the frequency counter Fi corresponding to the younger address Ai of the approximate distance data that are substantially matched, and adds to the distance integrated value data Si. The approximate distance data Dk is added, and the process proceeds to Step P11.

ステップP11において、時間計測回路2は、上記略一致した若い方のアドレスの「i」がアドレスmaxと一致するか否かの判定を行う。時間計測回路2は、「i」が最大度数を格納するアドレスmaxと一致している場合はステップP11を肯定判定してステップP8へ進む。時間計測回路2は、「i」がアドレスmaxと一致していない場合はステップP11を否定判定してステップP12へ進む。   In Step P11, the time measuring circuit 2 determines whether or not “i” of the substantially matched younger address matches the address max. If “i” matches the address max at which the maximum frequency is stored, the time measurement circuit 2 makes an affirmative decision in step P11 and proceeds to step P8. If “i” does not match the address max, the time measurement circuit 2 makes a negative determination in step P11 and proceeds to step P12.

ステップP12において、時間計測回路2は、度数カウンタFiが最大度数Fmaxより大か否かの判定を行う。時間計測回路2は、Fi>Fmaxが成立する場合はステップP12を肯定判定してステップP13へ進む。時間計測回路2は、Fi>Fmaxが成立しない場合はステップP12を否定判定してステップP8へ進む。   In Step P12, the time measuring circuit 2 determines whether or not the frequency counter Fi is larger than the maximum frequency Fmax. If Fi> Fmax is established, the time measuring circuit 2 makes a positive determination in step P12 and proceeds to step P13. If Fi> Fmax is not satisfied, the time measuring circuit 2 makes a negative determination in step P12 and proceeds to step P8.

ステップP13において、時間計測回路2は、アドレスの「i」をアドレスmaxに変更する。これにより、度数カウンタFiに対応する階級に含まれる概略距離データの積算値Siが、最大度数Fmaxの階級に含まれる概略距離値の積算値Smaxとなる。   In step P13, the time measuring circuit 2 changes the address “i” to the address max. As a result, the integrated value Si of the approximate distance data included in the class corresponding to the frequency counter Fi becomes the integrated value Smax of the approximate distance value included in the class of the maximum frequency Fmax.

以上説明したステップP4−P13の処理は、30個の概略距離データについて階級ごとの度数を求めるヒストグラム作成に相当する。なお、本実施形態では最大度数および該最大度数に対応する概略距離データを特定できればよいため、図表化のための処理は不要である。   The process of steps P4-P13 described above corresponds to the creation of a histogram for obtaining the frequency for each class for 30 approximate distance data. In the present embodiment, it is sufficient that the maximum frequency and the approximate distance data corresponding to the maximum frequency can be specified, so that the processing for charting is not necessary.

図4のステップP14において、時間計測回路2は、最大度数Fmaxがあらかじめ規定した数(本例では15)以上か否かを判定する。時間計測回路2は、最大度数Fmaxが15以上の場合にステップP14を肯定判定してステップP15へ進む。時間計測回路2は、最大度数Fmaxが15未満の場合には、ステップP14を否定判定してステップP16へ進む。   In step P14 of FIG. 4, the time measuring circuit 2 determines whether or not the maximum frequency Fmax is equal to or greater than a predetermined number (15 in this example). When the maximum frequency Fmax is 15 or more, the time measuring circuit 2 makes an affirmative decision in step P14 and proceeds to step P15. If the maximum frequency Fmax is less than 15, the time measuring circuit 2 makes a negative determination in step P14 and proceeds to step P16.

ステップP15へ進む場合は予備測定処理を終了する。ステップP15において、時間計測回路2は概略距離積算値Smaxを最大度数Fmaxで除して得られる商を予備測定処理による概略距離とする。すなわち、最大度数の階級に含まれる概略距離データの平均値を予備測定値DPとして予備測定処理を終了する。   When proceeding to Step P15, the preliminary measurement process is terminated. In step P15, the time measuring circuit 2 sets the quotient obtained by dividing the approximate distance integrated value Smax by the maximum frequency Fmax as the approximate distance by the preliminary measurement process. That is, the preliminary measurement process is terminated with the average value of the approximate distance data included in the class of the maximum frequency as the preliminary measurement value DP.

ステップP16において、時間計測回路2は予備測定回数cが1か否かを判定する。時間計測回路2は、c=1(すなわち予備測定における1セット目)である場合にステップP16を肯定判定してステップP17へ進む。時間計測回路2は、c≠1(すなわち予備測定における2セット目以降)である場合にステップP16を否定判定してステップP18へ進む。   In Step P16, the time measuring circuit 2 determines whether or not the number of preliminary measurements c is 1. When c = 1 (that is, the first set in the preliminary measurement), time measurement circuit 2 makes an affirmative decision in step P16 and proceeds to step P17. The time measurement circuit 2 makes a negative determination in step P16 when c ≠ 1 (that is, the second and subsequent sets in the preliminary measurement), and proceeds to step P18.

ステップP17において、時間計測回路2は、概略距離積算値Smaxを最大度数Fmaxで除して得られる商(1セット目の予備測定値DP1)を、概略距離積算値Sdpとしてメモリに保存してステップP24へ進む。これにより、1セット目の予備測定値によるヒストグラムの最大度数の階級に含まれる概略距離データの平均値が、概略距離積算値Sdpとなる。   In step P17, the time measurement circuit 2 stores the quotient (first set preliminary measurement value DP1) obtained by dividing the approximate distance integrated value Smax by the maximum frequency Fmax in the memory as the approximate distance integrated value Sdp. Proceed to P24. As a result, the average value of the approximate distance data included in the maximum frequency class of the histogram based on the first set of preliminary measurement values becomes the approximate distance integrated value Sdp.

ステップP18において、時間計測回路2は、概略距離積算値Smaxを最大度数Fmaxで除して得られる商(cセット目(c≧2)の予備測定値DPc)を算出してステップP19へ進む。これにより、cセット目の予備測定値によるヒストグラムの最大度数の階級に含まれる概略距離データの平均値が、cセット目の予備測定値DPcとなる。   In Step P18, the time measurement circuit 2 calculates a quotient (preliminary measurement value DPc of the c-th set (c ≧ 2)) obtained by dividing the approximate distance integrated value Smax by the maximum frequency Fmax, and proceeds to Step P19. Thus, the average value of the approximate distance data included in the class of the maximum frequency of the histogram based on the c-th preliminary measurement value becomes the c-th preliminary measurement value DPc.

ステップP19において、時間計測回路2は、|DPc−DP1|≦規定値が成立するか否かを判定する。時間計測回路2は、cセット目の予備測定値DPcと1セット目の予備測定値DP1との差があらかじめ規定されている所定値以内の場合はステップP19を肯定判定してステップP20へ進む。時間計測回路2は、cセット目の予備測定値DPcと1セット目の予備測定値DP1との差が所定値を超えている場合はステップP19を否定判定してステップP24へ進む。ステップP19を否定判定する場合は、予備測定値DPcを有効概略距離として採用しない。   In Step P19, the time measuring circuit 2 determines whether or not | DPc−DP1 | ≦ specified value is satisfied. When the difference between the c-th preliminary measurement value DPc and the first set preliminary measurement value DP1 is within a predetermined value, the time measurement circuit 2 makes an affirmative decision in step P19 and proceeds to step P20. If the difference between the c-th preliminary measurement value DPc and the first set preliminary measurement value DP1 exceeds a predetermined value, the time measurement circuit 2 makes a negative determination in step P19 and proceeds to step P24. When negative determination is made in step P19, the preliminary measurement value DPc is not adopted as the effective approximate distance.

ステップP20へ進む場合は、予備測定値DPcを有効概略距離として採用する。ステップP20において、時間計測回路2は、概略距離積算値Sdpにcセット目の予備測定値DPcを積算してステップP21へ進む。   When proceeding to Step P20, the preliminary measurement value DPc is adopted as the effective approximate distance. In Step P20, the time measurement circuit 2 integrates the c-th preliminary measurement value DPc with the approximate distance integration value Sdp and proceeds to Step P21.

ステップP21において、時間計測回路2は、有効概略距離データ数Ndpを+1加算してステップP22へ進む。ステップP22において、時間計測回路2は有効概略距離データ数Ndpが規定数に達したか否かを判定する。時間計測回路2は、Ndp=規定数(たとえば10)の場合にステップP22を肯定判定してステップP23へ進む。時間計測回路2は、Ndp≠規定数(たとえば10)の場合にステップP22を否定判定してステップP24へ進む。   In step P21, the time measuring circuit 2 adds +1 to the effective approximate distance data number Ndp and proceeds to step P22. In Step P22, the time measuring circuit 2 determines whether or not the effective approximate distance data number Ndp has reached a specified number. The time measuring circuit 2 makes an affirmative decision in step P22 when Ndp = a prescribed number (for example, 10) and proceeds to step P23. The time measuring circuit 2 makes a negative determination in step P22 when Ndp ≠ a prescribed number (for example, 10), and proceeds to step P24.

ステップP24において、時間計測回路2は、予備測定回数cを+1加算してステップP25へ進む。ステップP25において、時間計測回路2は予備測定回数cが規定数以下か否かを判定する。時間計測回路2は、cが所定数(たとえば20)以下の場合にステップP25を肯定判定して図3のステップP2へ戻り、次セットの予備測定を行う。一方、時間計測回路2は、cが所定数(20)を超えている(すなわち20セット分の距離測定を終えている)場合にステップP25を否定判定してステップP26へ進む。   In step P24, the time measuring circuit 2 adds +1 to the number of preliminary measurements c, and proceeds to step P25. In Step P25, the time measuring circuit 2 determines whether or not the number of preliminary measurements c is equal to or less than a specified number. The time measurement circuit 2 makes an affirmative decision in step P25 when c is a predetermined number (for example, 20) or less, and returns to step P2 in FIG. 3 to perform the next set of preliminary measurements. On the other hand, the time measurement circuit 2 makes a negative determination in step P25 when c exceeds a predetermined number (20) (that is, the distance measurement for 20 sets has been completed), and proceeds to step P26.

ステップP26において、時間計測回路2は、予備測定が正常に行われなかったことを知らせるエラー出力を行って予備測定処理を終了する。エラー出力は、たとえば不図示のアラームランプを点灯させたり、不図示のスピーカからアラーム音を発生させたりすることによって行う。   In step P26, the time measuring circuit 2 outputs an error indicating that the preliminary measurement has not been performed normally, and ends the preliminary measurement process. Error output is performed, for example, by turning on an alarm lamp (not shown) or generating an alarm sound from a speaker (not shown).

ステップP23において、時間計測回路2は概略距離積算値Sdpを有効概略距離データ数Ndpで除して得られる商を予備測定処理による概略距離とする。すなわち、採用した予備測定値DPcの平均値を予備測定値DPとして予備測定処理を終了する。   In Step P23, the time measuring circuit 2 sets the quotient obtained by dividing the approximate distance integrated value Sdp by the effective approximate distance data number Ndp as the approximate distance by the preliminary measurement process. That is, the preliminary measurement process is terminated with the average value of the adopted preliminary measurement values DPc as the preliminary measurement value DP.

予備測定処理後の時間計測回路2は、ステップP15またはステップP23において予備測定値DPを得た場合(すなわち予備測定処理を正常終了した場合)に本測定処理に入る。時間計測回路2は、予備測定エラーを出力して予備測定処理を終了した場合には、本測定処理へ進まずに再び光量平衡処理を行う。   The time measurement circuit 2 after the preliminary measurement process enters the main measurement process when the preliminary measurement value DP is obtained in step P15 or step P23 (that is, when the preliminary measurement process is normally completed). When the preliminary measurement error is output by finishing the preliminary measurement process, the time measuring circuit 2 performs the light quantity balancing process again without proceeding to the main measurement process.

本測定処理では、演算される複数の本測定値のうち、予備測定値DPに対して所定範囲内に含まれる本測定値の数が上記測定回数(たとえば2000回〜7000回)に達するまで本測定を繰り返す。ここで、本測定における「所定範囲」は、予備測定処理においてステップP19の判定に用いた所定値で決まる「所定範囲」より広くする。たとえば、予備測定処理(ステップP19)において、予備測定値DPcと1セット目の予備測定値DP1との差が±0.4m以内か否かを判定した場合は、本測定処理における判定では、予備測定値DPと本測定値との差が±0.6m以内か否かを判定する。そして、予備測定値DPに対して±0.6mから外れる本測定値を廃棄し、予備測定値DP±0.6mに含まれる本測定値の数が上記測定回数(たとえば2000回〜7000回)に達するまで本測定を繰り返す。   In the main measurement process, the main measurement values included in a predetermined range with respect to the preliminary measurement value DP among the plurality of main measurement values to be calculated until the number of measurement reaches the above-mentioned number of measurements (for example, 2000 to 7000 times). Repeat the measurement. Here, the “predetermined range” in the main measurement is made wider than the “predetermined range” determined by the predetermined value used for the determination in step P19 in the preliminary measurement process. For example, in the preliminary measurement process (step P19), when it is determined whether the difference between the preliminary measurement value DPc and the first set preliminary measurement value DP1 is within ± 0.4 m, It is determined whether or not the difference between the measured value DP and the actual measured value is within ± 0.6 m. Then, the main measurement value deviating from ± 0.6 m with respect to the preliminary measurement value DP is discarded, and the number of the main measurement values included in the preliminary measurement value DP ± 0.6 m is the above-mentioned number of measurements (for example, 2000 to 7000 times). Repeat this measurement until

時間計測回路2は上記回数の本測定を終了すると、測定終了信号S114を演算制御回路1に送り、演算制御回路1は本測定の回数分に相当する時間データの積算値を時間計測回路2より受け取る。演算制御回路1は、受け取った積算値から、たとえば単純平均値を算出し、さらに前述の光速および屈折率を含めた演算を行うことによって対象物までの距離Dを計算する。   When the time measurement circuit 2 finishes the number of times of the main measurement, the time measurement circuit 2 sends a measurement end signal S114 to the calculation control circuit 1, and the calculation control circuit 1 obtains an integrated value of time data corresponding to the number of times of the main measurement from the time measurement circuit 2. receive. The arithmetic control circuit 1 calculates, for example, a simple average value from the received integrated value, and further calculates the distance D to the object by performing an operation including the above-mentioned light speed and refractive index.

以上説明した実施形態によれば、次の作用効果が得られる。
(1)本測定の前に予備測定を行い、該予備測定値DP(概略距離)を用いて本測定を行うように送光回路4、および受光回路5をそれぞれ制御して距離を演算する演算制御回路1および時間計測回路2は、予備測定時において、距離演算値を所定回数だけ演算するように送光、受光および演算を繰返し制御し、所定回数だけ演算して得た複数の距離演算値に基づいてヒストグラムを求め、ヒストグラムの度数のうち最大度数Fmaxが所定値P1(たとえば15)以上の場合は、最大度数Fmaxの階級に含まれる距離演算値を用いて予備測定値DPを得るようにした。これにより、S/N比が悪い状態でも予備測定を適切に行うことができる。
According to the embodiment described above, the following operational effects can be obtained.
(1) An operation for performing a preliminary measurement before the main measurement and calculating the distance by controlling the light transmitting circuit 4 and the light receiving circuit 5 so as to perform the main measurement using the preliminary measurement value DP (rough distance). The control circuit 1 and the time measurement circuit 2 repeatedly control light transmission, light reception and calculation so that the distance calculation value is calculated a predetermined number of times during preliminary measurement, and a plurality of distance calculation values obtained by calculating the predetermined number of times. The maximum frequency Fmax is greater than or equal to a predetermined value P1 (for example, 15) among the frequencies of the histogram, and the preliminary measurement value DP is obtained using the distance calculation value included in the class of the maximum frequency Fmax. did. Thereby, preliminary measurement can be appropriately performed even in a state where the S / N ratio is poor.

(2)上記(1)の時間計測回路2は、演算される距離演算値の数がN(たとえば30)個に達すると該30個の距離演算値に係るヒストグラムを求め、ヒストグラムの度数のうち最大度数が上記P1(たとえば15)未満の場合に、さらに30個の距離演算値を演算するように送光、受光および演算を繰返し制御するようにした。1セットの測定回数を30個に制限したことにより、無制限に行う場合に比べて、メモリ使用量の抑制や処理の負担の軽減、さらには演算に用いる回路の規模(たとえば、FPGAのゲート数)を抑えることができる。 (2) When the number of distance calculation values to be calculated reaches N (for example, 30), the time measuring circuit 2 in (1) obtains a histogram relating to the 30 distance calculation values, and out of the frequency of the histogram When the maximum frequency is less than P1 (for example, 15), the light transmission, light reception, and calculation are repeatedly controlled so that 30 distance calculation values are calculated. By limiting the number of measurements per set to 30, the amount of memory used is reduced and the processing burden is reduced, compared to the case where the number of measurements is unlimited, and the scale of the circuit used for computation (for example, the number of gates of FPGA) Can be suppressed.

(3)上記(2)の時間計測回路2は、上記30個の距離演算値に係るヒストグラムごとに度数が最大となる階級を求め、各最大階級ごとに当該最大階級に含まれる距離演算値の平均値(距離平均値と呼ぶ)を求め、各最大階級ごとの距離平均値のうち第1所定範囲X1(たとえば±0.4m)内に含まれる距離平均値の数が所定値P2(たとえば10)以上の場合は、X1内に含まれる距離平均値を用いて予備測定値DPを得るようにした。これにより、所定のまとまり状態を有している距離演算値のみを採用して予備測定値DPを得ることから、ノイズの影響などによってばらつきが大きい(すなわち、まとまりがない)距離演算値を排除することができる。 (3) The time measurement circuit 2 of (2) obtains a class having the maximum frequency for each histogram related to the 30 distance calculation values, and calculates the distance calculation value included in the maximum class for each maximum class. An average value (referred to as a distance average value) is obtained, and the number of distance average values included in the first predetermined range X1 (for example, ± 0.4 m) among the distance average values for each maximum class is a predetermined value P2 (for example, 10). ) In the above case, the preliminary measurement value DP is obtained using the distance average value included in X1. As a result, only the distance calculation value having a predetermined unitary state is employed to obtain the preliminary measurement value DP, and therefore, the distance calculation value having a large variation (ie, no unity) due to the influence of noise or the like is excluded. be able to.

(4)上記(3)の時間計測回路2は、上記30個の距離演算値の演算をM(たとえば20)回繰り返してもX1内に含まれる距離平均値の数がP2(たとえば10)未満である場合は、予備測定値DPの取得をやめるようにしたので、ノイズの影響などによってばらつきが大きい(すなわち、まとまりがない)場合に、無駄な予備測定を行い続けることを防止できる。 (4) The time measurement circuit 2 of (3) above has the number of distance average values included in X1 less than P2 (for example, 10) even if the calculation of the 30 distance calculation values is repeated M (for example, 20) times. In this case, since the preliminary measurement value DP is not obtained, it is possible to prevent the useless preliminary measurement from being continued when the variation is large due to the influence of noise or the like (that is, there is no unity).

(5)演算制御回路1は、受光回路5で受光される反射光レベルが所定レベルより低い場合にNの値を通常値30から2倍の60へ増やすようにしたので、Nの値を変えない場合に比べて、ばらつきが大きい状態でありながらも予備測定値が得られる可能性を高めることができる。 (5) The arithmetic control circuit 1 increases the value of N from the normal value of 30 to 60 when the reflected light level received by the light receiving circuit 5 is lower than the predetermined level. It is possible to increase the possibility that a preliminary measurement value can be obtained while the variation is large as compared to the case where there is no variation.

(6)上記(1)〜(5)の時間計測回路2は、本測定時において、所定の本測定回数(たとえば2000〜7000)の距離演算値を演算するように送光、受光および演算を繰返し制御し、所定の本測定回数の距離演算値のうち、予備測定値DPを含む第2所定範囲X2(たとえば±0.6m)内の距離演算値を用いて本測定値を得るようにしたので、たとえば、本測定中に測距装置と対象物との間を人やクルマ、動物などが横切った場合に得られる異常な距離演算値(予備測定値DPと大きく異なる値)を排除できる。 (6) The time measuring circuit 2 of (1) to (5) performs light transmission, light reception and calculation so as to calculate a distance calculation value for a predetermined number of main measurements (for example, 2000 to 7000) at the time of main measurement. By repeatedly controlling, the main measurement value is obtained by using the distance calculation value within the second predetermined range X2 (for example, ± 0.6 m) including the preliminary measurement value DP among the distance calculation values of a predetermined number of main measurements. Therefore, for example, an abnormal distance calculation value (a value greatly different from the preliminary measurement value DP) obtained when a person, a car, an animal, or the like crosses between the distance measuring device and the object during the main measurement can be eliminated.

(7)上記(6)の時間計測回路2は、本測定時において、X2(たとえば±0.6m)内の距離演算値の数が(N×M)より大きい第3所定数Q(2000〜7000)に達するまで本測定を続けるようにしたので、ノイズの影響を低く抑えることができる。 (7) The time measurement circuit 2 of (6) described above has a third predetermined number Q (2000 to 2000) in which the number of distance calculation values in X2 (for example, ± 0.6 m) is greater than (N × M) during the main measurement. Since the main measurement is continued until 7000), the influence of noise can be kept low.

(8)上記(6)または(7)の時間計測回路2は、X2をX1より広くしたので、逆の場合(X2がX1より狭い)に比べて、本測定処理に要する時間を短くすることができる。 (8) Since the time measuring circuit 2 in (6) or (7) described above has X2 wider than X1, the time required for this measurement processing is shortened compared to the reverse case (X2 is narrower than X1). Can do.

(変形例1)
図4におけるステップP15において、最大度数の階級に含まれる全ての概略距離データの平均値を予備測定値DPとする代わりに、最大度数の階級に含まれる一部の概略距離データの平均値を予備測定値DPとしてもよい。たとえば、最大度数の階級に含まれる概略距離データの最大値および最小値をそれぞれ除外し、残りの概略距離データの平均値を予備測定値DPとする。なお、cセット目の予備測定値DPcを算出する(ステップP17,ステップP18)場合も同様である。
(Modification 1)
In step P15 in FIG. 4, instead of using the average value of all the approximate distance data included in the maximum frequency class as the preliminary measurement value DP, the average value of a part of the approximate distance data included in the maximum frequency class is reserved. The measured value DP may be used. For example, the maximum value and the minimum value of the approximate distance data included in the maximum frequency class are excluded, and the average value of the remaining approximate distance data is set as the preliminary measurement value DP. Note that the same applies to the case where the c-th preliminary measurement value DPc is calculated (step P17, step P18).

(変形例2)
また、上述したステップP15、P17、P18においては単純平均を算出して予備測定値を得る例を説明したが、単純平均の代わりに重みつけ処理を行って予備測定値を得てもよい。
(Modification 2)
Moreover, although the example which calculates a simple average and obtains a preliminary measurement value was demonstrated in step P15, P17, and P18 mentioned above, you may obtain a preliminary measurement value by performing a weighting process instead of a simple average.

(変形例3)
上記実施形態では、図4におけるステップP19において、cセット目の予備測定値DPcが1セット目の予備測定値DP1と所定差以内の場合に予備測定値DPcを有効概略距離として採用するようにした。この代わりに、全20セットの予備測定値DPx(1≦x≦20)のうち、ばらつきが小さい10個(ステップP22における規定数に相当)の予備測定値DPxiを抽出して有効概略距離として採用するようにしてもよい。
(Modification 3)
In the above embodiment, when the c-th preliminary measurement value DPc is within a predetermined difference from the first set preliminary measurement value DP1 in step P19 in FIG. 4, the preliminary measurement value DPc is adopted as the effective approximate distance. . Instead, out of 20 sets of preliminary measurement values DPx (1 ≦ x ≦ 20), 10 preliminary measurement values DPxi with small variations (corresponding to the prescribed number in step P22) are extracted and used as effective approximate distances. You may make it do.

以上の説明はあくまで一例であり、上記の実施形態の構成に何ら限定されるものではない。また、各判定に用いた閾値や回数の値は、適宜変更して構わない。   The above description is merely an example, and is not limited to the configuration of the above embodiment. The threshold value and the number of times used for each determination may be changed as appropriate.

1…演算制御回路
2…時間計測回路
3…駆動回路
4…送光回路
5…受光回路
6…増幅回路
7…タイミング検出回路
8…信号レベル測定回路
9…調光フィルタ部
DESCRIPTION OF SYMBOLS 1 ... Operation control circuit 2 ... Time measurement circuit 3 ... Drive circuit 4 ... Light transmission circuit 5 ... Light reception circuit 6 ... Amplification circuit 7 ... Timing detection circuit 8 ... Signal level measurement circuit 9 ... Dimming filter part

Claims (8)

対象物に向けて光を送光する送光手段と、
前記対象物で反射された光を受光する受光手段と、
前記送光から前記受光までの時間に基づいて前記対象物までの距離を演算する演算手段と、
本測定の前に予備測定を行い、該予備測定値を用いて前記本測定を行うように前記送光手段、受光手段および前記演算手段をそれぞれ制御する制御手段とを備え、
前記予備測定時の前記制御手段は、
前記演算手段によって距離演算値を所定回数だけ演算するように前記送光、前記受光および前記演算を繰返し制御し、
前記所定回数だけ演算して得た複数の距離演算値に基づいてヒストグラムを求め、
前記ヒストグラムの度数のうち最大度数が第1判定閾値P1以上の場合は、前記最大度数の階級に含まれる距離演算値を用いて前記予備測定値を得ることを特徴とする測距装置。
A light transmission means for transmitting light toward the object;
A light receiving means for receiving the light reflected by the object;
A calculation means for calculating a distance to the object based on a time from the light transmission to the light reception;
Preliminary measurement is performed prior to the main measurement, and the light transmitting means, the light receiving means, and the calculation means are respectively controlled so as to perform the main measurement using the preliminary measurement value.
The control means at the time of the preliminary measurement is
Repetitively controlling the light transmission, the light reception and the calculation so as to calculate a distance calculation value a predetermined number of times by the calculation means;
Obtain a histogram based on a plurality of distance calculation values obtained by calculating the predetermined number of times,
When the maximum frequency among the frequencies of the histogram is equal to or greater than a first determination threshold value P1, the distance measurement device obtains the preliminary measurement value using a distance calculation value included in the class of the maximum frequency.
請求項1に記載の測距装置において、
前記予備測定時の前記制御手段は、
前記演算手段によって演算される距離演算値の数が第1所定数N個に達すると該N個の距離演算値に係るヒストグラムを求め、
前記ヒストグラムの度数のうち最大度数が前記P1未満の場合に、さらにN個の距離演算値を演算するように前記送光、前記受光および前記演算を繰返し制御することを特徴とする測距装置。
The distance measuring device according to claim 1,
The control means at the time of the preliminary measurement is
When the number of distance calculation values calculated by the calculation means reaches the first predetermined number N, a histogram relating to the N distance calculation values is obtained,
A distance measuring apparatus that repeatedly controls the light transmission, the light reception, and the calculation so as to calculate N distance calculation values when the maximum frequency in the histogram is less than P1.
請求項2に記載の測距装置において、
前記予備測定時の前記制御手段は、
前記N個の距離演算値に係るヒストグラムごとに度数が最大となる階級を求め、
各最大階級ごとに当該最大階級に含まれる距離演算値の平均値(距離平均値と呼ぶ)を求め、
前記各最大階級ごとの前記距離平均値のうち第1所定範囲X1内に含まれる距離平均値の数が第2判定閾値P2以上の場合は、前記X1内に含まれる距離平均値を用いて前記予備測定値を得ることを特徴とする測距装置。
The distance measuring device according to claim 2,
The control means at the time of the preliminary measurement is
For each of the histograms related to the N distance calculation values, obtain a class having the maximum frequency,
For each maximum class, find the average value of the distance calculation values included in the maximum class (referred to as the distance average value)
When the number of distance average values included in the first predetermined range X1 among the distance average values for each maximum class is equal to or greater than the second determination threshold value P2, the distance average value included in the X1 is used to A distance measuring device characterized by obtaining preliminary measurement values.
請求項3に記載の測距装置において、
前記予備測定時の前記制御手段は、
前記N個の距離演算値の演算を第2所定数M回繰り返しても前記X1内に含まれる距離平均値の数が前記P2未満である場合は、前記予備測定値の取得をやめることを特徴とする測距装置。
In the distance measuring device according to claim 3,
The control means at the time of the preliminary measurement is
If the number of distance average values included in the X1 is less than the P2 even if the calculation of the N distance calculation values is repeated a second predetermined number M times, the preliminary measurement value acquisition is stopped. Ranging device.
請求項2〜4のいずれか一項に記載の測距装置において、
前記予備測定時の前記制御手段は、
前記受光手段で受光される反射光レベルが所定レベルより低い場合に前記第1所定数Nの値を増やすことを特徴とする測距装置。
In the distance measuring device according to any one of claims 2 to 4,
The control means at the time of the preliminary measurement is
The distance measuring apparatus, wherein the first predetermined number N is increased when a reflected light level received by the light receiving means is lower than a predetermined level.
請求項1〜5のいずれか一項に記載の測距装置において、
前記本測定時の前記制御手段は、
前記演算手段によって所定の本測定回数の距離演算値を演算するように前記送光、前記受光および前記演算を繰返し制御し、
前記所定の本測定回数の距離演算値のうち、前記予備測定値を含む第2所定範囲X2内の距離演算値を用いて前記本測定値を得ることを特徴とする測距装置。
In the distance measuring device according to any one of claims 1 to 5,
The control means at the time of the main measurement is
Repetitively controlling the light transmission, the light reception and the calculation so as to calculate a distance calculation value of a predetermined number of times of main measurement by the calculation means;
A distance measuring apparatus that obtains the main measurement value using a distance calculation value within a second predetermined range X2 including the preliminary measurement value among the distance calculation values of the predetermined number of main measurements.
請求項6に記載の測距装置において、
前記本測定時の前記制御手段は、
前記X2内の距離演算値の数が前記(N×M)より大きい第3所定数Qに達するまで前記本測定を続けることを特徴とする測距装置。
The distance measuring device according to claim 6,
The control means at the time of the main measurement is
The distance measuring apparatus according to claim 1, wherein the main measurement is continued until the number of distance calculation values in X2 reaches a third predetermined number Q that is greater than (N × M).
請求項6または7に記載の測距装置において、
前記本測定時の前記制御手段は、前記X2を前記X1より広くすることを特徴とする測距装置。
The distance measuring device according to claim 6 or 7,
The distance measuring apparatus characterized in that the control means at the time of the main measurement makes the X2 wider than the X1.
JP2009107505A 2009-04-27 2009-04-27 Ranging device Active JP5409099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009107505A JP5409099B2 (en) 2009-04-27 2009-04-27 Ranging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009107505A JP5409099B2 (en) 2009-04-27 2009-04-27 Ranging device

Publications (2)

Publication Number Publication Date
JP2010256205A true JP2010256205A (en) 2010-11-11
JP5409099B2 JP5409099B2 (en) 2014-02-05

Family

ID=43317284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009107505A Active JP5409099B2 (en) 2009-04-27 2009-04-27 Ranging device

Country Status (1)

Country Link
JP (1) JP5409099B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2486668A (en) * 2010-12-22 2012-06-27 St Microelectronics Res & Dev Real-time processing method and system for an optical range finder
WO2013084616A1 (en) * 2011-12-05 2013-06-13 株式会社日立製作所 Distance measurement method and device, and shape measurement device in which distance measurement device is installed
US10613225B2 (en) 2015-09-21 2020-04-07 Kabushiki Kaisha Toshiba Distance measuring device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249970A (en) * 1993-02-24 1994-09-09 Meisei Electric Co Ltd Visibility measuring method, rainfall/snowfall deciding method, method and system for measuring intensity of rainfall/snowfall
JPH0829533A (en) * 1994-07-15 1996-02-02 Nec Corp Laser radar
JP2003130954A (en) * 2001-10-24 2003-05-08 Nikon Corp Range finder
JP2005189140A (en) * 2003-12-26 2005-07-14 Nikon Vision Co Ltd Distance-measuring device and method
JP2006322834A (en) * 2005-05-19 2006-11-30 Nikon Corp Distance measuring instrument and distance measuring method
JP2006349506A (en) * 2005-06-16 2006-12-28 Sokkia Co Ltd Range finder and its method
JP2008096181A (en) * 2006-10-10 2008-04-24 Nikon Vision Co Ltd Distance measuring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249970A (en) * 1993-02-24 1994-09-09 Meisei Electric Co Ltd Visibility measuring method, rainfall/snowfall deciding method, method and system for measuring intensity of rainfall/snowfall
JPH0829533A (en) * 1994-07-15 1996-02-02 Nec Corp Laser radar
JP2003130954A (en) * 2001-10-24 2003-05-08 Nikon Corp Range finder
JP2005189140A (en) * 2003-12-26 2005-07-14 Nikon Vision Co Ltd Distance-measuring device and method
JP2006322834A (en) * 2005-05-19 2006-11-30 Nikon Corp Distance measuring instrument and distance measuring method
JP2006349506A (en) * 2005-06-16 2006-12-28 Sokkia Co Ltd Range finder and its method
JP2008096181A (en) * 2006-10-10 2008-04-24 Nikon Vision Co Ltd Distance measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2486668A (en) * 2010-12-22 2012-06-27 St Microelectronics Res & Dev Real-time processing method and system for an optical range finder
WO2013084616A1 (en) * 2011-12-05 2013-06-13 株式会社日立製作所 Distance measurement method and device, and shape measurement device in which distance measurement device is installed
US10613225B2 (en) 2015-09-21 2020-04-07 Kabushiki Kaisha Toshiba Distance measuring device
US11988745B2 (en) 2015-09-21 2024-05-21 Kabushiki Kaisha Toshiba Distance measuring device

Also Published As

Publication number Publication date
JP5409099B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5683782B2 (en) Distance measuring device and distance measuring method
WO2016030925A1 (en) Rangefinder and ranging method
JP2010151618A5 (en)
JP2010156711A (en) Device and method for distance measurement
JP6396696B2 (en) Light wave distance meter
JP6378345B2 (en) Distance meter and rangefinder
JP2022527889A (en) LIDAR device with optical amplifier on the return path
JP5409099B2 (en) Ranging device
US11346651B2 (en) Optical distance measurement device and processing device
KR101260280B1 (en) Device and method for optically scanning 3 dimensional object
JP2006329797A (en) Light wave range finder
RU2524450C1 (en) Method of detecting optical and optoelectronic surveillance equipment and apparatus for realising said method
KR101255816B1 (en) Device and method for optically scanning three dimensional object
JP4799502B2 (en) Focusing distance measuring device
US20180238793A1 (en) Light-attenuation-ratio measurement method and light-intensity measurement system
US7599045B2 (en) Method for eliminating internal reflection of range finding system and range finding system applying the same
US11513202B2 (en) Electronic distance meter and method of determining a distance with an electronic distance meter
RU2471203C1 (en) Laser distance meter
JP5823090B2 (en) Ranging device
KR20010044477A (en) Apparatus and Method for mearsuring a distance using LASER
FR3105443A1 (en) CALIBRATION OF A LIDAR SYSTEM
US11435450B2 (en) Monostatic laser rangefinder device
JPH04297887A (en) Laser range finder
US7575323B2 (en) Method and device for determining the distance from a measurement point on a tissue surface of the eye
RU41883U1 (en) LASER RANGE AIMING DEVICE

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20111209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

R150 Certificate of patent or registration of utility model

Ref document number: 5409099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250